Dynamics of a heavy quantum tracer particle in a boson gas

Thomas Chen
University of Texas at Austin
Joint work with Avy Soffer (Rutgers University)

KI-Net Conference, June 2018
CSCAMM, University of Maryland

Goal: Derivation of mean field equations for heavy tracer particle in a gas of bosons displaying Bose-Einstein condensation.
[Fröhlich-Zhou, F-Soffer-Zhou] Classical tracer particle interacting with nonlinear Hartree eq and Hamiltonian friction.

Without tracer particle:
[Hepp] Derivation of Hartree eq from quantum dyn. in Fock space [Rodnianski-Schlein] Convergence rates for mean field limit
[Grillakis-Machedon, G-M-Margetis], [Schlein et al] Much improved convergence rates

Other approaches: [Spohn], [Erdös-Schlein-Yau], [Kirkpatrick-Schlein-Staffilani], [C-Pavlovic], [X. Chen-Holmer], [Fröhlich et al], [Pickl], ...

QFT: Description of field of indistinguishable quantum particles

Wave function for one particle: $f \in L^{2}\left(\mathbb{R}^{3}\right)$
Wave function for two indistinguishable particles (bosons):

$$
\frac{1}{2}\left(f_{1} \otimes f_{2}+f_{2} \otimes f_{1}\right)\left(x_{1}, x_{2}\right) \in \operatorname{Sym}_{2}\left(L^{2}\left(\mathbb{R}^{3}\right)\right)^{\otimes 2}
$$

n indistinguishable particles:

$$
\underbrace{\frac{1}{n!} \sum_{\pi \in S_{n}}}_{\operatorname{Sym}_{n}}\left(f_{\pi(1)} \otimes \cdots \otimes f_{\pi(n)}\right)\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{F}_{n}=\operatorname{Sym}_{n}\left(L^{2}\left(\mathbb{R}^{3}\right)\right)^{\otimes n}
$$

Describe states with fluctuating particle \# by vectors in boson Fock space

$$
\mathcal{F}=\bigoplus_{n \geq 0} \mathcal{F}_{n}
$$

Zero particle space: $\mathcal{F}_{0}=\mathbb{C}$. Vacuum vector $\Omega=(1,0,0, \ldots)$.
Introduce creation and annihilation operators

$$
\begin{aligned}
a^{+}(f) & =\operatorname{Sym}_{n+1} f \otimes \bullet & : \mathcal{F}_{n} \rightarrow \mathcal{F}_{n+1} \\
a(f) & =\langle f, \bullet\rangle_{L_{x_{n}}^{2}\left(\mathbb{R}^{3}\right)} & : \mathcal{F}_{n} \rightarrow \mathcal{F}_{n-1}
\end{aligned}
$$

under the condition that

$$
a(f) \Omega=0 \quad \forall f \in L^{2}\left(\mathbb{R}^{3}\right)
$$

Then, n bosons with wave functions $f_{1}, \ldots, f_{n} \in L^{2}\left(\mathbb{R}^{3}\right)$:

$$
\Phi^{(n)}=a^{+}\left(f_{1}\right) \cdots a^{+}\left(f_{n}\right) \Omega=\operatorname{Sym}_{n} f_{1} \otimes \cdots \otimes f_{n} \in \mathcal{F}_{n}
$$

Linear span of such states, for $n \geq 0$, is dense in \mathcal{F}.

$$
\Phi=\left(\Phi^{(0)}, \Phi^{(1)}, \ldots, \Phi^{(n)}, \ldots\right) \in \mathcal{F}
$$

Inner product: $\langle\Phi, \Psi\rangle_{\mathcal{F}}=\sum_{n}\left\langle\Phi^{(n)}, \Psi^{(n)}\right\rangle_{\mathcal{F}_{n}}$

