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Outline

Joint work with Shi Jin, Jian-Guo Liu and Li Wang.

> Motivation : sharp resolution of entropy satisfying shock solutions
> Why sharp resolution while smeared discrete profiles are usually not considered to be a
flaw ?
> The Jin-Xin’s relaxation setting and corresponding defect measures
> a sub-cell shock capturing technique but with entropy consistency

> A theoretical framework in the scalar setting
> convergence to the Kruvkov solution for general non-linear flux functions.
> Consistency with infinitely many entropy pairs must be addressed.




Motivation

Reliable computation of the discontinuous solutions
of first order non-linear PDE models for compressible media

> Classical numerical methods do perform well on standard issues

> Numerical dissipation : two distinct and opposite issues
> cannot be avoided for consistency with the entropy condition : stability requirement

> but usually responsible for the smearing of discrete shock profiles : low resolution
(generally not considered as a flaw)

Increasing demand for calculations in non-standard issues reveals that
numerical dissipation may be responsible for various pitfalls
in the approximation of discontinuous solutions




Motivation

Pitfalls may be observed already within the frame of standard PDE models

> Euler system for polytropic gases
> Post shock persistent oscillations in slowly moving shock solutions (JG Liu - S
Jin)
> Theoretical studies show numerical instabilities of smeared discrete shock profiles
(blow up of the BV bound) (B. Baiti - A. Bressan)
> Scalar conservation laws with stiff source terms exhibiting multiple equilibria
> numerical shock speed is driven by the CFL number and not by the physics.

> Naturally extends to combustion problems, reacting flows...

A numerical illustration : slowly moving shock solutions




Numerical experiments
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Motivation

Much severe pitfalls within the frame of non-classical shock solutions

> Exact shock solutions are sensitive with respect to underlying regularizing mechanisms
e.g. viscous and/or dispersive effect

> Their numerical capture may be grossly corrupted by the artificial numerical dissipation
and/or dispersion

> Shock solutions of convex hyperbolic PDES in non-conservation form
> Transition waves in non-convex hyperbolic PDEs (phase transition problems, MHD,...)

> Transition waves in mixte elliptic-hyperbolic PDEs (phase transition problems)

Numerical illustrations :

> Shock solutions in a non-conservative setting : multi-pressure Euler equations (C.
Berthon, FC)

> Transition waves for a non-convex scalar conservation law (P. LeFloch)
> Transition waves for a elliptic-hyperbolic Euler model (C. Chalons, FC, P. Engel, C. Rohde)
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Phase transition in mixed hyperbolic-elliptic systems
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Motivation

Pitfalls are inherently induced by the smearing of discrete shock profiles

Prevent discrete shock profiles from smearing
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Prevent discrete shock profiles from smearing

A wide variety of approaches for tracking the discontinuities

> Popular approaches in 1D in the frame of non-classical shock solutions

>  VOF or Level set methods
>  Glimm’s scheme

> But in both cases, difficulty is :

knowledge of the exact solution of the Riemann problem :
costly and frequently unknown in the non-classical setting

> Other approaches based on approximate Riemann solvers
> Sub-cell shock capturing method : Harten
> Glimm’s sampling with approximate Riemann solvers : Harten-Hyman, Harten-Lax

> But in both cases, difficulty is :

Satisfying the entropy condition :
Entropy violation is triggered in the absence of smearing




Prevent discrete shock profiles from smearing

Entropic sub-cell shock capturing schemes
via Jin-Xin relaxation and Glimm front sampling

Combine
> Jin-Xin relaxation framework
> Fairly easy algebra
> Positivity preserving properties
> Built in entropy condition

> Glimm’s front sampling
> Facilitate the analysis of convergence (scalar setting)

> Propose a theoretical framework for entropy consistency for scalar conservation laws
with general non-linear flux functions

Infinitely many entropy pairs must be addressed




Glimm’s sampling with approximate Riemann solvers
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> At t", solve (exactly or approximately) a sequence of non-interacting Riemann
problems at the interfaces x;,1,,. Locate a shock with speed U}fu/z’ if none set

0']?:_1/2 = 0.
> At #"H1— = " 4 At~ average the resulting solution over shifted cells [Y?—l/sz?Jrl/Z]’
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> To avoid remeshing, sample the discrete constant values in each original cell to define
a_new constant state u/’.’le at time #"+1.




