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Goal: Deriwation of mean field equations for heavy tracer particle in a

gas of bosons displaying Bose-FEinstein condensation.

[Frohlich-Zhou, F-Soffer-Zhou| Classical tracer particle interacting with

nonlinear Hartree eq and Hamiltonian friction.

Without tracer particle:

‘Hepp| Derivation of Hartree eq from quantum dyn. in Fock space

'Rodnianski-Schlein] Convergence rates for mean field limit

Grillakis-Machedon, G-M-Margetis|, [Schlein et al] Much improved

convergence rates

Other approaches: [Spohn|, [Erdés-Schlein-Yau],
[Kirkpatrick-Schlein-Staffilani|, [C-Pavlovic], [X. Chen-Holmer]|, [Frohlich

et al], [Pickl], ...



QFT: Description of field of indistinguishable quantum

particles

Wave function for one particle: f € L?*(R?)

Wave function for two indistinguishable particles (bosons):

% ( J1®@f+ 2@ f ) (x1,22) € Symy(L*(R?))®

n indistinguishable particles:

% > (fry® @ frmy) (1, T0) € Fn = Sym,, (L*(R*))®"

TES)

N —
Sym,,



Describe states with fluctuating particle # by vectors in boson Fock

space
F=F
n>0
Zero particle space: Fo = C . Vacuum vector 2 = (1,0,0,...).

Introduce creation and annihilation operators

a+(f) = Sym, f ® e . Fn — Fnal

a’(f) — <f’.>L%n(R3) : Fn — Fnoa

under the condition that

a(f)Q =0 VfeL*R



Then, n bosons with wave functions fi, ..., fn € L*(R?):

»n a+(f1)---a+(fn)Q = Sym, f1i ® - @ fn € Fn

Linear span of such states, for n > 0, is dense in F.

» = (9, 0W .. 8™ ) e F

Inner product: <<I>,\If>jE = 2. <(I)(n)aq’(n)>;

Adjoints a™ (f) = (a(f))*. Canonical commutation relations

a(f),a™(9)] = (f£,9),. , [d"(f).d*(9)] =0



a® (f), a(f) are linear/antilinear in f € L*(R®). Can write

olf) = [der@oa

(f) = / dz f(@)ai = (a(f))"

Operator-valued distributions a}, az, CCR

[aw,a:j] = iz —y)
[ax,ay] = 0 = [a;f,a;].

Fock vacuum Q € F, with a,Q = 0 Vz € R,



Definition of the model

Consider a heavy quantum mechanical tracer particle coupled to a field

of identical scalar bosons with two-particle interactions.
Hilbert space for the quantum tracer particle L*(R>).

Boson Fock space

n>1
with n-particle Hilbert space
Fpn = (L*(R?))®svm?
Creation- and annihilation operators, canonical commutation relations

[az,a) ] =d(x—y) , [az,ay] =0 , [a},a;]=0,

Fock vacuum €2 € F, with a,€2 =0 for all z € R3.



Boson number operator and kinetic energy operator

N, ;:/da;a;;ax . T = %/dmg(—Awax)

Hilbert space of the coupled system

H=L"R*®F.
Initial data ®¢ € ‘H with expected particle number, <<I>o, 1® NbCI)0> = N.
Moreover, we assume that the mass of the heavy tracer particle is V.

Assume bosons interact via a mean field interaction potential ﬁv.

Accordingly, the Hamiltonian of the system is given by

1
Hy = —ﬁAX®1—|—1®T—|—/da:w(X—:U)®a;Lax
A + +
+1® — | dxdya, azv(T — y)a, ay

2N

where w is the potential energy coupling tracer particle and bosons.



Formal similarity to translation-invariant model in non-relativistic
Quantum FElectrodynamics (QED) describing a quantum mechanical

electron coupled to the quantized electromagnetic radiation field.
[Frohlich, AHP 73] Infrared problem for massless bosons

[Bach-F-Sigal, Adv Math 98] Renormalization Group analysis of spectral
problems in non-relativistic QED.

C, JFA 08|, [B-C-F-S, JFA 07] Infrared mass renormalization
C-F, PSPM 07] Infrared representations without IR cutoff
C-Pizzo-F, CMP 10, JMP 09] Scattering states without IR cutoff

B-C-F-F-S, AHP 13| Effective dynamics of electron in non-relat. QED



Momentum operator for the boson field
Py = /da:a;r(ivxa,w)
Define the conserved total momentum operator

Piot =1 VxR1+1R F,

Hamiltonian is translation invariant, [Hy, Piot] = O.

Consider the decomposition of $ as a fiber integral w.r.t. Pjo:.

o
H= dk $i

R3

Fiber Hilbert spaces $); isomorphic to F, invariant under e~ “7v
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Given k € R?, consider value Nk of conserved total momentum Pio:.

