Hyperbolic Quadrature Method of Moments

Rodney O. Fox
Anson Marston Distinguished Professor in Engineering
Department of Chemical and Biological Engineering Iowa State University, USA

The quadrature method of moments (QMOM) reconstructs a velocity distribution function (VDF) from its integer moments: $\left\{M_{0}, M_{1}, \ldots, M_{2 N-1}\right\}$. The reconstructed VDF is a sum of weighted Dirac delta functions in phase space, and closes the spatial flux $\left(M_{2 N}\right)$ in the kinetic equation. The QMOM closure for $M_{2 N}$ leads to a weakly hyperbolic system of moment equations. Here, we present an alternative closure where the moment M_{5} is a function of $\left\{M_{0}, M_{1}, \ldots, M_{4}\right\}$ chosen such that the five-moment system is hyperbolic. We refer to the VDF reconstruction with this choice for M_{5} as the hyperbolic quadrature method of moments (HyQMOM) reconstruction.

For HyQMOM, we show that (1) a choice for M_{5} exists that is valid for realizable moments $\left\{M_{0}, M_{1}, M_{2}, M_{3}, M_{4}\right\}$, (2) the five eigenvalues of the moment system can be computed explicitly, and (3) the kinetic-based (KB) flux for the system depends on four of the five eigenvalues. In the limit where M_{4} is on the boundary of moment space, the KB flux reduces to the 2-node QMOM flux, while for Gaussian moments it corresponds to a 4-node Gauss-Hermite quadrature. A 1-D Riemann problem is solved with HyQMOM to illustrate its ability to handle non-equilibrium VDF without creating delta shocks.

For a multi-variate VDF, a hyperbolic modification of the conditional quadrature method of moments (CHyQMOM) has been developed. For example, in 2-D phase space bivariate moments (i.e. $\left.M_{i, j}: 0 \leq i+j \leq 3,(i, j) \in(4,0),(0,4)\right)$ can be controlled thanks to a judicious choice of the nine velocity abscissas. CHyQMOM reconstructions for moments $M_{i, j, k}$ employ 27 velocity abscissas. The KB fluxes in 2/3-D are defined using the 1-D eigenvalues and directional splitting. Results for 2-D and 3-D crossing jets flows solved with CHyQMOM are presented to demonstrate its ability to capture binary crossing without dispersion.

