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Goal: Derivation of mean field equations for heavy tracer particle in a

gas of bosons displaying Bose-Einstein condensation.

[Fröhlich-Zhou, F-Soffer-Zhou] Classical tracer particle interacting with

nonlinear Hartree eq and Hamiltonian friction.

Without tracer particle:

[Hepp] Derivation of Hartree eq from quantum dyn. in Fock space

[Rodnianski-Schlein] Convergence rates for mean field limit

[Grillakis-Machedon, G-M-Margetis], [Schlein et al] Much improved

convergence rates

Other approaches: [Spohn], [Erdös-Schlein-Yau],

[Kirkpatrick-Schlein-Staffilani], [C-Pavlovic], [X. Chen-Holmer], [Fröhlich

et al], [Pickl], ...
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QFT: Description of field of indistinguishable quantum

particles

Wave function for one particle: f ∈ L2(R3)

Wave function for two indistinguishable particles (bosons):

1

2

(
f1 ⊗ f2 + f2 ⊗ f1

)
(x1, x2) ∈ Sym2(L2(R3))⊗2

n indistinguishable particles:

1

n!

∑
π∈Sn︸ ︷︷ ︸

Symn

( fπ(1) ⊗ · · · ⊗ fπ(n)
)

(x1, . . . , xn) ∈ Fn = Symn(L2(R3))⊗n

3



Describe states with fluctuating particle # by vectors in boson Fock

space

F =
⊕
n≥0

Fn

Zero particle space: F0 = C . Vacuum vector Ω = (1, 0, 0, . . . ).

Introduce creation and annihilation operators

a+(f) = Symn+1 f ⊗ • : Fn → Fn+1

a(f) =
〈
f , •

〉
L2
xn

(R3)
: Fn → Fn−1

under the condition that

a(f) Ω = 0 ∀ f ∈ L2(R3)
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Then, n bosons with wave functions f1, . . . , fn ∈ L2(R3):

Φ(n) = a+(f1) · · · a+(fn) Ω = Symn f1 ⊗ · · · ⊗ fn ∈ Fn

Linear span of such states, for n ≥ 0, is dense in F .

Φ = (Φ(0),Φ(1), . . . ,Φ(n), . . . ) ∈ F

Inner product:
〈
Φ,Ψ

〉
F =

∑
n

〈
Φ(n),Ψ(n)

〉
Fn

Adjoints a+(f) = (a(f))∗. Canonical commutation relations

[a(f), a+(g)] =
〈
f, g
〉
L2 , [a](f), a](g)] = 0
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a+(f), a(f) are linear/antilinear in f ∈ L2(R3). Can write

a(f) =

∫
dx f∗(x) ax

a+(f) =

∫
dx f(x) a+x = (a(f))∗

Operator-valued distributions a+z , ax, CCR[
ax, a

+
y

]
= δ(x− y)[

ax, ay
]

= 0 =
[
a+x , a

+
y

]
.

Fock vacuum Ω ∈ F , with axΩ = 0 ∀x ∈ R3.
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Definition of the model

Consider a heavy quantum mechanical tracer particle coupled to a field

of identical scalar bosons with two-particle interactions.

Hilbert space for the quantum tracer particle L2(R3).

Boson Fock space

F = C⊕
⊕
n≥1

Fn

with n-particle Hilbert space

Fn := (L2(R3))⊗symn

Creation- and annihilation operators, canonical commutation relations

[ax, a
+
y ] = δ(x− y) , [ax, ay] = 0 , [a∗x, a

∗
y] = 0 ,

Fock vacuum Ω ∈ F , with axΩ = 0 for all x ∈ R3.
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Boson number operator and kinetic energy operator

Nb :=

∫
dx a+x ax , T :=

1

2

∫
dx a+x (−∆xax)

Hilbert space of the coupled system

H = L2(R3)⊗F .

Initial data Φ0 ∈ H with expected particle number,
〈

Φ0,1⊗NbΦ0

〉
= N .

Moreover, we assume that the mass of the heavy tracer particle is N .

Assume bosons interact via a mean field interaction potential 1
2N
v.

Accordingly, the Hamiltonian of the system is given by

HN := − 1

2N
∆X ⊗ 1 + 1⊗ T +

∫
dxw(X − x)⊗ a+x ax

+1⊗ λ

2N

∫
dxdy a+x axv(x− y)a+y ay

where w is the potential energy coupling tracer particle and bosons.
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Formal similarity to translation-invariant model in non-relativistic

Quantum Electrodynamics (QED) describing a quantum mechanical

electron coupled to the quantized electromagnetic radiation field.

