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Outline

Joint work with Shi Jin, Jian-Guo Liu and Li Wang.

⊲ Motivation : sharp resolution of entropy satisfying shock solutions

⊲ Why sharp resolution while smeared discrete profiles are usually not considered to be a

flaw ?

⊲ The Jin-Xin’s relaxation setting and corresponding defect measures

⊲ a sub-cell shock capturing technique but with entropy consistency

⊲ A theoretical framework in the scalar setting

⊲ convergence to the Kruvkov solution for general non-linear flux functions.

⊲ Consistency with infinitely many entropy pairs must be addressed.
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Motivation

Reliable computation of the discontinuous solutions
of first order non-linear PDE models for compressible media

⊲ Classical numerical methods do perform well on standard issues

⊲ Numerical dissipation : two distinct and opposite issues

⊲ cannot be avoided for consistency with the entropy condition : stability requirement

⊲ but usually responsible for the smearing of discrete shock profiles : low resolution
(generally not considered as a flaw)

Increasing demand for calculations in non-standard issues reveals that
numerical dissipation may be responsible for various pitfalls

in the approximation of discontinuous solutions
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Motivation

Pitfalls may be observed already within the frame of standard PDE models

⊲ Euler system for polytropic gases

⊲ Post shock persistent oscillations in slowly moving shock solutions (JG Liu - S
Jin)

⊲ Theoretical studies show numerical instabilities of smeared discrete shock profiles

(blow up of the BV bound) (B. Baiti - A. Bressan)

⊲ Scalar conservation laws with stiff source terms exhibiting multiple equilibria

⊲ numerical shock speed is driven by the CFL number and not by the physics.

⊲ Naturally extends to combustion problems, reacting flows...

A numerical illustration : slowly moving shock solutions
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Numerical experiments
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Chapitre 6. Discontinuous reconstruction schemes
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Figure 6.18. Test 4. Momentum at time 0.3 for a Riemann problem with a slowly moving shock. The numerical
solution given by the reconstruction schemes are very close to the exact solution.
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Figure 6.19. Test 5. Density time 0.1 for a Riemann problem with two symmetric shocks.

schemes. For those two tests only, γ = 5/3. The first case is a Riemann problem developing two
symmetric shocks. The initial data is

ρL = 1, uL = 4, pL = 1 and ρR = 1, uR = −4, pR = 1 .

The mesh has 200 cells and the Courant number of 0.4. The results, shown on Figure 6.19, show that
the wall heating phenomenon is drastically diminished with the reconstruction schemes. The second
test is the reflection of a gas of density 1, pressure 0.001 and velocity 1 on a solid wall on its right. On
Figure 6.20 is a zoom around the wall, and we can clearly see the wall heating phenomenon and the
resulting spurious oscillations arising with the Godunov and MUSCL schemes, and the good behavior
of the reconstruction schemes. We took a Courant number of 0.45 and 1 000 cells.
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Motivation

Much severe pitfalls within the frame of non-classical shock solutions

⊲ Exact shock solutions are sensitive with respect to underlying regularizing mechanisms

e.g. viscous and/or dispersive effect

⊲ Their numerical capture may be grossly corrupted by the artificial numerical dissipation

and/or dispersion

⊲ Shock solutions of convex hyperbolic PDEs in non-conservation form

⊲ Transition waves in non-convex hyperbolic PDEs (phase transition problems, MHD,...)

