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Physical model

The Quasi-Geostrophic system of equations models the evolution of the
temperature in the atmosphere.

It can be rigorously derived from the Primitive Equations (Euler
equation with Coriolis force and Boussinesq approximation, see
Bourgeois Beale (94) and Desjardins Grenier 98)

At large scale, this Rosby effect is very important. Asymptotically, this
leads to the so-called geostrophic balance which enforces the wind
velocity to be orthogonal to the gradient of the pressure in the
atmosphere (see Pedlosky).

This model is extensively used in computations of oceanic and
atmospheric circulation, for instance, to simulate global warming.
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The unknown and parameters

The dynamic is encoded in Ψ, the stream function for the geostrophic
flow.
That is, the 3D velocity (w ,U) = (0, u, v) has its horizontal component
verifying

(u, v) = (−∂x2 Ψ, ∂x1 Ψ), or in short : U = ∇⊥Ψ,

where we denote
∇Ψ = (0, ∂x1 Ψ, ∂x2 Ψ).

From the model, the buoyancy is given by

Θ = ∂zΨ.

We denote

∇λφ = (λ∂zφ, ∂x1φ, ∂x2φ), Lλφ = div (∇λφ).

where λ = −1/Θ0
z , is a given function, of z only, associated to the

buoyancy of a reference state.
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The equation

The function Ψ is solution to the following Initial Boundary value problem:

(∂t +∇⊥
Ψ · ∇)(LλΨ + β0x2) = 0, t > 0, z > 0, x ∈ R2,

(∂t +∇⊥
Ψ · ∇)γν(∇λΨ) = ν∆Ψ, t > 0, z = 0, x ∈ R2,

Ψ(0, z, x) = Ψ0(z, x). t = 0, z > 0, x ∈ R2.

The parameter β0 comes from the usual β-plane approximation. The term
γν(∇λΨ) stands for the Neumann condition at z = 0 associated to the
operator LλΨ. If λ is regular, this coincides with −λ(0)∂zΨ(0, ·). The ν term
is due to the Eckman pumping. ν = 0 corresponds to the inviscid case.

Both, the value of the elliptic operator LλΨ, and the Neumann condition
γν(∇λΨ) at the boundary z = 0, are advected by the stratified flow with
velocity U = ∇⊥Ψ. At each time, Ψ can be recovered, solving the
boundary value elliptic equation.
Main difficulty: treatment of the boundary condition.
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The inviscid case

We assume that ν = 0, and that there exists Λ > 0 such that

1
Λ
≤ λ(z) ≤ Λ, for z ∈ R+.

Theorem (Puel-V.)

Consider an initial value Ψ0 such that

LλΨ0 and ∇λΨ0 are in L2(R+ × R2), γν(∇λΨ0) ∈ L2(R2).

Then, there exists Ψ weak solution to the Quasi-Geostrophic equation on
(0,∞)× R+ × R2, such that for every T > 0,
∇λΨ ∈ L∞(0,T ; L2(R+ × R2)) ∩ C0(0,T ; L2

loc(R+ × R2)).
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The case with Eckman pumping

We assume that λ(z) = 1, and ν > 0.

Theorem (Novack-V.)

Consider an initial value ∇Ψ0 ∈ L2(R3
+) ∩ Hp((0,∞)× R2) with p ≥ 3.

Then, there exists a unique global solution ∇Ψ to the Quasigeostrophic
equation on (0,∞)× R+ × R2, such that for every T > 0,
∇λΨ ∈ C0(0,T ; Hp(R+ × R2)).

Especially, if the initial is smooth (C∞), then the unique solution
is also smooth.

Novack, Puel, and Vasseur Recent results for the 3D Quasi-Geostrophic Equation



The equation
The main results

Global weak solutions (the inviscid case)
Global smooth solutions (case with Eckman pumping)

A new formulation of the problem
Idea of the proof

Main difficulty

To simplify the exposition, let us consider the case with out forcing with β = 0,
and λ = 1.

(∂t +∇⊥Ψ · ∇)(∆Ψ) = 0, for z > 0,

(∂t +∇⊥Ψ · ∇)(∂zΨ) = 0, for z = 0,

Ψ(0, z, x) = Ψ0(z, x). t = 0.

A priori estimates: for any 1 ≤ p ≤ ∞:

‖∆Ψ(t)‖Lp(R+×R2) ≤ ‖∆Ψ(0)‖Lp(R+×R2),

‖∂zΨ(t , 0)‖Lp(R2) ≤ ‖∂zΨ(0, 0)‖Lp(×R2),

No compactness on the trace of ∂zΨ at z = 0 !
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A special case: the Surface Quasi Geostrophic
Equation

If ∆Ψ(0) = 0, then ∆Ψ(t) = 0 for all t ≥ 0.