[Fröhlich, AHP 73] Infrared problem for massless bosons

[Bach-F-Sigal, Adv Math 98] Renormalization Group analysis of spectral

problems in non-relativistic QED.

[C, JFA 08], [B-C-F-S, JFA 07] Infrared mass renormalization

[C-F, PSPM 07] Infrared representations without IR cutoff

[C-Pizzo-F, CMP 10, JMP 09] Scattering states without IR cutoff

[B-C-F-F-S, AHP 13] Effective dynamics of electron in non-relat. QED
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Momentum operator for the boson field

Pb :=

∫
dx a+x (i∇xax)

Define the conserved total momentum operator

Ptot = i∇X ⊗ 1 + 1⊗ Pb

Hamiltonian is translation invariant, [HN , Ptot] = 0.

Consider the decomposition of H as a fiber integral w.r.t. Ptot.

H =

∫ ⊕
R3

dkHk

Fiber Hilbert spaces Hk isomorphic to F , invariant under e−itHN .
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Given k ∈ R3, consider value Nk of conserved total momentum Ptot.

The restriction of HN to Hk is given by the fiber Hamiltonian

HN (k) :=
1

2N
(Nk − Pb)2 + T +

∫
dxw(x)a+x ax

+
λ

2N

∫
dxdy a+x axv(x− y)a+y ay

The origin of the coordinate system sits at the expected location of the

tracer particle, so that X = 0.
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From now on, identify H with L2(R3,F), and omit the tensor products.

The solution of the Schrödinger equation on H has the following form.

Proposition Given u ∈ L2(R3) and ΨFk,0 ∈ F , let

Φu,0(X) :=

∫
dk û(k)eiX·(Nk−Pb)ΨFk,0 ∈ H .

Then,

Φu(t,X) :=

∫
dk û(k)eiX·(Nk−Pb)ΨFk (t)

solves

i∂tΦu = HNΦu

on H with initial data Φu(0, X) = Φu,0(X) ∈ H, iff ΨFk (t) ∈ F solves

i∂tΨ
F
k (t) = HN (k)ΨFk (t)

on F with initial data ΨFk (0) = ΨFk,0 ∈ F .
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Mean field limit

Weyl operator associated to φ ∈ L2(R3)

W[
√
Nφ] := exp

(√
N

∫
dx
(
φ(x)a+x − φ(x)ax

) )
Given φ0 ∈ H1(R3), consider solution of Schrödinger equation on F

e−itHN (k)W[
√
Nφ0] Ω

with initial data given by coherent state

W[
√
Nφ0] Ω =

( (
√
Nφ0)⊗n

n!

)
n∈N0

Expected particle number is N .
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Comparison dynamics:

Let v ∈ C2(R3).

Assume that for some T > 0, φt ∈ L∞t H3
x([0, T )× R3) is the solution of

i∂tφt = −
(
k − (φt, i∇φt)

)
i∇φt −

1

2
∆φt + wφt + λ(v ∗ |φt|2)φt , (1)

with initial data φ0 ∈ H3
x(R3).
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Time-dependent mean-field Hamiltonian; self-adjoint, bilinear in a+, a,

Hφtmf (k) := HφtHar(k) +Hφtcor

with ”diagonal” Hartree Hamiltonian commuting with Nb

HφtHar(k) := −
(
k − (φt, i∇φt)

)
· Pb + T +

∫
dxw(x)a+x ax

+λ

∫
|φt(x)|2v(x− y)a+y aydxdy

and ”off-diagonal” Hamiltonian not preserving particle number,

Hφtcor :=
1

2

(
a+(i∇φt) + a(i∇φt)

)2
+λ

∫
v(x− y)φt(x)φt(y) a+x ay dxdy

+
λ

2

∫
v(x− y)

(
φt(x)φt(y)a+x a

+
y + φt(x)φt(y)ayax

)
dxdy .

Obtain the unitary flow V(t, s) generated by Hφtmf (k),

i∂tV(t, s) = Hφtmf (k)V(t, s) , V(s, s) = 1 .
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Theorem Let k ∈ R3. Assume v ∈ C2(R3), and that for some T > 0,

φt ∈ L∞t H3
x([0, T )× R3) is the solution of

i∂tφt = −
(
k − (φt, i∇φt)

)
i∇φt −

1

2
∆φt + wφt + λ(v ∗ |φt|2)φt ,

with initial data φ0 ∈ H3
x(R3). Let

S(t, t′) := N

∫ t

t′
ds
(
− 1

2
k2 +

1

2
(φs, i∇φs)2

+
λ

2

∫
|φs(x)|2v(x− y)|φs(y)|2dxdy

)
.