⊲ Transition waves in mixte elliptic-hyperbolic PDEs (phase transition problems)

Numerical illustrations :

⊲ Shock solutions in a non-conservative setting : multi-pressure Euler equations (C.
Berthon, FC)

⊲ Transition waves for a non-convex scalar conservation law (P. LeFloch)

⊲ Transition waves for a elliptic-hyperbolic Euler model (C. Chalons, FC, P. Engel, C. Rohde)
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– Considérons une méthode de volumes finis (3.34) pour (3.32) vérifiant l’inégalité
d’entropie discrète (3.35). Alors dans chaque cellule K, il existe une solution
unique {(⇢s

i
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}1i(N�1) au système d’équations (3.36)–(3.37).
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Alors la méthode de projection non linéaire (3.36)–(3.37) vérifie un principe du
maximum pour chaque entropie spécifique :
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En conséquence, chaque énergie interne ("
i

)n+1
K

est bien positive à l’instant tn+1.
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Figure 3.4 – Equations de Navier-Stokes à deux entropies : profils discrets de pressions
sans correction (au centre) et avec correction par projection non linéaire (à droite). Le
schéma classique (à gauche) considère les produits non conservatifs en tant que termes
sources.

Soulignons que la validité des inégalités d’entropie discrètes (3.35), communément liée
à l’inégalité de Jensen (voir le paragraphe 3.1.1), est essentielle au résultat d’unicité et



Numerical methods for small-scale dependent shocks 15

Failure of standard schemes to approximate nonclassical shocks
As mentioned in the introduction, standard conservative and entropy sta-
ble schemes (3.1)–(3.2) fail to approximate nonclassical shocks (and other
small-scale dependent solutions). As an illustrative example, we consider
here the cubic scalar conservation law with linear di↵usion and dispersion,
that is, (2.5) with f(u) = u

3 and a fixed � > 0. The underlying conser-
vation law is approximated with the standard Lax-Friedrichs and Rusanov
schemes and the resulting solutions are plotted in Figure 3.1. The figure
clearly demonstrates that Godunov and Lax-Friedrichs schemes, both, con-
verge to the classical entropy solution to the scalar conservation law and,
therefore, do not approximate the nonclassical entropy solution, realized as
the vanishing di↵usion-dispersion limit of (2.5) and also plotted in the same
figure. The latter consists of three distinct constant states separated by two
shocks, while the classical solution contains a single shock.
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Figure 3.1. Approximation of small-scale dependent shock waves for the
cubic conservation law with vanishing di↵usion and capillarity (2.5) using
the standard Lax-Friedrichs and Rusanov schemes

As pointed out in the introduction, this failure of standard schemes in
approximating small-scale dependent shocks (in various contexts) can be
explained in terms of the equivalent equation of the scheme (as was first
observed by Hou and LeFloch (1994) and Hayes and LeFloch (1996, 1998).
The equivalent equation is derived via a (formal) Taylor expansion of the
discrete scheme (3.1) and contains mesh-dependent terms and high-order
derivatives of the solution.
For a first-order scheme like (3.1), the equivalent equation has the typical

form
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Interestingly enough, this equation is of the augmented form (2.7) with
✏ = �x being now the small-scale parameter. Standard schemes often have
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Motivation

Pitfalls are inherently induced by the smearing of discrete shock profiles

Prevent discrete shock profiles from smearing
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Prevent discrete shock profiles from smearing

A wide variety of approaches for tracking the discontinuities

⊲ Popular approaches in 1D in the frame of non-classical shock solutions

⊲ VOF or Level set methods
⊲ Glimm’s scheme

⊲ But in both cases, difficulty is :

knowledge of the exact solution of the Riemann problem :
costly and frequently unknown in the non-classical setting

⊲ Other approaches based on approximate Riemann solvers

⊲ Sub-cell shock capturing method : Harten

⊲ Glimm’s sampling with approximate Riemann solvers : Harten-Hyman, Harten-Lax

⊲ But in both cases, difficulty is :

Satisfying the entropy condition :
Entropy violation is triggered in the absence of smearing
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Prevent discrete shock profiles from smearing

Entropic sub-cell shock capturing schemes
via Jin-Xin relaxation and Glimm front sampling

Combine

⊲ Jin-Xin relaxation framework
⊲ Fairly easy algebra

⊲ Positivity preserving properties
⊲ Built in entropy condition

⊲ Glimm’s front sampling

⊲ Facilitate the analysis of convergence (scalar setting)

⊲ Propose a theoretical framework for entropy consistency for scalar conservation laws
with general non-linear flux functions

Infinitely many entropy pairs must be addressed
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Glimm’s sampling with approximate Riemann solvers

tn

tn+1
σj−1/2 σj+1/2 σj+3/2

un+1−
j un+1−

j+1

xj−3/2 xj−1/2 xj+1/2 xj+3/2 xj+5/2

⊲ At tn, solve (exactly or approximately) a sequence of non-interacting Riemann
problems at the interfaces xj+1/2. Locate a shock with speed σn

j+1/2, if none set

σn
j+1/2 = 0.

