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(Napp and Klavins 2011)
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N. Napp and E. Klavins, “A compositional framework for programming

stochastically interacting robots,” Int. J. Robot. Res. [Special Issue Stochasticity in

Robot. Bio-Systems Part 2], vol. 30, no. 6, pp. 713–729, May 2011.
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Weakly related to GCP by Dijkstra (1975).

Non-deterministic reasoning about programs (predicate transformers).

x ≥ y → m := x� y ≥ x→ m := y

state = 0100 → state = 1000

� state = 0100 → state = 0010
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Guard
︷︸︸︷

1000→

Action
︷︸︸︷

0100

s1s2→ s1s2

sisi+1→ sisi+1

(global state)

(site encoded)

(behavioral ND program)

1 0 0 0

0 1 0 0
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For compositionality, augment GCP with exponential rates.

sisi+1 → sisi+1 (GCP)

sisi+1
k
−⇀ sisi+1 (GCPR)

So a GCPR command is now an edge of a Markov chain. Rates are

either chosen programmatically or are used to model error rates.
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k
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So a GCPR command is now an edge of a Markov chain. Rates are

either chosen programmatically or are used to model error rates.

� A GCPR Ψ = {(g1, a1, r1), . . . , (gn, an, rn)} is a set of commands

that are each made up of a guard, action, and rate.
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either chosen programmatically or are used to model error rates.
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� A GCPR Ψ can be scaled by σ ∈ R≥0 such that
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For compositionality, augment GCP with exponential rates.

sisi+1 → sisi+1 (GCP)

sisi+1
k
−⇀ sisi+1 (GCPR)

So a GCPR command is now an edge of a Markov chain. Rates are

either chosen programmatically or are used to model error rates.

� A GCPR Ψ = {(g1, a1, r1), . . . , (gn, an, rn)} is a set of commands

that are each made up of a guard, action, and rate.

� A GCPR Ψ can be scaled by σ ∈ R≥0 such that

σΨ =
⋃

(g,a,r)∈Ψ

(g, a, σr).

� The composition Ψ ∪ Φ of GCPR Ψ and GCPR Φ is the union of the

two programs.



Analysis of GCPR using Master Equation
(Napp and Klavins 2011)

Introduction

Guarded Command

Programming with Rates

Application

GCP with Rates

Markov Analysis

Reaction Networks

Cooperative Transport

Cooperative Task

Processing

Conclusions

Stochastic Robotics

� Desired and undesired behaviors compose a single Markov process.



Analysis of GCPR using Master Equation
(Napp and Klavins 2011)

Introduction

Guarded Command

Programming with Rates

Application

GCP with Rates

Markov Analysis

Reaction Networks

Cooperative Transport

Cooperative Task

Processing

Conclusions

Stochastic Robotics

� Desired and undesired behaviors compose a single Markov process.

� Slow, robust behaviors can be mixed with fast, idealized behaviors.



Analysis of GCPR using Master Equation
(Napp and Klavins 2011)

Introduction

Guarded Command

Programming with Rates

Application

GCP with Rates

Markov Analysis

Reaction Networks

Cooperative Transport

Cooperative Task

Processing

Conclusions

Stochastic Robotics

� Desired and undesired behaviors compose a single Markov process.

� Slow, robust behaviors can be mixed with fast, idealized behaviors.

� Rates and scalars are chosen to ensure adequate performance and

error resilience.



Analysis of GCPR using Master Equation
(Napp and Klavins 2011)

Introduction

Guarded Command

Programming with Rates

Application

GCP with Rates

Markov Analysis

Reaction Networks

Cooperative Transport

Cooperative Task

Processing

Conclusions

Stochastic Robotics

� Desired and undesired behaviors compose a single Markov process.

� Slow, robust behaviors can be mixed with fast, idealized behaviors.

� Rates and scalars are chosen to ensure adequate performance and

error resilience.

� System described by linear master equation:

~̇p = ~pQ

where pj is probability of state j and Q is graph Laplacian.

� Correctness: steady-state probability p∗

� Performance: spectrum of Q (i.e., λ2)



Application: Artificial Pollination by RoboBees
(Berman et al. 2011a,b)
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S. Berman, V. Kumar, and R. Nagpal, “Design of control policies for spatially inhomogeneous robot

swarms with application to commercial pollination,” in Proceedings of the 2011 IEEE International

Conference on Robotics and Automation, Shanghai, China, May 9–13, 2011.

S. Berman, R. Nagpal, and Á. Halász, “Optimization of stochastic strategies for spatially

inhomogeneous robot swarms: a case study in commerical pollination,” in Proceedings of the 2011

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), San Francisco, CA,

USA, September 25–30, 2011, pp. 3923–3930.

http://robobees.seas.harvard.edu/

http://youtu.be/GgR-mH6X5VU
http://robobees.seas.harvard.edu/
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� Reactions model behavior switches; choose rates programmatically.