Then, the following (mean field) limit holds, strongly in F

lim
N→∞

∥∥∥e−itHN (k)W[
√
Nφ0] Ω− e−iS(t,0)W[

√
Nφt]V(t, 0) Ω

∥∥∥
F

= 0
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Remarks:

In V(t, s), Bogoliubov translation not split from Bogoliubov rotation.

The time-dependent mean-field Hamiltonian is similar to the quasifree

nonlinear approximation of the Hamiltonian in I.M. Sigal’s talk.

[Lewin-Nam-Schlein ’15], [Grillakis-Machedon ’17]: Similar construction

in different context (to optimize convergence rate of mean field limit for

pure Hartree dynamics).
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Analysis of the generalized Hartree equation

Expected boson momentum jφ(t) := (φ(t), i∇φ(t)).

Expected trajectory of tracer particle

Xφ(t) =

∫ t

0

ds(k − jφ(s))

Theorem Assume ‖w‖
W

2, 3
2

x

<∞, and

‖w‖
W

1, 3
2

x

+ 3‖λv‖
W

1, 3
2

x

< 1 . (2)

Then, there exists a unique global mild solution to

i∂tφ = −
(
k − jφ(t)

)
i∇φ− 1

2
∆φ+ wφ+ λ(v ∗ |φ|2)φ ,

with initial data φ(t = 0) = φ0 ∈ H1
x, satisfying

‖φ‖L∞
t H

1
x(R×R3) + ‖τXφφ‖

L
10
3
t W

1, 10
3

x (R×R3)
<∞

where (τXφf)(t, x) := f(x+Xφ(t)).

In particular, |∂tXφ(t)| < C‖φ0‖H1
x

, uniformly in t ∈ R.
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Proof idea; bosons coupled to classical tracer particle

For any φ ∈ L∞t H1
x(R× R3), |jφ(t)| ≤ ‖φ‖L∞

t H
1
x
< C.

Thus, |Xφ(t)| is bounded for every finite t ∈ R.

Hence, eiXφ(t)·i∇ : H1
x → H1

x is unitary for every t ∈ R.

Define

ψ(t, x) := eiXφ(t)·i∇φ(t, x) = φ
(
t, x−Xφ(t)

)
Clearly, by unitarity,

jφ(t) = jψ(t) .

Therefore,

Xφ(t) = Xψ(t) ,

and

i∂tψ = eiXφ(t)·i∇
(
− 1

2
∆ + w + λ(v ∗ |φ|2)

)
e−iXφ(t)·i∇ψ ,
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Remarks

The first term on the r.h.s. has been canceled by (i∂tXφ(t))φ from the

time derivative. Noting that the operator −∆ is translation invariant,

and (
eiXφ(t)·i∇(v ∗ |φ|2)e−iXφ(t)·i∇

)
(t, x)

=

∫
v
(
x−Xφ(t)− y

)
|φ(t, y)|2 dy

=

∫
v(x− y) |φ(t, y −Xφ(t))|2 dy

=
(
v ∗ |ψ|2

)
(t, x) ,
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We find that ψ satisfies the nonlinear Hartree equation

i∂tψ = −1

2
∆ψ + wψψ + λ(v ∗ |ψ|2)ψ , ψ(t = 0) = ψ0 ≡ φ0

where

wψ(t, x) := w
(
x−Xψ(t)

)
(3)

is the potential w, translated by Xψ(t).

The proof of the theorem therefore follows from GWP for ψ.
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Note that Xψ(t) can be written as

Xψ(t) = kt− (ψ, xψ)

and that it satisfies the Ehrenfest dynamics

∂2
tXψ(t) =

(
ψ , ∇(wψ + λv ∗ |ψ|2)ψ

)
=

∫
dx(∇w)(x−Xψ(t))|ψ(x)|2 . (4)

The term involving v is zero because v is even.

Describes classical tracer particle along trajectory Xψ(t) ∈ R3, coupled

to boson field.

[Fröhlich-Zhou, F-Soffer-Z] Proof of emergence of Hamiltonian friction

for models of similar type.