⊲ At tn+1− = tn + ∆t−, average the resulting solution over shifted cells [xn
j−1/2, xn

j+1/2],

un+1−
j =

1

∆xj

∫ xn
j+1/2

xn
j−1/2

u(x, ∆t)dt, xn
j+1/2 = xj+1/2 + σn

j+1/2∆t, ∆xj = xn
j+1/2 − xn

j−1/2.

⊲ To avoid remeshing, sample the discrete constant values in each original cell to define

a new constant state un+1
j at time tn+1.
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Glimm’s sampling with approximate Riemann solvers

tn

tn+1
σj−1/2 σj+1/2 σj+3/2

un+1−
j un+1−

j+1

xj−3/2 xj−1/2 xj+1/2 xj+3/2 xj+5/2

Let be given (an)n a well-distributed sequence in (0, 1) (e.g. van der Corput sequence)

⊲ the sampling procedure reads

un+1
j =















un+1−
j−1 if an ∈ (0, ∆t

∆x σn,+
j−1/2),

un+1−
j if an ∈ ( ∆t

∆x σn,+
j−1/2, 1 + ∆t

∆x σn,−
j+1/2),

un+1−
j+1 if an ∈ (1 + ∆t

∆x σn,−
j+1/2, 1),

with σn,+
j+1/2 = max(σn

j+1/2, 0), σn,−
j+1/2 = min(σn

j+1/2, 0).
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The Jin and Xin’s relaxation framework







∂tu
ǫ + ∂xvǫ = 0,

∂tv
ǫ + a2∂xuǫ =

1

ǫ
( f (uǫ)− vǫ),

with well-prepared initial data uǫ(0, x) = u0(x), vǫ(0, x) = f (u0(x)).

⊲ Natalini : Let u0 ∈ BV ∩ L∞(R). Under the sub-characteristic condition
a > sup|u|6||u0 ||L∞

| f ′(u)|, uǫ converges as ǫ goes to zero in a relevant topology to the

Kruzkov’s solution of the scalar conservation law with initial data u0.

⊲ u0(x) = uL + (uR − uL)H(x) where uL and uR satisfy

−σ(uL, uR)(uR − uL) + f (uR)− f (uL) = 0,

−σ(uL, uR) (U (uR)− U (uL)) +F (uR)−F (uL) 6 0, ∀(U ,F )

converges to the entropy shock solution
u(t, x) = uL + (uR − uL)H(x − σ(uL, uR)t)

⊲ What about the discrete approach with fixed ∆x > 0 and ǫ → 0+?

⊲ Difficulty : handle the regime ǫ → 0+ in the absence of self-similar solutions
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The usual splitting strategy and the sub-characteristic condition

⊲ First step : Solve a sequence of non-interacting Riemann problem
{

∂tu + ∂xv = 0,

∂tv + a2∂xu = 0,

x

0
t−a a

UL

U
⋆

UR

⊲ Second step : Solve







∂tu
ǫ = 0,

∂tv
ǫ =

1

ǫ
( f (uǫ)− vǫ),

in the limit ǫ → 0
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The usual splitting strategy and the sub-characteristic condition

◃ First step : Solve a sequence of non-interacting Riemann problem
{

∂tu + ∂xv = 0,

∂tv + a2∂xu = 0,

x

0
t−a aσ

UL

U⋆ U⋆

UR

◃ Second step : Solve

⎧

⎨

⎩

∂tuϵ = 0,

∂tv
ϵ =

1

ϵ
( f (uϵ)− vϵ),

in the limit ϵ → 0

Due to the sub-characteristic condition a > |σ(uL, uR)|, in the first step : an isolated
shock-solution is averaged within the intermediate state U⋆.