Adjoints $a^{+}(f)=(a(f))^{*}$. Canonical commutation relations

$$
\left[a(f), a^{+}(g)\right]=\langle f, g\rangle_{L^{2}} \quad, \quad\left[a^{\sharp}(f), a^{\sharp}(g)\right]=0
$$

$a^{+}(f), a(f)$ are linear/antilinear in $f \in L^{2}\left(\mathbb{R}^{3}\right)$. Can write

$$
\begin{aligned}
a(f) & =\int d x f^{*}(x) a_{x} \\
a^{+}(f) & =\int d x f(x) a_{x}^{+}=(a(f))^{*}
\end{aligned}
$$

Operator-valued distributions $a_{z}^{+}, a_{x}, \mathrm{CCR}$

$$
\begin{aligned}
{\left[a_{x}, a_{y}^{+}\right] } & =\delta(x-y) \\
{\left[a_{x}, a_{y}\right] } & =0=\left[a_{x}^{+}, a_{y}^{+}\right] .
\end{aligned}
$$

Fock vacuum $\Omega \in \mathcal{F}$, with $a_{x} \Omega=0 \forall x \in \mathbb{R}^{3}$.

Definition of the model

Consider a heavy quantum mechanical tracer particle coupled to a field of identical scalar bosons with two-particle interactions.

Hilbert space for the quantum tracer particle $L^{2}\left(\mathbb{R}^{3}\right)$.
Boson Fock space

$$
\mathcal{F}=\mathbb{C} \oplus \bigoplus_{n \geq 1} \mathcal{F}_{n}
$$

with n-particle Hilbert space

$$
\mathcal{F}_{n}:=\left(L^{2}\left(\mathbb{R}^{3}\right)\right)^{\otimes_{s y m} n}
$$

Creation- and annihilation operators, canonical commutation relations

$$
\left[a_{x}, a_{y}^{+}\right]=\delta(x-y) \quad, \quad\left[a_{x}, a_{y}\right]=0 \quad, \quad\left[a_{x}^{*}, a_{y}^{*}\right]=0
$$

Fock vacuum $\Omega \in \mathcal{F}$, with $a_{x} \Omega=0$ for all $x \in \mathbb{R}^{3}$.

Boson number operator and kinetic energy operator

$$
N_{b}:=\int d x a_{x}^{+} a_{x} \quad, \quad T:=\frac{1}{2} \int d x a_{x}^{+}\left(-\Delta_{x} a_{x}\right)
$$

Hilbert space of the coupled system

$$
\mathfrak{H}=L^{2}\left(\mathbb{R}^{3}\right) \otimes \mathcal{F}
$$

Initial data $\Phi_{0} \in \mathcal{H}$ with expected particle number, $\left\langle\Phi_{0}, \mathbf{1} \otimes N_{b} \Phi_{0}\right\rangle=N$.
Moreover, we assume that the mass of the heavy tracer particle is N.
Assume bosons interact via a mean field interaction potential $\frac{1}{2 N} v$.
Accordingly, the Hamiltonian of the system is given by

$$
\begin{aligned}
\mathcal{H}_{N}:=-\frac{1}{2 N} \Delta_{X} \otimes \mathbf{1} & +\mathbf{1} \otimes T+\int d x w(X-x) \otimes a_{x}^{+} a_{x} \\
& +\mathbf{1} \otimes \frac{\lambda}{2 N} \int d x d y a_{x}^{+} a_{x} v(x-y) a_{y}^{+} a_{y}
\end{aligned}
$$

where w is the potential energy coupling tracer particle and bosons.