Glimm’s sampling with approximate Riemann solvers
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Let be given (a,), a well-distributed sequence in (0,1) (e.g. van der Corput sequence)

> the sampling procedure reads

( n+l— At 11+
”]'—11 If (OA' AxY 1/2)
+1 _ n+l— t o
n+1-— i
Wi if (1—|— At ]+1/2’1)

n—
with ‘7]+1/2 = max (o ]+1/2,0) Oii1y2 = min(c ]+1/2,0)




The Jin and Xin’s relaxation framework

0iu€ + 0,v¢ = 0,
010 + %0, u’ = %(f(ue) —v%),

with well-prepared initial data € (0, x) = ug(x), v¢(0,x) = f(up(x)).

>

Natalini : Let ug € BV N L*(R). Under the sub-characteristic condition
A > SUP |y 1< lup || o0 |f'(u)|, u¢ converges as e goes to zero in a relevant topology to the

Kruzkov’s solution of the scalar conservation law with initial data u.
> ug(x) =ur + (ur —ur)H(x) where u; and up satisfy
—o(up, ur)(ur —ur) + f(ur) — f(ur) =0,
—O'(uL, uR) (U(MR) — U(UL)) + ]:(uR) — JT"(ML) < O,V(U,JT")
converges to the entropy shock solution
u(t,x) =up + (ugr —up)H(x — o(ug, ug)t)
What about the discrete approach with fixed Ax > 0and e — 07?
> Difficulty : handle the regime ¢ — 07 in the absence of self-similar solutions




The usual splitting strategy and the sub-characteristiclition

> First step : Solve a sequence of non-interacting Riemann problem

oiu +9,0 =0,
010 + a?9,u = 0,

0
—a At a
U
Up Ugr
L > X
atue = 0,
> Second step : Solve 1 in the limite — 0
;v = —(f(u®) — v




The usual splitting strategy and the sub-characteristic condition

> First step : Solve a sequence of non-interacting Riebnann problem
i + 9,0 =0, —4a pfeo a
9;0 + a%d,u = 0, ' ' '

UL | UR
> X
atue = 0,
> Second step : Solve 1 in the limite — 0
g 0 = —(f(u) — o),

Due to the sub-characteristic condition a > |o(ur,ug)|, in the first step : an isolated
shock-solution is averaged within the intermediate state U*.
Too little from the relaxation mechanisms in the limit e — 0 have been retained in the first step




The limite — 0 and defect measures at shocks

Back to the original relaxation framework

0iu€ + 0,0v¢ = 0,
0;0° + a%0,uf = é(f(ue) —v°),

> Evaluating the singular relaxation source term in the limit e — 0 for an isolated entropy

lim l(f(ue) —0%) = { — o (f(ur) — f(ur)) + a*(ug — uL)}(Sx_gt

shock ¢—0 €
= (a* —0?)(ug — up)dx—ot, D'
> Such a singular limit is referred to as a (relaxation) defect measure
> Due to Natalini's theorem, the Cauchy problem

oiu + 9,0 =0,
;0 + ﬂzaxu = (612 — 0'2)(MR — UL)(Sx_gt

with ug(x) = up + (ugr —ur)H(x), vo(x) = f(up(x)) has a unique self-similar
solution which coincides with the entropy shock solution in its u-component.
Claim : Because of self-similarity : easily handled for fixed Ax > 0