Too little from the relaxation mechanisms in the limit ϵ → 0 have been retained in the first step
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The limit ǫ → 0 and defect measures at shocks

Back to the original relaxation framework







∂tu
ǫ + ∂xvǫ = 0,

∂tv
ǫ + a2∂xuǫ =

1

ǫ
( f (uǫ)− vǫ),

⊲ Evaluating the singular relaxation source term in the limit ǫ → 0 for an isolated entropy

shock
lim
ǫ→0

1

ǫ
( f (uǫ)− vǫ) =

{

− σ( f (uR)− f (uL)) + a2(uR − uL)
}

δx−σt

= (a2 − σ2)(uR − uL)δx−σt , D′.

⊲ Such a singular limit is referred to as a (relaxation) defect measure

⊲ Due to Natalini’s theorem, the Cauchy problem

{

∂tu + ∂xv = 0,

∂tv + a2∂xu = (a2 − σ2)(uR − uL)δx−σt

with u0(x) = uL + (uR − uL)H(x), v0(x) = f (u0(x)) has a unique self-similar
solution which coincides with the entropy shock solution in its u-component.
Claim : Because of self-similarity : easily handled for fixed ∆x > 0
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The splitting strategy with defect measure

For general initial data u0, split the relaxation source term in the limit ǫ → 0 into two
contributions

lim
ǫ→0

1

ǫ
( f (uǫ)− vǫ) = ∑

shocks

(a2 − σ2)(u+ − u−)δx−σt +
{

∂t f (u) + a2∂xu
}

⊲ First singular contribution due to entropy satisfying shocks in the limit solution u

⊲ defect measure to be involved in the first step

⊲ Second smooth contribution coming from the smooth part of the limit solution
⊲ to be involved in the second step
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The splitting strategy with defect measure

⊲ First step : Solve a sequence of non-interacting Riemann problem with defect
measure correction

{

∂tu + ∂xv = 0,

∂tv + a2∂xu = m(uL, uR)δx−σ(uL ,uR)t
,

x

0
t−a aσ

UL

U
⋆

L U
⋆

R

UR

⊲ predict σ(uL, uR) and m(uL, uR) so as to achieve stability and accuracy (exact

capture of isolated entropy shocks).

⊲ Second step : Solve







∂tu
ǫ = 0,

∂tv
ǫ =

1

ǫ
( f (uǫ)− vǫ),

in the limit ǫ → 0

⊲ Third Step : Local averagings avoiding propagating shocks and sampling procedure
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Design principle ofσ(uL, uR) andm(uL, uR)

The u-component of U(., UL , UR) must mimic central properties of the Riemann solution of











∂tu + ∂x f (u) = 0,

u(0, x) =

{

uL, x < 0,

uR, x > 0,

(1)

supplemented with the entropy differential inequalities

∂tU (u) + ∂xF (u) 6 0, F ′(u) = f ′(u)U ′(u) for all u, U (u)convex. (2)

⊲ Stability :
⊲ Preserve the monotonicity property :

||u||L∞ 6 max(|uL|, |uR|), TV(u) 6 |uR − uL|

⊲ Respect in a sense to be specified the entropy inequalities (2)

⊲ Accuracy : restore exactly isolated entropy shock solutions of (1)

σ(uL, uR) =
f (uR)− f (uL)

uR − uL
, m(uL, uR) = (a2 − σ2(uL, uR))(uR − uL). (3)
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Exact capture of isolated entropy shock solutions

∂tu + ∂xv = 0

∂tv + a2∂xu = m(uL, uR) δx=σ(uL ,uR)t
(4)

−a aσ

x

0

t−a aσ

UL UR

−σ(uR − uL) + (vR − vL) = 0, −σ(vR − vL) + a2(uR − uL) = m(uL, uR). (5)

σ(uL, uR) =
f (uR)− f (uL)

uR − uL
, m(uL, uR) = (a2 − σ2(uL, uR))(uR − uL). (6)

The entropy condition plays no role here !
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About general pairs of states cont.