The restriction of Hy to i is given by the fiber Hamiltonian

Hn (k) = %(Nk—Pb)2+T+/dmw(x)aIaw

+ﬁ dxdy ay azv(r — y)a, a,

The origin of the coordinate system sits at the expected location of the

tracer particle, so that X = 0.

11



From now on, identify $ with L*(R?®, F), and omit the tensor products.
The solution of the Schrodinger equation on $) has the following form.

Proposition Given u € L*(R*) and ¥}, € F, let
Dy 0(X) = /dk U(k)e™* NP gl e g,
Then,
B, (t, X) = / dka(k)e™ NP gl (3)
solves
10t Py = HN Dy
on $ with initial data ®,(0, X) = ®u.0(X) € 9, iff U (t) € F solves
i0, Wy, (t) = Hn(k)Ty (1)

on F with initial data VY, (0) = U}, € F.

12



Mean field limit

Weyl operator associated to ¢ € L*(R?)

W[\/Nqb] = exp (\/N/da: ((b(:{:)a;r —Maw))

Given ¢ € H'(R?), consider solution of Schrédinger equation on F
with initial data given by coherent state

WV 2 = (2

n€Ng

Expected particle number is V.
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Comparison dynamaics:
Let v € C*(R?).
Assume that for some T > 0, ¢ € L{°H2([0,T) x R?) is the solution of

0 = —(k— (61,1V:)) iVer - %Agbt Fwer + A |deDee, (1)

with initial data ¢o € H3(R?).
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Time-dependent mean-field Hamiltonian; self-adjoint, bilinear in a™, a,

H’f’ff(k) - 7-[I—Iar(k) + Hfgr

with ”diagonal” Hartree Hamiltonian commuting with Ny
WO (k) = — (k ~ (¢r, ngbt)) P+ T+ /dxw(x)a;ax

—1—)\/|¢t — y)a, aydzdy

and ”off-diagonal” Hamiltonian not preserving particle number,

i = 5 (a7 (V0) +alVe))

4 [ oo~ 9)ou(2)dn(y) at o, dody
+2 / o(a — ) (6 (0)dn w)ataf + G(@)di(y)ayas ) dudy.

Obtain the unitary flow V(t, s) generated by %f,ff(k),

i0V(t,s) = HEL(k)V(t,s) , V(s,s)=1.
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Theorem Let k € R®. Assume v € C*(R?), and that for some T > 0,
¢: € L°HZ([0,T) x R?) is the solution of

: . . 1
10ty = —(k — (¢, ZV¢t)) Vi — §A¢t +wee + A * |pe|*) e
with initial data ¢o € Ha(R?). Let
t
S(t,t') = N/ ds( YR 1(cbs,zws)Z
N 2" T2

A
+5 [ 16:@) ot =)o) Pdady ).
Then, the following (mean field) limit holds, strongly in F

lim He‘imN(k)W[\/Nqbo] Q — e EEOWV NG V(E, 0) QH _0
f

N — o0
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Remarks:
In V(t, s), Bogoliubov translation not split from Bogoliubov rotation.

The time-dependent mean-field Hamiltonian is similar to the quasifree

nonlinear approximation of the Hamiltonian in I.M. Sigal’s talk.

[Lewin-Nam-Schlein '15], [Grillakis-Machedon ’17]: Similar construction
in different context (to optimize convergence rate of mean field limit for

pure Hartree dynamics).
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Analysis of the generalized Hartree equation

Expected boson momentum j,(t) := (¢(t),iVo(t)).

Expected trajectory of tracer particle
t
Xo(t) = [ ds(k=jo(s)
0

Theorem Assume ||w|| 2,3 < 00, and
Wy

lwll 4 s +3[[Avf] ;5 <1. (2)
W, W,

X X

ol

Then, there exists a unique global mild solution to
006 = —(k — jolt) ) iV~ S AG+wd + A * [6)6,
with initial data ¢p(t = 0) = ¢o € H;, satisfying
H¢HL;§°H;(R><R3) + H7X¢¢||L10 1,10 < 0

where (1x, f)(t,x) := f(z + Xs(t)).
In particular, |0;X4(t)| < Cll¢ol| g1, uniformly int € R.
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Proof idea; bosons coupled to classical tracer particle
For any ¢ € L H2(R x B?), |jg(8)] < |||l g1 < C.
Thus, | X4(t)| is bounded for every finite ¢t € R.

Hence, e : H} — H} is unitary for every t € R.

