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Application: Factory Floor testbed

(Galloway et al. 2010; Napp and Kla\\llns 2011)
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that are each made up of a guard, action, and rate.
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_ k _
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So a GCPR command is now an edge of a Markov chain. Rates are
either chosen programmatically or are used to model error rates.

B AGCPRVY ={(g1,a1,71),..-,(gn,an,rn)} is a set of commands
that are each made up of a guard, action, and rate.
B A GCPR VW can be scaled by o € R>( such that

oV = U (g,a,0r).

(g,a,r)EV

B The composition ¥ U ® of GCPR ¥ and GCPR @ is the union of the
two programs.
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Analysis of GCPR using Master Equation

(Napp and Klavins 2011)
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Desired and undesired behaviors compose a single Markov process.
Slow, robust behaviors can be mixed with fast, idealized behaviors.
Rates and scalars are chosen to ensure adequate performance and
error resilience.

System described by linear master equation:

p=pQ

robability of state 5 and () is graph Laplacian.

[J Correctness: steady-state probability p*
[0 Performance: spectrum of () (i.e., \2)
Stochastic Robotics
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Application: Arti\\***\‘\*\\lal Polllnatlon by RoboBees

(Berman et al. 2011a,b)
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B Reactions model behavior switches; choose rates programmatically.
B Motion governed by drift—diffusion process; choose field and diffusion
coefficient programmatically.

Ti(t+0;) = Zi(t)+T(Ti, t)0s+/2D6 Z(t),  Z;(t) ~ N(0,1)
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Reactions model behavior switches; choose rates programmatically.
Motion governed by drift—diffusion process; choose field and diffusion
coefficient programmatically.

Ti(t+0;) = Zi(t)+T(Ti, t)0s+/2D6 Z(t),  Z;(t) ~ N(0,1)

Macroscopic design with advection—diffusion—reaction equations.
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Reactions model behavior switches; choose rates programmatically.
Motion governed by drift—diffusion process; choose field and diffusion
coefficient programmatically.

Ti(t+0;) = Zi(t)+T(Ti, t)0s+/2D6 Z(t),  Z;(t) ~ N(0,1)

Macroscopic design with advection—diffusion—reaction equations.
Goal: Desired flower coverage (1500 robots, 3 minute bouts, wind).
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Application: Swarm Robotic Assembly

(Matthey et al. 2009)

Stochastic Strategies for a Swarm Robotic Assembly System

Loic Matthey. Spring Berman and Vijay Kumar

Analysis Synthesis

\
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simulation
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Robot motion
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[ Micro-continuous

L. Matthey, S. Berman, and V. Kumar, “Stochastic strategies for a swarm robotic assembly
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(Matthey et al. 2009)
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Goal: Equal number of both parts assembled (i.e., Tp1 = T 2).
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A Stochastic Hybrid System Model of Collective Transport
in the Desert Ant Aphaenogaster cockerelli

*
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G. P. Kumar, A. Buffin, T. P. Pavlic, S. C. Pratt, and S. M. Berman, “A stochastic
hybrid system model of collective transport in the desert ant Aphaenogaster
cockerelli)” in Proceedings of the 16th ACM International Conference on Hy.
Systems: Computation and Control, Philadelphia, PA, April 8—11,2013.
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Stochastic Hybrid System Model for Ants

(Kumar et al. 2013)
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Generalized Lie derivative of moments along trajectories of SHS systems:

B For function v,

0 0
L0@) & S+ 5+ Y ((05(@) — v(@) kN
drr i,JE€{F,B,D}
7]

and
d

5 EW(@)) = E(Ly(2)).

So arbitrary moment dynamics can be derived from SHS model.

Stochastic Robotics



ad Generator

Kumar et al. 2013)

Introduction

Guarded Command

Programming with Rates E

Reaction Networks

Cooperative Transport

Modeling Ants
SHS Generators

Cooperative Task
Processing

Conclusions

Generalized Lie derivative of moments along trajectories of SHS systems:

B For function v,

0 0
L0@) & S+ 5+ Y ((05(@) — v(@) kN
drr i,JE€{F,B,D}
7]

and
d

5 EW(@)) = E(Ly(2)).

So arbitrary moment dynamics can be derived from SHS model.

Behavioral switching rates and control parameters can be found by fitting
moment dynamics to statistics.
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Fitting Results

(Kumar et al. 20\1 3)
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Bonus — Ant Cognition: Drift-Diffusion Modeling of Quorum Sensing

Introduction :  T. P.Pavlic, S. C. Pratt, “Speed—accuracy tradeoffs in Temnothorax
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Cooperative Task Processing

(Pavlic and Passino 2011)
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Conclusions

T. P. Pavlic and K. M. Passino, “Cooperative task-processing networks,” in Proceedings of
the Second International Workshop on Networks of Cooperating Objects, CONET 2011,
Chicago, IL, USA, April 11, 2011.

Stochastic Robotics

00000 OCOIOOIOINOOSPOY



Application: Cooperative patrol

(Pavlic and Passino 2011)
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Application: Cooperative patrol

(Pavlic and Passino 2011)
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B Task-processing network (TPN): conveyor 1 and cooperators 2 and 3
B Each can be both conveyor and cooperator simultaneously
B Policy should be decentralized but still share load
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For cooperator 7 € C, its local rate of gain
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ic.and Passino 2011)
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ascent:

[0 Agents iterate asynchronously.

[0 Each agent operates on a possibly outdated copy of 7.

O If synchronous transition mapping is a contraction with respect to
maximum norm

— é )
|Y]|co = rgleaéx{\vz!},

then a unique Nash equilibrium exists and is asymptotically stable
by totally asynchronous distributed gradient ascent
iterations (Bertsekas and Tsitsiklis 1997).

Constraints on topology and payment functions ensure contraction.

[0 Diagonal-dominance/convexity argument.
[0 Network structure ensures dominance.
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neighbors (e.g., 1 and 3) help more and agent (e.g., 2) helps less
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