Whatever are σ(uL, uR), m(θ, uL, uR), The Riemann problem with defect measure correction

{

∂tu + ∂xv = 0

∂tv + a2∂xu = θ(uL, uR)
(

a2 − σ2(uL, uR)
)

(uR − uL) δx=σ(uL ,uR)t

admits a unique solution iff |σ(uL, uR)| < a

Define σ(uL, uR), m(θ, uL, uR) so as to achieve stability and accuracy

⊲ Exact capture of isolated entropy satisfying discontinuity : θ(uL, uR) = 1

⊲ Caution: choosing systematically θ(uL, uR) = 1 with σ(uL, uR) such that
−σ(uL, uR)(uR − uL) + ( f (uR)− f (uL)) = 0 always restores a single propagating
discontinuity, entropy satisfying or not ! Such a strategy yields a Roe solver, known to be

entropy violating.

⊲ Besides monotonicity preserving, entropy consistency is mandatory
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About general pairs of states

→ Define σ(uL, uR), m(uL, uR)

x

0
t−a aσ

UL

U
⋆

L(θ) U
⋆

R(θ)

UR

so as to achieve stability conditions

⊲ Monotonicity preserving properties

⊲ some entropy consistency condition with respect to the original entropy pairs (U ,F )

Keep unchanged σ(uL, uR) but properly tune the mass of the defect measure correction :

σ(uL, uR) =
f (uR)− f (uL)

uR − uL
, m(θ, uL, uR) = θ(uL, uR)(a2 − σ2(uL, uR))(uR − uL). (7)

Define the tuning parameter θ(uL, uR) so as to meet the above requirements plus...
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The monotonicity preserving condition

Under the sub-characteristic condition

sup
u∈[min(uL ,uR),max(uL ,uR)]

| f ′(u)| < a, (8)

the u-component of the solution U(.; uL, uR) of the Riemann problem (??)–(??) verifies the
following monotonicity preserving properties

TV (u(·; uL, uR)) < |uR − uL|, min(uL, uR) 6 u(·; uL, uR) 6 max(uL, uR), (9)

if and only if

0 6 θ(uL, uR) 6 1. (10)

⊲ The sub-characteristic condition is preserved for all θ ∈ (0, 1)

⊲ The accuracy property θ(uL, uR) = 1 is permitted...

⊲ but to be achieved only under some entropy consistency condition !
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Towards the entropy consistency condition : an invariant domain

Define the characteristic variables at equilibrium

h±(u) = f (u)± au, u ∈ K = {u R; a > | f ′(u)|}, (11)

⊲ Consider the compact intervals K− = h−(K) and K+ = h+(K).

⊲ The following compact domain of R2 built from the interval K is invariant for the exact
Jin-Xin PDEs

DK ≡ {U = (u, v) ∈ R2; r−(U) = v − au ∈ K− and r+(U) = v + au ∈ K+}. (12)

⊲ if U0(x) ∈ DK, then U
ǫ(t, x) ∈ DK for all ǫ > 0.

⊲ Invariance property essential for entropy consistency

⊲ Is it true for U(., θ, uL, uR) ? in which m(uL, uR) is an approximation of the exact mass

attached to exact defect measures.

Assume the sub-characteristic condition, then the Riemann solution U(., θ, uL, uR) with
defect measure correction keeps value in DK(uL ,uR)

if and only if the monotonicity

preserving condition holds true : 0 6 θ(uL, uR) 6 1
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The invariant domain and the relaxation entropy pairs







∂tu
ǫ + ∂xvǫ = 0,

∂tv
ǫ + a2∂xuǫ =

1

ǫ
( f (uǫ)− vǫ),

(Φ, Ψ) is said to be a relaxation entropy pair consistent with the equilibrium pair (U ,F ) if

∂tΦ(uǫ, vǫ) + ∂xΨ(uǫ, vǫ) =
1

ǫ
∂vΦ(uǫ, vǫ)( f (uǫ)− vǫ)

⊲ (u, v) ∈ DK(uL ,uR)
→ Φ(u, v) ∈ R strictly convex.