� Motion governed by drift–diffusion process; choose field and diffusion

coefficient programmatically.

~xi(t+δt) = ~xi(t)+~v(~xi, t)δt+
√

2Dδt ~Z(t), Zj(t) ∼ N (0, 1)

http://mc.tt/adMGVzNp5u
http://mc.tt/adMGVzNp5u
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� Reactions model behavior switches; choose rates programmatically.

� Motion governed by drift–diffusion process; choose field and diffusion

coefficient programmatically.

~xi(t+δt) = ~xi(t)+~v(~xi, t)δt+
√

2Dδt ~Z(t), Zj(t) ∼ N (0, 1)

� Macroscopic design with advection–diffusion–reaction equations.
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� Reactions model behavior switches; choose rates programmatically.

� Motion governed by drift–diffusion process; choose field and diffusion

coefficient programmatically.

~xi(t+δt) = ~xi(t)+~v(~xi, t)δt+
√

2Dδt ~Z(t), Zj(t) ∼ N (0, 1)

� Macroscopic design with advection–diffusion–reaction equations.

� Goal: Desired flower coverage (1500 robots, 3 minute bouts, wind).

http://mc.tt/adMGVzNp5u
http://mc.tt/adMGVzNp5u
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L. Matthey, S. Berman, and V. Kumar, “Stochastic strategies for a swarm robotic assembly

system,” in Proceedings of the 2009 IEEE International Conference on Robotics and

Automation, Kobe, Japan, May 12–17, 2009, pp. 1953–1958



Application: Swarm Robotic Assembly
(Matthey et al. 2009)

Introduction

Guarded Command

Programming with Rates

Reaction Networks

RoboBees

Swarm Assembly

Cooperative Transport

Cooperative Task

Processing

Conclusions

Stochastic Robotics



Swarm Robotic Assembly as Chemical Reaction Network
(Matthey et al. 2009)
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Goal: Equal number of both parts assembled (i.e., xF1 = xF2).
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Results from CME Design: Micro-/Macro-scopic Fraction of Parts 1 and 2
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G. P. Kumar, A. Buffin, T. P. Pavlic, S. C. Pratt, and S. M. Berman, “A stochastic

hybrid system model of collective transport in the desert ant Aphaenogaster

cockerelli ,” in Proceedings of the 16th ACM International Conference on Hybrid

Systems: Computation and Control, Philadelphia, PA, April 8–11, 2013.
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Aphaenogaster cockerelli ants

http://youtu.be/9RicT6EmbcE
http://youtu.be/8jcqzMvhEWo


Stochastic Hybrid System Model for Ants
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mLv̇L = NFK(vdL − vL)
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Individual
Behavior

+ µ sgn(vL)(mLg − (NF +NB)FL)
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SHS Extended Generator
(Kumar et al. 2013)
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Generalized Lie derivative of moments along trajectories of SHS systems:

� For function ψ,

Lψ(~x) ,
∂ψ

∂xL
ẋL +

∂ψ

∂vL
v̇L +

∑

i,j∈{F,B,D}
i 6=j

(ψ(φij(~x))− ψ(~x))kijNi

and
d

dt
E(ψ(~x)) = E(Lψ(~x)).

So arbitrary moment dynamics can be derived from SHS model.
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Generalized Lie derivative of moments along trajectories of SHS systems:

� For function ψ,

Lψ(~x) ,
∂ψ

∂xL
ẋL +

∂ψ

∂vL
v̇L +

∑

i,j∈{F,B,D}
i 6=j

(ψ(φij(~x))− ψ(~x))kijNi

and
d

dt
E(ψ(~x)) = E(Lψ(~x)).

So arbitrary moment dynamics can be derived from SHS model.

Behavioral switching rates and control parameters can be found by fitting

moment dynamics to statistics.



Fitting Results
(Kumar et al. 2013)
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T. P. Pavlic, S. C. Pratt, “Speed–accuracy tradeoffs in Temnothorax

rugatulus ants: sequential-sampling models of quorum detection while

house hunting” (IUSSI-NAS 2012, SMB 2013).

Time

E
v
id

e
n

c
e

a

z

0

Choice A

Choice B

v

“Drift” toward appropriate

answer over time.

Process variability (noise)

causes occasional errors.

b

bb

http://youtu.be/erpGaclTqqM
http://youtu.be/N4-H2UZ7lQU


Cooperative Task Processing
(Pavlic and Passino 2011)
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T. P. Pavlic and K. M. Passino, “Cooperative task-processing networks,” in Proceedings of

the Second International Workshop on Networks of Cooperating Objects, CONET 2011,

Chicago, IL, USA, April 11, 2011.