The splitting strategy with defect measure

For general initial data 1, split the relaxation source term in the limit e — 0 into two
contributions

lim 1(f(ue) —)= Y (&®—0*)(uy —u_)0x—ot + {atf(u) + azaxu}

e—0 € shocks

> First singular contribution due to entropy satisfying shocks in the limit solution u
> defect measure to be involved in the first step

> Second smooth contribution coming from the smooth part of the limit solution
> to be involved in the second step




The splitting strategy with defect measure

> First step : Solve a sequence of non-interacting Riemann problem with defect

measure correction

{ oiu + 9,0 =0,

00 + ﬂzaxu = m(ur, uR)éx—cT(

—a

Up

BRY

A

\f

up UR)E
o a
P
U
Ur

> X

> predict o(ur, ug) and m(ur,ug) SO as to achieve stability and accuracy (exact

capture of isolated entropy shocks).

atue = 0,
> Second step : Solve

90" = —(f(u) — %),

in the limite — 0

> Third Step : Local averagings avoiding propagating shocks and sampling procedure




Design principle ot (uy, ug) andm(uy, ug)

The u-component of U(., U, Ugr) must mimic central properties of the Riemann solution of

diu+ 9y f(u) =0,

urp, x <0, (1)
u(0,x) = { ug, x >0

supplemented with the entropy differential inequalities
U (u) + 0, F(u) <0, F'(u)=f (u)d'(u) forall u, U (u)convex. (2)

> Stability :
> Preserve the monotonicity property :
[[u][Lo < max(fur|, |ur]), TV (u) < |ur —ur|
> Respect in a sense to be specified the entropy inequalities (2)
> Accuracy : restore exactly isolated entropy shock solutions of (1)

o(ur, ug) = f(ujlz iium’ m(ug, ug) = (a° — o (u, ug))(ug —u). G




Exact capture of isolated entropy shock solutions

atu+8xv =0 (4)
910 + 201t = m(uL, UR) s )
0
—a M o a
UL U.R'..
> X

—o(ur —up)+ (vg —vr) =0, —o(vr—vL)+ az(uR —uy) = m(ur, ug). (5)

ug) — f(u

o(up, ur) = flur) = f( L), m(up, ug) = (a2 —az(uL,uR))(uR —ur). (6)

UR — UL

The entropy condition plays no role here !




About general pairs of states cont.

Whatever are o (up,ug), m(0,ur,ug), The Riemann problem with defect measure correction

Btu + axU =0
00 + azaxu = O(uL,uR) (a2 — Uz(”L;”R)) (uR - uL) 5x:a(uL,uR)t

admits a unique solution iff | (up,ug)| < a
Define o (ur,ug), m(6,ur, ur) so as to achieve stability and accuracy

> Exact capture of isolated entropy satisfying discontinuity : 6(u,ug) =1

> Caution: choosing systematically 6(uy, ug) = 1 with o(uy, ug) such that
—0o(up,ug)(ugr —ur) + (f(ur) — f(ur)) = 0 always restores a single propagating
discontinuity, entropy satisfying or not ! Such a strategy yields a Roe solver, known to be
entropy violating.

> Besides monotonicity preserving, entropy consistency is mandatory




About general pairs of states

— Define o(up, ug), m(ur, ug) —a peo a

i) whe)

So as to achieve stability conditions
> Monotonicity preserving properties

> some entropy consistency condition with respect to the original entropy pairs (U, F)

Keep unchanged o (u, ug) but properly tune the mass of the defect measure correction :

o(ur, ug) = f(ujlz :{:EM), m(0,ur,ur) = 0(ur, uR)(a2 —UZ(uL,uR))(uR —ur). (7)

Define the tuning parameter 0(uy,ug) SO as to meet the above requirements plus...