Define

Wt x) = eVt ) = ¢<t,x—X¢(t)>
Clearly, by unitarity,

Therefore,

and

. 4 1 —i ¥
iathe’Lqu(t) V(_§A+w+)\(v*|¢|2)>e X¢(t) V,(p’
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Remarks

The first term on the r.h.s. has been canceled by (i0: X 4(t))¢ from the
time derivative. Noting that the operator —A is translation invariant,
and

(eiX¢(t)~iV (v % |¢|2)e—iX¢(t)-iV> (t, )
= [ oo Xot) - v) 16t )" dy

- / o(z — ) |6(t,y — Xo ()] dy
— (U* |¢|2)(t7$)7
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We find that 1 satisfies the nonlinear Hartree equation

00b = — 5 A+ wgth + A * [2)6 L lt = 0) = o = 60

where

Wy (t, x) = w(a: — Xw(t))
is the potential w, translated by Xy ().
The proof of the theorem therefore follows from GWP for .

21



Note that Xy (t) can be written as

X¢ (t> = kt — (wv 90¢)

and that it satisfies the Ehrenfest dynamics
i Xu(t) = (v, Vi(ws+ sl )v)

_ / d (Vw) (z — Xy ()| ()]7 (4)

The term involving v is zero because v is even.

Describes classical tracer particle along trajectory Xy (t) € R*, coupled
to boson field.

[Frohlich-Zhou, F-Soffer-Z] Proof of emergence of Hamiltonian friction

for models of similar type.
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In particular, we find 07 X (t) = 0 in the special case where ¢o = Qy is

the minimizer of generalized Hartree functional

Exlp] = %<(I)N,¢,HN(/{Z)(I)N,¢>
_ %(k—/d:pﬁivxqﬁ(x)f jL%/clwIVcb(ﬂ?)l2
+/dazw(az)|q§(az)|2+%/dﬂ?dy|¢($)|2v($—y)|¢(y)|2
= (k= (6.199)) +&ld]

with ||Qk|l2 = 1.
It follows that () is the nonlinear ground state
: . 1
Qe = = (k= (Qu, iVQw) )iVQx — 5 AQx + Qs + Av * |Qul*)Qu

with [| Qw2 = 1.

(Value of px obtained from taking inner product with Q).
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We have Qi = e_i%‘”Qo where Qg is the rotationally symmetric

minimizer of the standard Hartree functional, with [|Qol[z2 = 1.

Due to rotational symmetry of Qo, we find that X (¢) = £¢, and that
with (¢, ) = Qx(z — £t), the r.h.s of (4) is zero, so that 97 Xy (t) = 0.
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Sketch of proof of mean field limit
We have

2

He‘imN(k)W[\/Nqbo] Q- TEOWNVNG V(L 0) Q| =2(1 - M(1))

where
M(t) := Re< e NIV N 2, e T EOWV NG V(¢ 0) Q>
- Re< Q, W[V N pole T B =S E0WWI /N gV (¢, 0) Q> .
One can easily verify that given (2), we have
i0W[VN¢i] = [Hit, (k), WIVN¢]].
We consider the unitary flow

U(t,s) == W[V N, e NI =50 [N g,
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and introduce the selfadjoint operator

LH(R) = W VNG (M (k) — 0:S(t,0))WIVNG:]
W IV NG H Y, (k) WIVN S]] — it (k)
= W [VNo:HN(K)W[VNe] — 0:5(t,0)
W VNG H Y, (RWIVNG] = HeL (k). (5)

Then, it is clear that

i0; (uN (t,0)V(¢, 0) Q) — —Un(,0)L2 (k) V(£,0) Q.
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A straightforward but somewhat lengthy calculation shows that

LY (k) =

Evidently,

M(t)

(B

@T(IV) +a(iVer) + (a7 (V) + a(iVer)) - Pb)
1

+-—— P

2N

A N (FT .
+\/N/U(x Y)a, (¢t<y)ay+§bt(’y)ay>aw dzxdy

A

+ +

+— [ v(x —y)a, ay aya, dxdy .

2N

Re< Q, Un (t,0) V(t,0) Q>

M(0) + Re /t ds Os M (s)

1 — Re{i/t ds<Q, Z/{N(w,O)Lj@S(k)V(s,O)Q> }
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It follows from the unitarity of Un (¢,0) that
(9 Un(0)L8 () V(0 Q) | < || £ Vit 02|l

We prove that

Cit

£3 (k) V(t, 0 QH <CyS_ .
| mv0a| <o
for some constants Cp, C1 depending on ||v||c2grs) and
||¢t||L§°H§([O,T)><R3)- Hence, we find that

C'13 Cit
ds < @6

o VN Ci VN

We therefore conclude that for any ¢t > 0, the lhs of (5) converges to zero
in the limit N — oo.

[M(t) = 1] < Co
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Thank you for your attention !
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