
Kinetic modeling of collective behavior:

When a good match goes bad

Dr. Theodore (Ted) P. Pavlic

tpavlic@asu.edu

www

Sunday, April 19, 2015

mailto:tpavlic@asu.edu
http://www.tedpavlic.com/facjobsearch/
http://www.tedpavlic.com/facjobsearch/


Overview

Overview

Artificial Successes

Superficial Matches

New Hopes

Conclusions

Overview

Artificial Successes

Allocation Kinetics

Superficial Matches

Collective Transport

Swarm Assembly

New Hopes

Drift–Diffusion Decision-Making

Conclusions



Collective Transport
Decentralized Organization of Teams Carrying Loads

Overview

Artificial Successes

Allocation Kinetics

Superficial Matches

New Hopes

Conclusions

b

b



Collective Transport
Simplification: Decentralized Boundary Coverage
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Physical Inspiration: Langmuir Adsorption

Overview

Artificial Successes

Allocation Kinetics

Superficial Matches

New Hopes

Conclusions

b

b

AS

S

AS

S

AS

S
S

S

AS

S

AS

SS

S

A A

A

A

A

A

A

A + S
ka
−⇀↽−
kd

AS



Stochastic Boundary Coverage
Physical Inspiration: Langmuir Adsorption

Overview

Artificial Successes

Allocation Kinetics

Superficial Matches

New Hopes

Conclusions

b

b

AS

S

AS

S

AS

S
S

S

AS

S

AS

SS

S

A A

A

A

A

A

A

A + S
ka
−⇀↽−
kd

AS

θ =
[AS]

[AS] + [S]
∝

pA
ka

kd

1 + pA
ka

kd

pA
θ

θmax ≈ 1

Infinite
Partial

Pressure



Stochastic Boundary Coverage
Design of Robotic Adsorption

Overview

Artificial Successes

Allocation Kinetics

Superficial Matches

New Hopes

Conclusions

b

b

B

U

B

U

B
U

U

U

B

U

B

UU

U

R R

R

R

R

R

R



Stochastic Boundary Coverage
Design of Robotic Adsorption

Overview

Artificial Successes

Allocation Kinetics

Superficial Matches

New Hopes

Conclusions

b

b

R + U

eUpB
−−−⇀↽−−−
τB

−1
B

[B]

[U ]
= R0

eUpB
τB−1

R0: free-robot concentration

eU : robot–load-site encounter rate

pB : probability of binding

τB : mean time before unbinding

� Control strategy: Choose probability pB and time τB for desired allocation.
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� Control strategy: Choose probability pB and time τB for desired allocation.

� Choices depend on R0. Not scalable.

� Choices depend on eU . How to model eU ab initio?
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eB : robot–bound-complex encounter rate

pU : probability of unbinding

� Control strategy: Choose probabilities pB and pU for desired allocation.

� Scalable.

� Choices depend on eU/eB = constant ≈ 1, which has geometric derivation.
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Stochastic Boundary Coverage
Random Sequential Attachment with Detachment (Pavlic et al. 2014)
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Predicted Relationship
(0 big, 5 small)
(1 big, 4 small)
(2 big, 3 small)
(3 big, 2 small)
(4 big, 1 small)
(5 big, 0 small)
All other combinations
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Stochastic Boundary Coverage
Random Sequential Attachment with Detachment (Pavlic et al. 2013)
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(Wilson et al. 2014)
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Possible Extension: Swarm Robotic Assembly
(Matthey et al. 2009)
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Goal: Regulate ratio of assembled parts at equilibrium (e.g., x∗F1 = 2x∗F2).



Possible Extension: Honeycomb Assembly?
(Seeley and Morse 1976; Pratt 2004; Cargel and Rinderer 2004; Livnat and Pippenger
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Stochastic Assembly in Honeybee Colonies
A Simple Model

Overview

Artificial Successes

Superficial Matches

Collective Transport

Swarm Assembly

New Hopes

Conclusions

Worker + Earlier Cell
pbec
−−→ Worker + Later Cell

Worker + Later Cell
puec
−−−→ Worker + Earlier Cell

Active Cell
SLOW
−−−→ Finished Cell
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Stochastic Assembly in Honeybee Colonies
A Simplistic Model
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“Tandem run”

Slow transit, but adds one more recruiter.
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Fast transit, but no additional recruiter.
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When to switch?
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(Pratt 2005)

Overview

Artificial Successes

Superficial Matches

New Hopes

Drift–Diffusion

Decision-Making

Conclusions
0

0.5

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

λ (enc/sec)

Large nest

bb bb b bb

b b bbb bbbb b

0

0.5

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

λ (enc/sec)