22



In particular, we find ∂2
tXψ(t) = 0 in the special case where φ0 = Qk is

the minimizer of generalized Hartree functional

Ek[φ] :=
1

N

〈
ΦN,φ , HN (k) ΦN,φ

〉
=

1

2

(
k −

∫
dxφ(x)i∇xφ(x)

)2
+

1

2

∫
dx |∇φ(x)|2

+

∫
dxw(x) |φ(x)|2 +

λ

2

∫
dx dy |φ(x)|2v(x− y)|φ(y)|2

=
1

2

(
k − (φ , i∇φ)

)2
+ E0[φ]

with ‖Qk‖L2 = 1.

It follows that Qk is the nonlinear ground state

µkQk = −
(
k − (Qk , i∇Qk)

)
i∇Qk −

1

2
∆Qk + wQk + λ(v ∗ |Qk|2)Qk

with ‖Qk‖L2 = 1.

(Value of µk obtained from taking inner product with Qk).

23



We have Qk = e−i
k
2
xQ0 where Q0 is the rotationally symmetric

minimizer of the standard Hartree functional, with ‖Q0‖L2
x

= 1.

Due to rotational symmetry of Q0, we find that Xψ(t) = k
2
t, and that

with ψ(t, x) = Qk(x− k
2
t), the r.h.s of (4) is zero, so that ∂2

tXψ(t) = 0.
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Sketch of proof of mean field limit

We have∥∥∥e−itHN (k)W[
√
Nφ0] Ω− e−iS(t,0)W[

√
Nφt]V(t, 0) Ω

∥∥∥2
F

= 2( 1−M(t) )

where

M(t) := Re
〈
e−itHN (k)W[

√
Nφ0] Ω , e−iS(t,0)W[

√
Nφt]V(t, 0) Ω

〉
= Re

〈
Ω , W∗[

√
Nφ0]eitHN (k)e−iS(t,0)W[

√
Nφt]V(t, 0) Ω

〉
.

One can easily verify that given (2), we have

i∂tW[
√
Nφt] = [HφtHar(k) , W[

√
Nφt] ] .

We consider the unitary flow

U(t, s) :=W∗[
√
Nφs]e

i(t−s)HN (k)−iS(t,s)W[
√
Nφt]
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and introduce the selfadjoint operator

LφtN (k) := W∗[
√
Nφt]

(
HN (k)− ∂tS(t, 0)

)
W[
√
Nφt]

−W∗[
√
Nφt][HφtHar(k),W[

√
Nφt]]−Hφtmf (k)

= W∗[
√
Nφt]HN (k)W[

√
Nφt]− ∂tS(t, 0)

−W∗[
√
Nφt]HφtHar(k)W[

√
Nφt]−Hφtcor(k) . (5)

Then, it is clear that

i∂t
(
UN (t, 0)V(t, 0) Ω

)
= −UN (t, 0)LφtN (k)V(t, 0) Ω .
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A straightforward but somewhat lengthy calculation shows that

LφtN (k) =
1

2
√
N

(
Pb ·

(
a+(i∇φt) + a(i∇φt)

)
+
(
a+(i∇φt) + a(i∇φt)

)
· Pb
)

+
1

2N
P 2
b

+
λ√
N

∫
v(x− y)a+x

(
φt(y)ay + φt(y)a+y

)
ax dxdy

+
λ

2N

∫
v(x− y) a+x a

+
y ayax dxdy .

Evidently,

M(t) = Re
〈

Ω , UN (t, 0)V(t, 0) Ω
〉

= M(0) +Re

∫ t

0

ds ∂sM(s)

= 1−Re
{
i

∫ t

0

ds
〈

Ω , UN (w, 0)LφsN (k)V(s, 0) Ω
〉}

.
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It follows from the unitarity of UN (t, 0) that∣∣∣ 〈Ω , UN (t, 0)LφtN (k)V(t, 0) Ω
〉 ∣∣∣ ≤ ∥∥∥LφtN (k)V(t, 0) Ω

∥∥∥
F
.

We prove that ∥∥∥LφtN (k)V(t, 0) Ω
∥∥∥
F
≤ C0

eC1t

√
N
,

for some constants C0, C1 depending on ‖v‖C2(R3) and

‖φt‖L∞
t H

3
x([0,T )×R3). Hence, we find that

|M(t)− 1| ≤ C0

∫ t

0

eC1s

√
N
ds <

C0

C1

eC1t

√
N
.

We therefore conclude that for any t > 0, the lhs of (5) converges to zero

in the limit N →∞.
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Thank you for your attention !
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