⊲ For any given fixed u, Φ(u, v) admits a unique minimum in v

⊲ ∂vΦ(u, v)( f (u)− v) 6 0, for any given (u, v) ∈ DK(uL ,uR)
.

⊲ Convex entropy Φ dissipated with respect to relaxation mechanisms

⊲ For vanishing ǫ, given uǫ, Φ(uǫ, vǫ) reaches its global minimum in vǫ

⊲ Φ(u, f (u)) = U (u), Ψ(u, f (u)) = F (u), for all u ∈ K(uL, uR).

⊲ For vanishing ǫ, vǫ reaches the stable equilibrium f (uǫ)

Theses consistency requirements are valid iff (uǫ, vǫ) belongs to the invariant domain DK(uL ,uR)

0 6 θ(uL, uR) 6 1
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The entropy consistency requirement

∂tΦ(U(θ)) + ∂xΨ(U(θ)) 6 0.

+a
(

Φ(U⋆

L(θ; uL, uR))− Φ(UL)
)

+ Ψ(U⋆

L(θ; uL, uR))− Ψ(UL) = 0,

−a
(

Φ(UR)− Φ(U⋆

R(θ; uL, uR))
)

+ Ψ(UR)− Ψ(U⋆

R(θ; uL, uR)) = 0,

Entropy is preserved at the extreme waves, but not across the intermediate one

x

0

t−a aσ

UL

U
⋆

L(θ) U
⋆

R(θ)

UR

The defect measure correction m(θ, uL, uR) must be consistent with the dissipative property
1

ǫ
∂vΦ(uǫ, vǫ)( f (uǫ)− vǫ)6 0. Choose θ so that :

E{U}(θ; uL, uR) ≡

−σ
(

Φ(U⋆

R(θ; uL, uR))− Φ(U⋆

L(θ; uL, uR))
)

+ Ψ(U⋆

R(θ; uL, uR))− Ψ(U⋆

L(θ; uL, uR))6 0.

Entropic sub-cell shock capturing schemesvia Jin-Xin relaxation and Glimm front sampling – p. 24/30



The entropy consistency requirement for an isolated entropy shock

Is θ(uL, uR) = 1 permitted ?

σ

x

t

UL UR

E{U}(1; uL, uR)

= −σ(uL, uR)
(

Φ(U⋆

R(1; uL, uR))− Φ(U⋆

L(1; uL, uR))
)

+ Ψ(U⋆

R(1; uL, uR))− Ψ(U⋆

L(1; uL, uR))

= −σ(uL, uR)
(

Φ(UR)− Φ(UL)
)

+ Ψ(UR)− Ψ(UL)

= −σ(uL, uR)
(

U (uR)− U (uL)
)

+F (uR)−F (uL)

6 0.

Yes !
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The entropy consistency requirement

To select the unique Kruzkov’s solution

⊲ For a genuinely non-linear flux f (u) (either strictly convex or concave) : a single
strictly convex entropy pair suffices (Panov)

U (u) =
u2

2
, F (u) =

∫ u

0
v f ′(v)dv.