Formal similarity to translation-invariant model in non-relativistic Quantum Electrodynamics (QED) describing a quantum mechanical electron coupled to the quantized electromagnetic radiation field.
[Fröhlich, AHP 73] Infrared problem for massless bosons
[Bach-F-Sigal, Adv Math 98] Renormalization Group analysis of spectral problems in non-relativistic QED.
[C, JFA 08], [B-C-F-S, JFA 07] Infrared mass renormalization [C-F, PSPM 07] Infrared representations without IR cutoff
[C-Pizzo-F, CMP 10, JMP 09] Scattering states without IR cutoff
[B-C-F-F-S, AHP 13] Effective dynamics of electron in non-relat. QED

Momentum operator for the boson field

$$
P_{b}:=\int d x a_{x}^{+}\left(i \nabla_{x} a_{x}\right)
$$

Define the conserved total momentum operator

$$
P_{t o t}=i \nabla_{X} \otimes \mathbf{1}+\mathbf{1} \otimes P_{b}
$$

Hamiltonian is translation invariant, $\left[\mathcal{H}_{N}, P_{\text {tot }}\right]=0$.
Consider the decomposition of \mathfrak{H} as a fiber integral w.r.t. $P_{t o t}$.

$$
\mathfrak{H}=\int_{\mathbb{R}^{3}}^{\oplus} d k \mathfrak{H}_{k}
$$

Fiber Hilbert spaces \mathfrak{H}_{k} isomorphic to \mathcal{F}, invariant under $e^{-i t \mathcal{H}_{N}}$.

Given $k \in \mathbb{R}^{3}$, consider value $N k$ of conserved total momentum $P_{\text {tot }}$. The restriction of \mathcal{H}_{N} to \mathfrak{H}_{k} is given by the fiber Hamiltonian

$$
\begin{aligned}
\mathcal{H}_{N}(k):=\frac{1}{2 N}\left(N k-P_{b}\right)^{2} & +T+\int d x w(x) a_{x}^{+} a_{x} \\
& +\frac{\lambda}{2 N} \int d x d y a_{x}^{+} a_{x} v(x-y) a_{y}^{+} a_{y}
\end{aligned}
$$

The origin of the coordinate system sits at the expected location of the tracer particle, so that $X=0$.

From now on, identify \mathfrak{H} with $L^{2}\left(\mathbb{R}^{3}, \mathcal{F}\right)$, and omit the tensor products. The solution of the Schrödinger equation on \mathfrak{H} has the following form.

Proposition Given $u \in L^{2}\left(\mathbb{R}^{3}\right)$ and $\Psi_{k, 0}^{\mathcal{F}} \in \mathcal{F}$, let

$$
\Phi_{u, 0}(X):=\int d k \widehat{u}(k) e^{i X \cdot\left(N k-P_{b}\right)} \Psi_{k, 0}^{\mathcal{F}} \in \mathfrak{H}
$$

Then,

$$
\Phi_{u}(t, X):=\int d k \widehat{u}(k) e^{i X \cdot\left(N k-P_{b}\right)} \Psi_{k}^{\mathcal{F}}(t)
$$

solves

$$
i \partial_{t} \Phi_{u}=\mathcal{H}_{N} \Phi_{u}
$$

on \mathfrak{H} with initial data $\Phi_{u}(0, X)=\Phi_{u, 0}(X) \in \mathfrak{H}$, iff $\Psi_{k}^{\mathcal{F}}(t) \in \mathcal{F}$ solves

$$
i \partial_{t} \Psi_{k}^{\mathcal{F}}(t)=\mathcal{H}_{N}(k) \Psi_{k}^{\mathcal{F}}(t)
$$

on \mathcal{F} with initial data $\Psi_{k}^{\mathcal{F}}(0)=\Psi_{k, 0}^{\mathcal{F}} \in \mathcal{F}$.

Mean field limit

Weyl operator associated to $\phi \in L^{2}\left(\mathbb{R}^{3}\right)$

$$
\mathcal{W}[\sqrt{N} \phi]:=\exp \left(\sqrt{N} \int d x\left(\phi(x) a_{x}^{+}-\overline{\phi(x)} a_{x}\right)\right)
$$

Given $\phi_{0} \in H^{1}\left(\mathbb{R}^{3}\right)$, consider solution of Schrödinger equation on \mathcal{F}

$$
e^{-i t \mathcal{H}_{N}(k)} \mathcal{W}\left[\sqrt{N} \phi_{0}\right] \Omega
$$

with initial data given by coherent state

$$
\mathcal{W}\left[\sqrt{N} \phi_{0}\right] \Omega=\left(\frac{\left(\sqrt{N} \phi_{0}\right)^{\otimes n}}{n!}\right)_{n \in \mathbb{N}_{0}}
$$

Expected particle number is N.