The monotonicity preserving condition

Under the sub-characteristic condition

sup f(u)] <a, 8)

u€[min(uy ,ug ), max(uy ,ug)]

the u-component of the solution U(.; u;, ug) of the Riemann problem (2?)—(2??) verifies the
following monotonicity preserving properties

TV (u(;up,ur)) < |[ug —ur|, min(up,ug) < u(-;up, ur) < max(up, ug), 9)

if and only if
0< 9<ML, MR) < L (10)
> The sub-characteristic condition is preserved for all 6 € (0,1)

> The accuracy property 6(ur,ur) = 1 is permitted...

> but to be achieved only under some entropy consistency condition !




Towards the entropy consistency condition : an invariamaio

Define the characteristic variables at equilibrium
he(u)=f(u)+au, ueK={uR;a>|f(u)|} (11)

> Consider the compactintervals X_ = h_(K) and K+ = h (K).

> The following compact domain of R? built from the interval K is invariant for the exact
Jin-Xin PDEs

Dk ={U=(uv)eRr (U)=v—aucK_andr,(U)=v+auec Ky} (12)

> if Ug(x) € Dy, then U¢(t,x) € Dy forall e > 0.
> Invariance property essential for entropy consistency

> Isittrue for U(., 6, ur,ug) ? in which m(ur,ug) is an approximation of the exact mass
attached to exact defect measures.

Assume the sub-characteristic condition, then the Riemann solution U(., 60, ur,ug) with
defect measure correction keeps value in Dy, ,,.) If and only if the monotonicity

preserving condition holds true : 0 < 6(u,ur) <1




The invariant domain and the relaxation entropy pairs

0iu€ + 0,v¢ = 0,
9;0° + a*0,uf = %(f(ue) — %),

(®,¥) is said to be a relaxation entropy pair consistent with the equilibrium pair (U, F) if
1
9t ®(uf,v) + 0, ¥ (u,v°) = Eavcb(ue, o) (f(uf) — o)

> (u,0) € Dy ) — @(u,v) € R strictly convex.

ur,ur
> For any given fixed u, ®(u,v) admits a uniqgue minimum in v

> dpP(u,v)(f(u) —v) <0, foranygiven (u,v) € Di(y, ug)-
> Convex entropy P dissipated with respect to relaxation mechanisms
> For vanishing €, given u€, ®(u€, v°) reaches its global minimum in v*
> O(u, f(u) =Uu), ¥Y(u,f(u)) =F(u), foralluec K(ur,ug)-

> For vanishing €, v¢ reaches the stable equilibrium f(u€)

0 < Q(ML,MR) < 1

Theses consistency requirements are valid iff (1, v¢) belongs to the invariant domain Dy

ur,UR)




The entropy consistency requirement

2:®(U(0)) + 3, ¥ (U(6)) < 0.
+a(®(U7(6;ur,ur)) —®(Ur)) + ¥ (U7 (6;ur,ur)) —¥(UL) =0,
—a(@(UR) — (D(U};(G, ur, uR))) —I—\P(UR) —T(UE(Q;L{L, uR)) =0,

Entropy is preserved at the extreme waves, but not across the intermediate one

0
—a M o a

i) Uye)

The defect measure correction m (60, 1y, ug) must be consistent with the dissipative property

EBUCI)(ue, v)(f(u®) — v°)< 0. Choose 6 so that :

E{U}(H;uL,uR) =
—0 (P(UR(0;ur, ur)) — (U (6;ur,ur))) + ¥ (UR(0; ur, ug)) — ¥ (UF (6;ur, ur))< 0.




The entropy consistency requirement for an isolated eptsbpck

Is O(up,ug) = 1 permitted ?

(

(uL, uR)(QD(Uf{(l; ur, MR)) — (D(Uz(l; ur, uR))) —|—T(U§(1; ur, uR)) —\P(U’i(l,' ur, MR))
—o(ur,ug) (®(Ur) — ®(UL)) +¥(Ur) —¥(Uy)

(uL, uR)(Z/{(uR) —Z/l(uL)) + ./T(UR) — .F(ML)

NI
o

Yes |




The entropy consistency requirement

To select the unique Kruzkov’s solution

> For a genuinely non-linear flux f(u) (either strictly convex or concave) : a single
strictly convex entropy pair suffices (Panov)

U(u) = = F(u) = /Ou of'(v)do.