Application: Cooperative patrol
(Pavlic and Passino 2011)
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b

b

Example AAV Application:

Three MQ-8 Firescouts

on patrol
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� Task-processing network (TPN): conveyor 1 and cooperators 2 and 3
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� Task-processing network (TPN): conveyor 1 and cooperators 2 and 3
� Each can be both conveyor and cooperator simultaneously

� Policy should be decentralized but still share load



Cooperation game
(Pavlic and Passino 2011)

Stochastic Robotics

For cooperator i ∈ C, its local rate of gain

Ui(~γ) ,

Conveyor costs
︷ ︸︸ ︷

−ci

(
∏

j∈Ci

(1− γj)

)

︸ ︷︷ ︸

Pr(No Ci volunteers|i advertisement)

+ γi
∑

j∈Vi

(
−

Pr(i awarded task from j|i volunteers)
︷ ︸︸ ︷

Ps(j|i)cij
)

︸ ︷︷ ︸

Cooperator part:

Costs of local processing on i ∈ V :

ci ,
∑

k∈Yi

λki c
k
i

Costs and benefits to i ∈ C for volunteering for

tasks exported from j ∈ Vi:

cij ,
∑

k∈Yj

λkj c
k
ij



Cooperation game
(Pavlic and Passino 2011)

Stochastic Robotics

For cooperator i ∈ C, its local rate of gain

Ui(~γ) ,

Conveyor costs
︷ ︸︸ ︷

−ci

(
∏

j∈Ci

(1− γj)

)

︸ ︷︷ ︸

Pr(No Ci volunteers|i advertisement)

+ γi
∑

j∈Vi

(
pij(Qj)−

Pr(i awarded task from j|i volunteers)
︷ ︸︸ ︷

Ps(j|i)cij
)

︸ ︷︷ ︸

Cooperator part: γi , Qj vary with γi

Costs of local processing on i ∈ V :

ci ,
∑

k∈Yi

λki c
k
i

Costs and benefits to i ∈ C for volunteering for

tasks exported from j ∈ Vi:

cij ,
∑

k∈Yj

λkj c
k
ij

pij(Qj) ,
∑

k∈Yj

λkj q
k
ijp

k
j (Qj)

Payment functions added as stabilizing controls (“quantity” Qi ,
∑

j∈Ci
γj ).
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(
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Ps(j|i)cij
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Cooperator part: γi , Qj vary with γi

Costs of local processing on i ∈ V :
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∑
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k
i

Costs and benefits to i ∈ C for volunteering for

tasks exported from j ∈ Vi:

cij ,
∑
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Cournot oligopolieson a graph(∝ jury volunteering)

Decreasing-cost

externality
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� Totally asynchronous parallel computation of ~γ∗ by local gradient

ascent:

� Agents iterate asynchronously.

� Each agent operates on a possibly outdated copy of ~γ.

� If synchronous transition mapping is a contraction with respect to

maximum norm

‖~γ‖∞ , max
i∈C

{|γi|},

then a unique Nash equilibrium exists and is asymptotically stable

by totally asynchronous distributed gradient ascent

iterations (Bertsekas and Tsitsiklis 1997).

� Constraints on topology and payment functions ensure contraction.

� Diagonal-dominance/convexity argument.

� Network structure ensures dominance.
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each i ∈ C,

Ti(~γ) , min{γmax
i ,max{0, γi + σi∇iUi(~γ)}},

where
1

σi
≥ 2|Vi|max

k∈Vi

|p′ik(0)|

for all ~γ ∈ [0, 1]n. If

min
j∈Vi

|p′ij (|Cj |) | >

(

|Vi| −
1

2

)

max
j∈Vi

|cij | for all i ∈ C,

then the totally asynchronous distributed iteration (TADI) sequence {~γ(t)}
generated with mapping T and the outdated estimate sequence {~γi(t)} for all

i ∈ C each converge to the unique Nash equilibrium ~γ∗ of the cooperation game.
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Define T : [0, 1]n → [0, 1]n by T (~γ) , (T1(~γ), T2(~γ), . . . , Tn(~γ)) where, for

each i ∈ C,

Ti(~γ) , min{γmax
i ,max{0, γi + σi∇iUi(~γ)}},

where
1

σi
≥ 2|Vi|max

k∈Vi

|p′ik(0)|

for all ~γ ∈ [0, 1]n. If

Benefit
︷ ︸︸ ︷

min
j∈Vi

|p′ij (|Cj |) | >

1/(Relatedness)
︷ ︸︸ ︷
(

|Vi| −
1

2

) Cost
︷ ︸︸ ︷

max
j∈Vi

|cij | for all i ∈ C,

∼ Hamilton’s rule

on networks

then the totally asynchronous distributed iteration (TADI) sequence {~γ(t)}
generated with mapping T and the outdated estimate sequence {~γi(t)} for all

i ∈ C each converge to the unique Nash equilibrium ~γ∗ of the cooperation game.
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