Comparison dynamics:
Let $v \in C^{2}\left(\mathbb{R}^{3}\right)$.
Assume that for some $T>0, \phi_{t} \in L_{t}^{\infty} H_{x}^{3}\left([0, T) \times \mathbb{R}^{3}\right)$ is the solution of

$$
\begin{equation*}
i \partial_{t} \phi_{t}=-\left(k-\left(\phi_{t}, i \nabla \phi_{t}\right)\right) i \nabla \phi_{t}-\frac{1}{2} \Delta \phi_{t}+w \phi_{t}+\lambda\left(v *\left|\phi_{t}\right|^{2}\right) \phi_{t} \tag{1}
\end{equation*}
$$

with initial data $\phi_{0} \in H_{x}^{3}\left(\mathbb{R}^{3}\right)$.

Time-dependent mean-field Hamiltonian; self-adjoint, bilinear in a^{+}, a,

$$
\mathcal{H}_{m f}^{\phi_{t}}(k):=\mathcal{H}_{H a r}^{\phi_{t}}(k)+\mathcal{H}_{c o r}^{\phi_{t}}
$$

with "diagonal" Hartree Hamiltonian commuting with N_{b}

$$
\begin{aligned}
\mathcal{H}_{H a r}^{\phi_{t}}(k):= & -\left(k-\left(\phi_{t}, i \nabla \phi_{t}\right)\right) \cdot P_{b}+T+\int d x w(x) a_{x}^{+} a_{x} \\
& +\lambda \int\left|\phi_{t}(x)\right|^{2} v(x-y) a_{y}^{+} a_{y} d x d y
\end{aligned}
$$

and "off-diagonal" Hamiltonian not preserving particle number,

$$
\begin{aligned}
\mathcal{H}_{c o r}^{\phi_{t}}:= & \frac{1}{2}\left(a^{+}\left(i \nabla \phi_{t}\right)+a\left(i \nabla \phi_{t}\right)\right)^{2} \\
& +\lambda \int v(x-y) \phi_{t}(x) \overline{\phi_{t}(y)} a_{x}^{+} a_{y} d x d y \\
& +\frac{\lambda}{2} \int v(x-y)\left(\phi_{t}(x) \phi_{t}(y) a_{x}^{+} a_{y}^{+}+\overline{\phi_{t}(x) \phi_{t}(y)} a_{y} a_{x}\right) d x d y .
\end{aligned}
$$

Obtain the unitary flow $\mathcal{V}(t, s)$ generated by $\mathcal{H}_{m f}^{\phi_{t}}(k)$,

$$
i \partial_{t} \mathcal{V}(t, s)=\mathcal{H}_{m f}^{\phi_{t}}(k) \mathcal{V}(t, s) \quad, \quad \mathcal{V}(s, s)=\mathbf{1}
$$

Theorem Let $k \in \mathbb{R}^{3}$. Assume $v \in C^{2}\left(\mathbb{R}^{3}\right)$, and that for some $T>0$, $\phi_{t} \in L_{t}^{\infty} H_{x}^{3}\left([0, T) \times \mathbb{R}^{3}\right)$ is the solution of

$$
i \partial_{t} \phi_{t}=-\left(k-\left(\phi_{t}, i \nabla \phi_{t}\right)\right) i \nabla \phi_{t}-\frac{1}{2} \Delta \phi_{t}+w \phi_{t}+\lambda\left(v *\left|\phi_{t}\right|^{2}\right) \phi_{t}
$$