Small nest

b b b

bb bbb bb

T
ra

n
s
p
o
rt

P
ro

b
a
b
ili

ty
(0

:
T
a

n
d

e
m

R
u

n
;

1
:

T
ra

n
s
p

o
rt

)

Encounter Rate During Visit



Role of encounter rate
(Pratt 2005)

Overview

Artificial Successes

Superficial Matches

New Hopes

Drift–Diffusion

Decision-Making

Conclusions
0

0.5

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

λ (enc/sec)

Large nest

λℓ=0.15
b

bb bb b bb

b b bbb bbbb b

0

0.5

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

λ (enc/sec)

Small nest

λs=0.17
b

b b b

bb bbb bb

T
ra

n
s
p
o
rt

P
ro

b
a
b
ili

ty
(0

:
T
a

n
d

e
m

R
u

n
;

1
:

T
ra

n
s
p

o
rt

)

Encounter Rate During Visit



Role of encounter rate
(Pratt 2005)

Overview

Artificial Successes

Superficial Matches

New Hopes

Drift–Diffusion

Decision-Making

Conclusions
0

0.5

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

λ (enc/sec)

Large nest

λℓ=0.15
b

bb bb b bb

b b bbb bbbb b

0

0.5

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

λ (enc/sec)

Small nest

λs=0.17
b

b b b

bb bbb bb

T
ra

n
s
p
o
rt

P
ro

b
a
b
ili

ty
(0

:
T
a

n
d

e
m

R
u

n
;

1
:

T
ra

n
s
p

o
rt

)

How do ants estimate encounter rate

from events inside the nest?

Encounter Rate During Visit



Encounter-rate detection and estimation?

Overview

Artificial Successes

Superficial Matches

New Hopes

Drift–Diffusion

Decision-Making

Conclusions

0

0.5

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

λ (enc/sec)

Large nestr r

Small nestbc bc

rr rr rr rbcbc bc

r r rrr rrrr r bcbc bc bcbc bcbc

T
ra

n
s
p
o
rt

P
ro

b
a
b
ili

ty

Encounter Rate During Visit



Encounter-rate detection and estimation?

Overview

Artificial Successes

Superficial Matches

New Hopes

Drift–Diffusion

Decision-Making

Conclusions

0

0.5

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

λ (enc/sec)

Large nestr r

Small nestbc bc

Moderately Difficult

Very Difficult

Easy
rr rr rr rbcbc bc

r r rrr rrrr r bcbc bc bcbc bcbc

T
ra

n
s
p
o
rt

P
ro

b
a
b
ili

ty

Encounter Rate During Visit



Encounter-rate detection and estimation?

Overview

Artificial Successes

Superficial Matches

New Hopes

Drift–Diffusion

Decision-Making

Conclusions

0

200

400

600

800

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

λ (enc/sec)

Large nestr r

Small nestbc bc

Moderately Difficult

Very Difficult

Easy

r

r
r

r r

r
r

bc

bc

bc

r

r

r

r

r
r

rr

r

r

bc

bc

bc bcbc bcbc

D
u
ra

ti
o
n

o
f
V

is
it

(s
e
c
)

Encounter Rate During Visit



Encounter-rate detection and estimation?

Overview

Artificial Successes

Superficial Matches

New Hopes

Drift–Diffusion

Decision-Making

Conclusions
0

0.5

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

λ (enc/sec)rr rr rr rbcbc bc

r r rrr rrrr r bcbc bc bcbc bcbc

T
ra

n
s
p
o
rt

P
ro

b
a
b
ili

ty

Encounter Rate During Visit

0

200

400

600

800

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

λ (enc/sec)

r

r
r

r r

r
r

bc

bc

bc

r

r

r

r

r
r

r
r

r

r

bc

bc

bc bcbc bcbc

D
u
ra

ti
o
n

o
f
V

is
it

(s
e
c
)

Encounter Rate During Visit

Temnothorax Response



Encounter-rate detection and estimation?
(Ratcliff et al. 1999)
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Drift–diffusion model for two-choice tasks
(Ratcliff 1978; Ratcliff et al. 1999)
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Drift–diffusion model for quorum detection in Temnothorax
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� Per-ant parameters of the model (generalized across sisters):

� a: Barrier separation (response time)

� z: Initial evidence variable (bias)

� Tnd: Non-decision time (actuation)

� λc: Critical encounter rate to detect

� Model of condition-dependent confidence/difficulty

� v , λ− λc: Drift rate (λ measured from encounter data)
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� Best-fit parameter results:

� a = 26.729
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Tnd close to 5.5 sec average wait-to-leave time

λc matches critical rate found by Pratt (2005)
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Random walk: internal or external?
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