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One Dimensional Gaussian Semiclassical Wave Packets
The notation may initially seem strange, but it is crucial.

Suppose a€ R, neR, and A > 0.

Suppose A and B are complex numbers that satisfy
Re {ZB} = 1.
We define

¢o(A, B, hy,a,n, x) = a—1/4 p—1/4 4—1/2

X exp{—B(a;—a,)Q/(QAh) + in(az—a)/h}.



Remarks

e Any complex Gaussian with [®_|¢(x)|?dz = 1 can be written
this way.

e Define the scaled Fourier transform by

(Fuf)(© = (2nm) 22 |

oo

f(x) e~ 8/l gy

This allows us to go from the position representation to the
momentum representation.

(The variable € is the momentum variable here.)

Then, by explicit computation,

(Freo(A, B, h,a,n,-)) (&) = e t9hpo(B, A, h,n, —a, £).
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The position density |pg(z)|2, and momentum density |Go(€)|?.
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The real part of a typical pg(x).



Contour Plot of the real part of a two-dimensional pg(x,vy).



Theorem 1 Suppose V € C3(R) satisfies —M; < V(z) < MoeMslzl?,
Suppose a(t), n(t), S(t), A(t), and B(t) satisfy
a(t) = n(t),
n(t) = —V'(a(?)),
S(t) = n(®)?/2 — V(a(t)),
A@t) = iB(@),
B(t) = iV"(a(t)) A(t).

oW h?
Let W(x,t,h) solve iha = —EA\U—l—V\U

with W(z, 0, ) = €3(0)/h 44(A(0), B(0), i, a(0), n(0), z).
Then for ¢t € [0, T], the approximate solution

Y(z, t, h) = eSO (AR, B(t), h, a(t), n(t), z)
satisfies

|G, t, 1) — Wia, t, W) [l oy < C Y2



More General One Dimensional Semiclassical Wave Packets

In analogy with the Harmonic Oscillator, we define
raising and lowering operators:

(A B han) 9) @) = = ([Be-a) - iding_-n|v) @

and

(ACA,B ham ) @) = = ([Ba-a) +ians —n]v)@.

9]
Ry

Then,

A(A7B7h7a’7n)A(AaBah7a’7n)* T A(AaB7haa’7n)*A(A7B7h7a’7n) = 1.



For any non-negative integer 5, we define

1 .
SOJ(Aa B7 ha a, 1, x) — \/—? (A(A7 B7 h) a, 77)*)] QOO(Aa B7 h) a, 1, .17)

For fixed A, B, h, a, and n,
{goj(A, B, h, a, n, -)} is an orthonormal basis of L2(R, dz).

(Frej(A, B, hoa,m, ) ) (€) = (=)l e7@ (B, A, b, 1, —a, £).
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The position probability densities |¢g(z)|2 and |p12(x)|?.
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Theorem 1’ Suppose V € C3(R) satisfies —M; < V(z) < M,eMslzl®,
Suppose a(t), n(t), S(t), A(t), and B(t) satisfy

a(t) = n(t),

n(t) = —V'(a(?)),

S(t) = n(®)?/2 — V(a(t)),

A@t) = iB(@),

B(t) = iV"(a(t)) A(t).

W 2
Let W(x,t,h) solve zhaa—t = —%A\U + Vv
with \U(w) 0, h) — eiS(O)/ﬁ @j(A(O)a B(O)a h, CL(O), 77(0)7 CC)

Then for ¢t € [0, T], the approximate solution

d(x, t, By = eSO o (A®W), B(b), h, a(t), n(t), )
satisfies

||¢(33> ta h) T \U(LU, t7 h) ||L2(R) S C] h1/2.
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The Time—Dependent Born—Oppenheimer
Approximation

ow 4

.

7T - S AU 4+ (X)W,
v et — 5 Ax + h(X)

where the electron Hamiltonian A(X) depends parametrically
on the nuclear configuration X,
but is an operator on the electron Hilbert space H,;.