with initial data $\phi_{0} \in H_{x}^{3}\left(\mathbb{R}^{3}\right)$. Let

$$
\begin{aligned}
S\left(t, t^{\prime}\right):=N \int_{t^{\prime}}^{t} d s\left(-\frac{1}{2} k^{2}+\right. & \frac{1}{2}\left(\phi_{s}, i \nabla \phi_{s}\right)^{2} \\
& \left.+\frac{\lambda}{2} \int\left|\phi_{s}(x)\right|^{2} v(x-y)\left|\phi_{s}(y)\right|^{2} d x d y\right)
\end{aligned}
$$

Then, the following (mean field) limit holds, strongly in \mathcal{F}

$$
\lim _{N \rightarrow \infty}\left\|e^{-i t \mathcal{H}_{N}(k)} \mathcal{W}\left[\sqrt{N} \phi_{0}\right] \Omega-e^{-i S(t, 0)} \mathcal{W}\left[\sqrt{N} \phi_{t}\right] \mathcal{V}(t, 0) \Omega\right\|_{\mathcal{F}}=0
$$

Remarks:
In $\mathcal{V}(t, s)$, Bogoliubov translation not split from Bogoliubov rotation.
The time-dependent mean-field Hamiltonian is similar to the quasifree nonlinear approximation of the Hamiltonian in I.M. Sigal's talk.
[Lewin-Nam-Schlein '15], [Grillakis-Machedon '17]: Similar construction in different context (to optimize convergence rate of mean field limit for pure Hartree dynamics).

Analysis of the generalized Hartree equation

Expected boson momentum $j_{\phi}(t):=(\phi(t), i \nabla \phi(t))$.
Expected trajectory of tracer particle

$$
X_{\phi}(t)=\int_{0}^{t} d s\left(k-j_{\phi}(s)\right)
$$

Theorem Assume $\|w\|_{W_{x}^{2, \frac{3}{2}}}<\infty$, and

$$
\begin{equation*}
\|w\|_{W_{x}^{1, \frac{3}{2}}}+3\|\lambda v\|_{W_{x}^{1, \frac{3}{2}}}<1 . \tag{2}
\end{equation*}
$$

Then, there exists a unique global mild solution to

$$
i \partial_{t} \phi=-\left(k-j_{\phi}(t)\right) i \nabla \phi-\frac{1}{2} \Delta \phi+w \phi+\lambda\left(v *|\phi|^{2}\right) \phi
$$

with initial data $\phi(t=0)=\phi_{0} \in H_{x}^{1}$, satisfying

$$
\|\phi\|_{L_{t}^{\infty} H_{x}^{1}\left(\mathbb{R} \times \mathbb{R}^{3}\right)}+\left\|\tau_{X_{\phi}} \phi\right\|_{\left.L_{t}^{\frac{10}{3}} W_{x}^{1, \frac{10}{3}}{ }_{\left(\mathbb{R} \times \mathbb{R}^{3}\right)}<\infty, m\right)}<\infty
$$

where $\left(\tau_{X_{\phi}} f\right)(t, x):=f\left(x+X_{\phi}(t)\right)$.
In particular, $\left|\partial_{t} X_{\phi}(t)\right|<C\left\|\phi_{0}\right\|_{H_{x}^{1}}$, uniformly in $t \in \mathbb{R}$.