> For a general non-linear flux : infinitely many entropy pairs are in order (the Kruzkov’s
entropy pairs)

U= |u—k|, Fi(u)=sign(u—k)(f(u)—f(k)), keR.




The genuinely non-linear flux framework

Let us consider the entropy pair (4 (u), F(u)) with 2 (u) = u?/2 and the associated
relaxation entropy pair (®,¥). Assume the sub-characteristic condition. Then the
monotonicity preserving condition and the entropy requirement E{U/ } (6;ur, ug) < 0 are
satisfied provided that 6(u;, ug) is chosen so as to verify :

0 <O(up,ur) <O(up,ug) = max(0,min(1,1+ T'(ug, ug)), (13)

(—o@(ug) —U(ur)) + (F(ug) — F(ur)))

['(up, ur) = ~2(ur,ur) g — |2 , UL F UR,
0, otherwise,
(14)
o max((f )L 1))
y(up, ug) = (a2 — 0?(up, ug)) ok R > o (15)
1/ (a+|f (ur)|), otherwise.

O(ur,ur) € (0,1) (Monotonicity), ®(ur, ur) = 1 for entropy satisfying shocks,
O(ur,ugr) ~ 1 (zone of smoothness)




The general non-linear flux setting

Consider the Oleinik entropy conditions

Ur +uUg

gy (LI ) <o, ke gl

2

K(k;up,ug) = —o(ur, ug)(
E{U}(6;up,ur) < 0forallk € |up,ug|, provided that 0(uy, ug) verifies :

0< Q(ML, MR) < @(ML, MR) = ke{nin : (1 + FK(k; ur, uR)), (16)
Ur,URr

_g(uL,qu”LeruR —k) + (f(”L)"z'f(”R) —f(k))
Ur — Uuyg,

, ifup #ug,
r]C (k/ ur, MR) — —2’)’(1/{L, MR) <

\ 0, otherwise,

v(up, ug) = 2a/(a* — c*(ur, ug)) =0

@(uL,uR) =1if lC(k;uL,uR) < Oforallk e LuL, uRl, 0< @(uL,uR) < 1 otherwise.




A convergence result

Let be given ug € L*(R) N BV (R). Assume the sub-characteristic condition and the CFL
condition CFL < 0.5. Assume that the mapping 0(u, ug) is monotonicity preserving and
consistent with the entropy consistency requirement, namely with the quadratic entropy pair in
the case of a genuinely non-linear flux and with the whole Kruzkov’s family in the case of a
general non-linear flux function. Then for almost any given sampling sequence

& = (a1,a2,...) € (0,1)N := A, the family of approximate solutions {u4, }, _ given by the
Jin-Xin scheme with defect measure correction converges in L*((0, T), L} (R)) forall T > 0 and

a.e. as Ax — 0 with % kept fixed to the Kruzkov’s solution of the corresponding equilibrium
Cauchy problem.

> BV framework for a Glimm type of analysis
> The sampling sequence has to be well-distributed (e.g. Van der Corput)




Numerical experiments

Jeit + Oy (Lg—?’) =0, t>0,x€(01),

u(0,x) = ug(x) = {

ur =—1, x<0.5,
ugr = +1, x> 0.5,

Exact solution made of a shock attached to a rarefaction wave.

> |nitial data such that

2 2 4 4
u u u u 1
—U(ML,MR)(TR—TL)JF(ZR—ZL):O, U(UL,MR)Zg-

> In the genuinely nonlinear framework, ®(ur, ug) = max(0, min(1,1+0))=1
> Capture an entropy violating shock solution !

> 0< @Kruzkov(uL,uR) <1

> In the nonlinear framework without genuine nonlinearity, ©®(ur, ug) has to be
designed according to infinitely many entropy pairs
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