We cannot solve this exactly, so we search for approximate
solutions for small e.

1
The physical value of € is typically on the order of 10
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We assume h(X) has an isolated non-degenerate eigenvalue E(X)
that depends smoothly on X.

E(-) determines a “Potential Energy Surface.”
We take ®(X) to be the corresponding normalized eigenvector.
We choose the phase of ®(X) according to the adiabatic connection.

For real operators h(X), we can choose ®(X) to be real,
but there are situations where we can only do this locally.
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The spectrum of h(X).
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T he Multiple Scales Technique
The electronic eigenvector dependends on =z = X.
Nuclear quantum fluctuations occur on a length scale of order ¢ in X.
For small e, * = X and y = X%"’(t) behave as independent variables.

To find approximate solutions W(X) to the Schrodinger equation,
we search for approximate solutions ¢ (x, y), where

oY €2 e
. 2 — 3v.,.V
1 € . _— Ayw € T yw Amw

+  [h(z) — E(@)]Y + E(a(t) +ey) v

X — a(t
We ultimately take W(X,t) = 1 (X, a( ), t).
€
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We anticipate the semiclassical motion of the nuclei will play a role,
so we make the Ansatz that (x, y, t) equals

ei S(t)/€2 ein(t)-y/e (¢0(5¥3, Y, t) + €¢1(5’37 Y, t) + 62 wQ(CU, Y, t) + - ) .

We substitute this into the multiple scales equation.
We also expand E(a(t) + ey) in its power series in € in the equation.

We then equate terms of the same orders on the two sides
of the resulting equation.

Order €° [h(z) — E(x)]¢g = O.

Thus,

Yo(z, y,t) = go(z, y, t) Po(x).

At this point we have no information about gg.
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Order ¢! [h(z) — E(x)]v¥; = O.

Thus,

Y1(x, y,t) = g1(z, y, t) Po(x).

At this point we have no information about g¢g;1.

Order €2
o 1 . E(2)
200 = L ayuo + LY g i) Ve + (@) — B

We separately examine the components of this equation that are in
the direction of ®(x) and those that are perpendicular to ®(x) in H,;.
This yields two equations that must be solved.
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In the ®(x) direction we require

dgo _ 1 y-E2)(a(t)y
Yot — Tpfwoo T >

This is solved exactly by the semiclassical wave packets.

go-

golz, y, t) = e ™2 pi(A(t), B(t), 1, 0, 0, y).

The perpendicular components require

[h(z) — E(z)] ¢2(z, y, t) = igo(z, y, t) n(t) - (VzP)(z).
Thus,

Yo(z, y, t) = igo(a, y, t) [h(x) — E(@)]; " n(t) - (Va®)(2) + g2(z, y, ) ().
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At order &, we simply mimic this process.

The equation that arises from multiples of ®(x) is solved by using
wavepackets techniques.

The equation for the perpendicular components is solved by applying
the reduced resolvent of h(x).

This way we obtain a formal approximate solution.
We then prove rigorous error estimates by using the “magic lemma.”
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Theorem 2 There exists an exact solution x(X, t) to the
Schrodinger equation that satisfies

K
(X, 1) — { Sk, (X, X —a(t)7 t) n €K+1¢IJ5—|—1 <X, X—OL(t)7 t)
k=0

€ €

¢ =

X —a(t
+ SR <X7 u ), t)}” < Cgeitth

Theorem 3 By optimal truncation of the asymptotic series,
one can construct an approximate solution

K(e) B
be(X, 1) = Y fay (X,X “(t),t>.
k=0

€

There exists an exact solution y<(X, t) to the Schrodinger equation
that satisfies

H xe(X, 1) — (X, t) H < C exp (— %) :

€
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Non—Adiabatic Transitions from Avoided
Crossings

In the mid—1990’'s, Alain Joye and I studied propagation
through generic avoided crossings with gaps proportional to e.