Proof idea; bosons coupled to classical tracer particle

For any $\phi \in L_{t}^{\infty} H_{x}^{1}\left(\mathbb{R} \times \mathbb{R}^{3}\right),\left|j_{\phi}(t)\right| \leq\|\phi\|_{L_{t}^{\infty} H_{x}^{1}}<C$.
Thus, $\left|X_{\phi}(t)\right|$ is bounded for every finite $t \in \mathbb{R}$.
Hence, $e^{i X_{\phi}(t) \cdot i \nabla}: H_{x}^{1} \rightarrow H_{x}^{1}$ is unitary for every $t \in \mathbb{R}$.
Define

$$
\psi(t, x):=e^{i X_{\phi}(t) \cdot i \nabla} \phi(t, x)=\phi\left(t, x-X_{\phi}(t)\right)
$$

Clearly, by unitarity,

$$
j_{\phi}(t)=j_{\psi}(t) .
$$

Therefore,

$$
X_{\phi}(t)=X_{\psi}(t),
$$

and

$$
i \partial_{t} \psi=e^{i X_{\phi}(t) \cdot i \nabla}\left(-\frac{1}{2} \Delta+w+\lambda\left(v *|\phi|^{2}\right)\right) e^{-i X_{\phi}(t) \cdot i \nabla} \psi
$$

Remarks

The first term on the r.h.s. has been canceled by $\left(i \partial_{t} X_{\phi}(t)\right) \phi$ from the time derivative. Noting that the operator $-\Delta$ is translation invariant, and

$$
\begin{aligned}
& \left(e^{i X_{\phi}(t) \cdot i \nabla}\left(v *|\phi|^{2}\right) e^{-i X_{\phi}(t) \cdot i \nabla}\right)(t, x) \\
& \quad=\int v\left(x-X_{\phi}(t)-y\right)|\phi(t, y)|^{2} d y \\
& \quad=\int v(x-y)\left|\phi\left(t, y-X_{\phi}(t)\right)\right|^{2} d y \\
& \quad=\left(v *|\psi|^{2}\right)(t, x),
\end{aligned}
$$

We find that ψ satisfies the nonlinear Hartree equation

$$
i \partial_{t} \psi=-\frac{1}{2} \Delta \psi+w_{\psi} \psi+\lambda\left(v *|\psi|^{2}\right) \psi \quad, \quad \psi(t=0)=\psi_{0} \equiv \phi_{0}
$$

where

$$
\begin{equation*}
w_{\psi}(t, x):=w\left(x-X_{\psi}(t)\right) \tag{3}
\end{equation*}
$$

is the potential w, translated by $X_{\psi}(t)$.
The proof of the theorem therefore follows from GWP for ψ.

Note that $X_{\psi}(t)$ can be written as

$$
X_{\psi}(t)=k t-(\psi, x \psi)
$$

and that it satisfies the Ehrenfest dynamics

$$
\begin{align*}
\partial_{t}^{2} X_{\psi}(t) & =\left(\psi, \nabla\left(w_{\psi}+\lambda v *|\psi|^{2}\right) \psi\right) \\
& =\int d x(\nabla w)\left(x-X_{\psi}(t)\right)|\psi(x)|^{2} \tag{4}
\end{align*}
$$

The term involving v is zero because v is even.
Describes classical tracer particle along trajectory $X_{\psi}(t) \in \mathbb{R}^{3}$, coupled to boson field.
[Fröhlich-Zhou, F-Soffer-Z] Proof of emergence of Hamiltonian friction for models of similar type.

In particular, we find $\partial_{t}^{2} X_{\psi}(t)=0$ in the special case where $\phi_{0}=Q_{k}$ is the minimizer of generalized Hartree functional

$$
\begin{aligned}
\mathcal{E}_{k}[\phi]:= & \frac{1}{N}\left\langle\Phi_{N, \phi}, \mathcal{H}_{N}(k) \Phi_{N, \phi}\right\rangle \\
= & \frac{1}{2}\left(k-\int d x \overline{\phi(x)} i \nabla_{x} \phi(x)\right)^{2}+\frac{1}{2} \int d x|\nabla \phi(x)|^{2} \\
& +\int d x w(x)|\phi(x)|^{2}+\frac{\lambda}{2} \int d x d y|\phi(x)|^{2} v(x-y)|\phi(y)|^{2} \\
= & \frac{1}{2}(k-(\phi, i \nabla \phi))^{2}+\mathcal{E}_{0}[\phi]
\end{aligned}
$$

