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Collective Transport
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Tp: mean time before unbinding

B Control strategy: Choose probability pp and time 75 for desired allocation.
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Random Sequential Attachment with Detachment (Pavlic et al. 2014)
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Stochastic Boundary Coverage

Random Sequential Attachment with Detachment (Pavlic et al. 2014)
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Random Sequential Attachment with Detachment (Pavlic et al. 2014)
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Stochastic Boundary Coverage

Random Sequential Attachment with Detachment (Pavlic et al. 2013)
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Stochastic Boundary Coverage

Random Sequential Attachment with Detachment (Pavlic et al. 2014)
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Stochastic Boundary Coverage

Random Sequential Attachment with Detachment (Pavlic et al. 2014)
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Stochastic Boundary Coverage

Random Sequential Attachment with Detachment (Pavlic et al. 2014)
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Collective Transport

(Wilson et al. 2014)
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Collective Transport

(Kumar et al. 2013)

Overview

Artificial Successes

Superficial Matches

Collective Transport

Swarm Assembly

New Hopes

Conclusions




Collective Transport

(Kumar et al. 2013)
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Possible Extension: Swarm Robotic Assembly

(Matthey et al. 2009)
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Possible Extension: Swarm Robotic Assembly

(Matthey et al. 2009)

Overview

Artificial Successes

Superficial Matches

Collective Transport

Swarm Assembly

New Hopes

Conclusions

Goal: Regulate ratio of assembled parts at equilibrium (e.g., 7, = 227%5).



Possible Extension: Honeycomb Assembly?

(Seeley and Morse 1976; Pratt 2004; Cargel and Rinderer 2004; Livhat and Pippenger
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A Simple Model
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Role of encounter rate

(Pratt 2005)
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Role of encounter rate

(Pratt 2005)
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Encounter-rate detection and estimation?
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Encounter-rate detection and estimation?
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Drift—diffusion model for two-choice tasks

(Ratcliff 1978; Ratcliff et al. 1999)
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Drift—diffusion model for quorum detection in Temnothorax
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z: Initial evidence variable (bias)
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Model of condition-dependent confidence/difficulty
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v 2 X\ — \¢: Drift rate (A measured from encounter data)
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Drift—diffusion model for quorum detection in Temnothorax
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Random walk: internal or external?
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