Denote θ = ∂zΨ defined at z = 0. Then θ is solution to

∂tθ + U.∇θ = 0, t > 0, (x , y) ∈ R2, (1)

θ = θ0, t = 0, (x , y) ∈ R2, (2)

and the velocity U can be expressed in R2, via a nonlocal operator, as

U = ∇⊥∆−1/2θ.

This model has been popularized as a toy problem for 3D fluid
mechanics (see Constantin, Majda, Held, Pierrehumbert, Garner,
Swanson ...).

Our theorem extends to QG the result of Tabak for SQG, using different
techniques.
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A new formulation (1)

The proof does NOT use (and does not show) compactness on the
trace of ∂zΨ at z = 0.

It is based on a reformulation of the problem into a system of equations
(without equation on the trace).

The stability (and compactness) for this problem is pretty simple.

We then have to show the equivalence between the two formulations.
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A new formulation (2)

Consider the Hodge decomposition in L2(R+ × R2):

u = ∇λφ+ curlv = Pλu + Pcurlu,

with curlv · ν = 0 at z = 0.
The QG problem can be reformulated as

∂t∇λΨ + Pλ(∇̄Ψ⊥ · ∇̄∇λΨ) = 0, on R+ × R2 × R+.

Taking the div of the equation gives the first QG equation, thanks to

div (Pλ·) = div (·), ∂i (∇̄Ψ)⊥ · ∇̄∂i Ψ = 0.

Taking the trace of the system a z = 0 gives (formally) the trace
condition of QG, since formally, at z = 0

Pλ(f ) · ν = f · ν.
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Similarity with the Euler equation

There is a strong similarity with the 2D Euler equation in the half plane.

QG equation:

∂t∇λΨ + Pλ(∇̄Ψ⊥ · ∇̄∇λΨ) = 0, on R+ × R2 × R+.

Note that we have Pcurl(∇λΨ) = 0.

Euler Equation:

∂tcurlv + Pcurl[curlv · ∇curlv ] = 0, (t , x , z) ∈ R+ × R2 × R+.

with Pλ(curlv) = 0 (that is curlv · ν = 0 at z = 0).

The first equation of QG is equivalent to the vorticity equation of Euler:

QG:
∂tdiv∇λΨ + ∇̄Ψ⊥ · ∇̄(div∇λΨ) = 0

Euler:
∂tcurlcurlv + curlv · ∇(curlcurlv) = 0.
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Proof of the Theorem

Compactness holds for the reformulated problem.

Note that Pλ commutes with ∇̄, and is continuous in Lp.

The two formulation of QG are equivalent.
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A special case: the Surface Quasi Geostrophic
Equation

If ∆Ψ(0) = 0, then ∆Ψ(t) = 0 for all t ≥ 0.

Denote θ = ∂zΨ defined at z = 0. Then θ is solution to

∂tθ + U.∇θ = ν∆Ψ, t > 0, (x , y) ∈ R2, (3)

θ = θ0, t = 0, (x , y) ∈ R2, (4)

and the velocity U and the Eckman pumping term ν∆Ψ can be
expressed in R2, via a nonlocal operator, as

U = ∇⊥∆−1/2θ, ν∆Ψ = ν∆1/2θ.

The propagation of regularity for this equation has first been proved by
Kiselev, Nazarov and Volberg. The global regularity of solutions with
initial values in L2 has been proved first by Caffarelli V. Several other
proofs has been proposed by Kiselev and Volberg, and Constantin and
Vicol.
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The 3D case

In the 3D case, the equation in z > 0 is hyperbolic. We can have only
propagation of regularity.

We need the propagation of almost Lipschitz norm (possible log
Lipschitz).

The regularization effects on the boundary are only Cα.
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Sketch of the proof (1)

We decompose the solution Ψ = Ψ1 + Ψ2 into two components as follows:{
∆Ψ1 = 0
∂νΨ1 = ∂νΨ

{
∆Ψ2 = ∆Ψ
∂νΨ2 = 0.

The bulk of the proof is centered around verifying a version of the
Beale-Kato-Majda criterion.

The equation on the boundary of θ = ∂νΨ1 is of the form

∂tθ + u · ∇θ + (−∆)
1
2 θ = f ,

with f = ∆Ψ2.

The natural a priori bound for f is in B0
∞,∞.

Using De Giorgi techniques, we get θ bounded in Cα.
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Sketch of the proof (2)

A careful potential theory argument shows that solutions to

∂tg + (−∆)
1
2 θ = h ∈ L∞(0,T ; B0

∞,∞)

are bounded in L∞(0,T ; B1
∞,∞). This is because the operator (−∆)

1
2 is

of order 1.

Bootstrapping an increase of regularity on the Cα on the drift-diffusion
equation on the boundary gives that ∂νΨ ∈ L∞(0,T ; B1

∞,∞) on the
boundary.

Using that the flow is stratified, this gives the "almost Lipschitz" bound
needed on the velocity in z > 0 generated by the boundary.
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Thank you

Thank you !!
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