with $\left\|Q_{k}\right\|_{L^{2}}=1$.
It follows that Q_{k} is the nonlinear ground state
$\mu_{k} Q_{k}=-\left(k-\left(Q_{k}, i \nabla Q_{k}\right)\right) i \nabla Q_{k}-\frac{1}{2} \Delta Q_{k}+w Q_{k}+\lambda\left(v *\left|Q_{k}\right|^{2}\right) Q_{k}$
with $\left\|Q_{k}\right\|_{L^{2}}=1$.
(Value of μ_{k} obtained from taking inner product with Q_{k}).

We have $Q_{k}=e^{-i \frac{k}{2} x} Q_{0}$ where Q_{0} is the rotationally symmetric minimizer of the standard Hartree functional, with $\left\|Q_{0}\right\|_{L_{x}^{2}}=1$.
Due to rotational symmetry of Q_{0}, we find that $X_{\psi}(t)=\frac{k}{2} t$, and that with $\psi(t, x)=Q_{k}\left(x-\frac{k}{2} t\right)$, the r.h.s of (4) is zero, so that $\partial_{t}^{2} X_{\psi}(t)=0$.

Sketch of proof of mean field limit

We have

$$
\left\|e^{-i t \mathcal{H}_{N}(k)} \mathcal{W}\left[\sqrt{N} \phi_{0}\right] \Omega-e^{-i S(t, 0)} \mathcal{W}\left[\sqrt{N} \phi_{t}\right] \mathcal{V}(t, 0) \Omega\right\|_{\mathcal{F}}^{2}=2(1-M(t))
$$

where

$$
\begin{aligned}
M(t) & :=\operatorname{Re}\left\langle e^{-i t \mathcal{H}_{N}(k)} \mathcal{W}\left[\sqrt{N} \phi_{0}\right] \Omega, e^{-i S(t, 0)} \mathcal{W}\left[\sqrt{N} \phi_{t}\right] \mathcal{V}(t, 0) \Omega\right\rangle \\
& =\operatorname{Re}\left\langle\Omega, \mathcal{W}^{*}\left[\sqrt{N} \phi_{0}\right] e^{i t \mathcal{H}_{N}(k)} e^{-i S(t, 0)} \mathcal{W}\left[\sqrt{N} \phi_{t}\right] \mathcal{V}(t, 0) \Omega\right\rangle
\end{aligned}
$$

One can easily verify that given (2), we have

$$
i \partial_{t} \mathcal{W}\left[\sqrt{N} \phi_{t}\right]=\left[\mathcal{H}_{\text {Har }}^{\phi_{t}}(k), \mathcal{W}\left[\sqrt{N} \phi_{t}\right]\right] .
$$

We consider the unitary flow

$$
\mathcal{U}(t, s):=\mathcal{W}^{*}\left[\sqrt{N} \phi_{s}\right] e^{i(t-s) \mathcal{H}_{N}(k)-i S(t, s)} \mathcal{W}\left[\sqrt{N} \phi_{t}\right]
$$

and introduce the selfadjoint operator

$$
\begin{align*}
\mathcal{L}_{N}^{\phi_{t}}(k):= & \mathcal{W}^{*}\left[\sqrt{N} \phi_{t}\right]\left(\mathcal{H}_{N}(k)-\partial_{t} S(t, 0)\right) \mathcal{W}\left[\sqrt{N} \phi_{t}\right] \\
& -\mathcal{W}^{*}\left[\sqrt{N} \phi_{t}\right]\left[\mathcal{H}_{\text {Har }}^{\phi_{t}}(k), \mathcal{W}\left[\sqrt{N} \phi_{t}\right]\right]-\mathcal{H}_{m f}^{\phi_{t}}(k) \\
= & \mathcal{W}^{*}\left[\sqrt{N} \phi_{t}\right] \mathcal{H}_{N}(k) \mathcal{W}\left[\sqrt{N} \phi_{t}\right]-\partial_{t} S(t, 0) \\
& -\mathcal{W}^{*}\left[\sqrt{N} \phi_{t}\right] \mathcal{H}_{\text {Har }}^{\phi_{t}}(k) \mathcal{W}\left[\sqrt{N} \phi_{t}\right]-\mathcal{H}_{c o r}^{\phi_{t}}(k) . \tag{5}
\end{align*}
$$