There are numerous types of avoided crossings. Some examples have

tanh(X) Cce >

with X € R,
ce — tanh(X)

h(X) = (

E(X) = +/tanh(X)2 4 22 .

or
tanh(X7) tanh(X»s) +ice

with X, € R.
tanh(Xs) —ice — tanh(Xq) ) J

h(X1, Xo) = (

E(X1, Xp) = =+ \/tanh(X1)2 4 tanh(X2)2 4+ 2e2 .
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An Avoided Crossing with a Small Gap.
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In this situation we proved the following:

1. For all of the various types of generic avoided crossings,
a correctly interpreted Landau—Zener formula gives
the correct transition amplitudes.

2. Classical energy conservation gives the momentum
after the wave function has gone through the avoided crossings.

3. If one sends in a @ (A1), Ba(t), €2, aa(t), na(t), X) ®4(X),
then the part of the wave function that makes a non—adiabatic

transition is ¢ (Ag(t), Bg(t), €, ap(t), ng(t), X) ®p(X),
to leading order after the transition has occurred.

4. Because the gaps are so small, the transition probability is O(eo).
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The only known rigorous results for fixed gaps
have just one degree of freedom for the nuclei.

—
I

An Avoided Crossing with a Fixed Gap.
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I shall present these results (obtained with Alain Joye)
for the following specific example

1 1 tanh(x)
hz) = 2 (tanh(az) —1 )

Scattering with large negative ¢ asymptotics

S/ gy (A(L), B, €2, a(t), n, ) Pup(a).
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What should we expect?

e The nuclei behave like classical particles (at least for small k).

e T he electrons should feel a time—dependent Hamiltonian

1 ( 1 tanh(a(t)) >

M) = 3 | tanhta)) ~1

and we should simply use the Landau—Zener formula
to get the exponentially small transition probability.

e For n =1, energy conservation predicts the momentum
after the transition to be 1.9566.



T hese predictions are wrong!

e T he transition amplitude is larger than predicted.

e The momentum after the transition is larger than predicted.

Additional Surprises

e For incoming state ¢, the nuclear wave function after the
transition is not what one might naively expect.

e [ he nuclear wavepacket after transition is a ¢q.

e T he transition amplitude is asymptotically of order

ek exp (—Oé/€2> .
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Position space plot at time t = —10 of the probability density
for being on the upper energy level.

Momentum space plot at time ¢t = —10 of the probability density

for being on the upper energy level.
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Position space probability density at time ¢t = 9.
Lower level plot is multiplied by 3 x 108.
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Momentum space probability density at time ¢t = 9.

Lower level plot is multiplied by 3 x 108.
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Position space probability density at time ¢t = —10.
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Momentum space probability density at time ¢t = —10.
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Position space probability density at time ¢t = 9.
Plot for the lower level has been multiplied by 107.
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Momentum space probability density at time ¢t = 9.

Plot for the lower level has been multiplied by 10'.
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What'’s going on, and how do we analyze it?

e We expand W(x, t) in generalized eigenfunctions of H(e).

e We then do a WKB approximation of the generalized
eigenfunctions that is valid for complex =x.

e We find that the Landau—Zener formula gives the correct
transition amplitude for each generalized eigenfunction.

C
This amplitude behaves roughly like exp <—| | 2) :
Pl €

where p is the incoming momentum.

e SO, higher momentum components of the wave function are
drastically more likely to experience a transition.
We get the correct result by using Landau—Zener for each p
and then averaging.
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Why do we always get a Gaussian?

In the formulas, the extra shift in momentum occurs
in the exponent.

In momentum space ¢, all have the same exponential factor.
The extra shift does not appear in the polynomial that
multiplies the exponential.

For small ¢, to leading order, the polynomial factor looks like
its largest order term near where the Gaussian is
concentrated in momentum.

o R
<2—9> exp (— (p 277) ) is approximately ¢ % times a Gaussian
€ €

for n = 0.
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T hank you very much!
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