⊲ For a general non-linear flux : infinitely many entropy pairs are in order (the Kruzkov’s
entropy pairs)

Uk = |u − k|, Fk(u) = sign(u− k)
(

f (u)− f (k)
)

, k ∈ R.
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The genuinely non-linear flux framework

Let us consider the entropy pair (U (u),F (u)) with U (u) = u2/2 and the associated
relaxation entropy pair (Φ, Ψ). Assume the sub-characteristic condition. Then the
monotonicity preserving condition and the entropy requirement E{U}(θ; uL, uR) 6 0 are
satisfied provided that θ(uL, uR) is chosen so as to verify :

0 6 θ(uL, uR) 6 Θ(uL, uR) ≡ max(0, min(1, 1 + Γ(uL, uR)), (13)

Γ(uL, uR) =











−2 γ(uL, uR)

(

− σ(U (uR)− U (uL)) + (F (uR)−F (uL))
)

|uR − uL|2
, uL 6= uR,

0, otherwise,

(14)

γ(uL, uR) =











a − max(| f ′(uL)|, | f ′(uR)|
)

(

a2 − σ2(uL, uR)
) , uL 6= uR,

1/
(

a + | f ′(uL)|
)

, otherwise.
> 0! (15)

Θ(uL, uR) ∈ (0, 1) (Monotonicity), Θ(uL, uR) = 1 for entropy satisfying shocks,
Θ(uL, uR) ≃ 1 (zone of smoothness)
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The general non-linear flux setting

Consider the Oleinik entropy conditions

K(k; uL, uR) = −σ(uL, uR)
( uL + uR

2
− k

)

+
( f (uR) + f (uL)

2
− f (k)

)

6 0, k ∈ ⌊uL, uR⌉.

E{Uk}(θ; uL, uR) 6 0 for all k ∈ ⌊uL, uR⌉, provided that θ(uL, uR) verifies :

0 6 θ(uL, uR) 6 Θ(uL, uR) = min
k∈⌊uL ,uR⌉

(

1 + ΓK(k; uL, uR)
)

, (16)

ΓK(k; uL, uR) = −2γ(uL, uR)



















−σ(uL, uR)
( uL+uR

2 − k
)

+
( f (uL)+ f (uR )

2 − f (k)
)

uR − uL
, if uL 6= uR,

0, otherwise,

γ(uL, uR) = 2a/
(

a2 − σ2(uL, uR)
)

> 0

Θ(uL, uR) = 1 if K(k; uL, uR) 6 0 for all k ∈ ⌊uL, uR⌉, 0 < Θ(uL, uR) < 1 otherwise.
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A convergence result

Let be given u0 ∈ L∞(R)∩ BV(R). Assume the sub-characteristic condition and the CFL
condition CFL 6 0.5. Assume that the mapping θ(uL, uR) is monotonicity preserving and

consistent with the entropy consistency requirement, namely with the quadratic entropy pair in
the case of a genuinely non-linear flux and with the whole Kruzkov’s family in the case of a

general non-linear flux function. Then for almost any given sampling sequence
α = (α1, α2, ...) ∈ (0, 1)N := A, the family of approximate solutions

{

uα
∆x

}

∆x>0
given by the

Jin-Xin scheme with defect measure correction converges in L∞
(

(0, T), L1
loc(R)

)

for all T > 0 and

a.e. as ∆x → 0 with ∆t
∆x kept fixed to the Kruzkov’s solution of the corresponding equilibrium

Cauchy problem.

⊲ BV framework for a Glimm type of analysis

⊲ The sampling sequence has to be well-distributed (e.g. Van der Corput)
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Numerical experiments

∂tu + ∂x

(

u3

3

)

= 0, t > 0, x ∈ (0, 1),

u(0, x) = u0(x) =

{

uL = −1, x < 0.5,

uR = +1, x > 0.5,

Exact solution made of a shock attached to a rarefaction wave.

⊲ Initial data such that

−σ(uL, uR)(
u2

R

2
−

u2
L

2
) + (

u4
R

4
−

u4
L

4
)= 0, σ(uL, uR) =

1

3
.

⊲ In the genuinely nonlinear framework, Θ(uL, uR) = max(0, min(1, 1 + 0))= 1

⊲ Capture an entropy violating shock solution !

⊲ 0 < ΘKruzkov(uL, uR) < 1

⊲ In the nonlinear framework without genuine nonlinearity, Θ(uL, uR) has to be
designed according to infinitely many entropy pairs
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