Then, it is clear that

$$
i \partial_{t}\left(\mathcal{U}_{N}(t, 0) \mathcal{V}(t, 0) \Omega\right)=-\mathcal{U}_{N}(t, 0) \mathcal{L}_{N}^{\phi_{t}}(k) \mathcal{V}(t, 0) \Omega
$$

A straightforward but somewhat lengthy calculation shows that

$$
\begin{aligned}
\mathcal{L}_{N}^{\phi_{t}}(k)= & \frac{1}{2 \sqrt{N}}\left(P_{b} \cdot\left(a^{+}\left(i \nabla \phi_{t}\right)+a\left(i \nabla \phi_{t}\right)\right)+\left(a^{+}\left(i \nabla \phi_{t}\right)+a\left(i \nabla \phi_{t}\right)\right) \cdot P_{b}\right) \\
& +\frac{1}{2 N} P_{b}^{2} \\
& +\frac{\lambda}{\sqrt{N}} \int v(x-y) a_{x}^{+}\left(\overline{\phi_{t}(y)} a_{y}+\phi_{t}(y) a_{y}^{+}\right) a_{x} d x d y \\
& +\frac{\lambda}{2 N} \int v(x-y) a_{x}^{+} a_{y}^{+} a_{y} a_{x} d x d y
\end{aligned}
$$

Evidently,

$$
\begin{aligned}
M(t) & =\operatorname{Re}\left\langle\Omega, \mathcal{U}_{N}(t, 0) \mathcal{V}(t, 0) \Omega\right\rangle \\
& =M(0)+\operatorname{Re} \int_{0}^{t} d s \partial_{s} M(s) \\
& =1-\operatorname{Re}\left\{i \int_{0}^{t} d s\left\langle\Omega, \mathcal{U}_{N}(w, 0) \mathcal{L}_{N}^{\phi_{s}}(k) \mathcal{V}(s, 0) \Omega\right\rangle\right\}
\end{aligned}
$$

It follows from the unitarity of $\mathcal{U}_{N}(t, 0)$ that

$$
\left|\left\langle\Omega, \mathcal{U}_{N}(t, 0) \mathcal{L}_{N}^{\phi_{t}}(k) \mathcal{V}(t, 0) \Omega\right\rangle\right| \leq\left\|\mathcal{L}_{N}^{\phi_{t}}(k) \mathcal{V}(t, 0) \Omega\right\|_{\mathcal{F}} .
$$

We prove that

$$
\left\|\mathcal{L}_{N}^{\phi_{t}}(k) \mathcal{V}(t, 0) \Omega\right\|_{\mathcal{F}} \leq C_{0} \frac{e^{C_{1} t}}{\sqrt{N}}
$$

for some constants C_{0}, C_{1} depending on $\|v\|_{C^{2}\left(\mathbb{R}^{3}\right)}$ and $\left\|\phi_{t}\right\|_{L_{t}^{\infty} H_{x}^{3}\left([0, T) \times \mathbb{R}^{3}\right)}$. Hence, we find that

$$
|M(t)-1| \leq C_{0} \int_{0}^{t} \frac{e^{C_{1} s}}{\sqrt{N}} d s<\frac{C_{0}}{C_{1}} \frac{e^{C_{1} t}}{\sqrt{N}}
$$

We therefore conclude that for any $t>0$, the lhs of (5) converges to zero in the limit $N \rightarrow \infty$.

Thank you for your attention !

