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1. Introduction

Eugene Wigner, Phys. Rev. 40, 1932:
On the Quantum Correction For Thermodynamic Equilibrium

Quantum Hamiltonian Classical Hamiltonian
h™: D) — L2(R") h:R2 R
h" =~ A+ V(x) = h(x, —ieVy) h(q.p) = 3lp* + V(q)

Equilibrium expectation values in the semiclassical regime ¢ < 1:

(a e ) o) Jo09dP 2@, p)e (1+e°C(q,p))

where
3

C(q.p) = 57 (IVV(9)? + (p, D*V(q)p)ar — 2 AV(q))



1. Introduction
For more general Hamiltonians and distributions
h:R* R, h =h(x,—ieVy), f:R—C,

it holds (by definition of the Weyl quantization rule) that

Tr (55 f(5€)> — (27r15)" /R2n dqdp a(q,p) f*(q,p),

where

£ := Symb (f(ff)) = foh+eh+ O

with

alB!

jo-+B1=2

fr=1 (f"'(h) > (_1)5(333§h)(3qh)ﬂ(3ph)"‘ +7(h) {h, h}z)



1. Introduction

Can one find similar expressions for systems described by
Hamiltonians with matrix- or operator-valued symbols?

H:R> = La(Hs), H = H(x,—ieVy) € Lea(L2(R", Hs))

Example: The Hamiltonian describing a molecule with nucleonic
configuration x € R" and electronic configuration y € R has the

form
2

A € 1
A = — 5 B3 Ay + V(x,y)

Hei(x)

with g2 = ﬁ and

1
H(a,p) = 51p* 13y, + Ha(q) € La(LP(RY))



1. Introduction

In the Born-Oppenheimer approximation one replaces

~E 52
A= —5 D+ Ha(x)

by the effective Hamiltonian

2
h = —%AX + eo(x),
where eg(x) is the lowest eigenvalue of He(x),

Hei(x) Po(x) = eo(x) Po(x),

and Py(x) the corresponding spectral projection.



1. Introduction

One still has the identity
. 1 .
NG € o €
Tr (a F(A )) = Gy /R  dqdp a(q. p) tra, (Symb (f(H ))) ,

but it is not obvious how to get a useful expression from this.
However, it is not difficult to see that

T (8 () Po) = s ([ dadp aa.p) Fla.) + 02
with 1
ho(q, p) = 31pI* + eo(q)
Here
RanPy = {V € L*(R] x R)") [ W(x,-) € RanPy(x)} .

Question: Is this the right quantity to compute and what are the
higher order corrections?



2. Adiabatic slow-fast systems
Consider a composite system with Hilbert space
H = [*(R?) @ Hy = L*(R], Hy)
and Hamiltonian
A° = H(x,—ieVy) € La(L2(R", Hy))
for an operator valued symbol

H: R — Lo (Hs).

Here

(A ) (x) = (2735)n /R dpdy P/ H ((x +y), p) W(y)

is defined as in the case of scalar symbols.



2. Adiabatic slow-fast systems

Let
e:R" 5 R

be a non-degenerate and isolated eigenvalue band for
H R = Loa(Hr),

i.e. a continuous function such that

H(q, p) Po(q, p) = e(q. p) Po(q, p)

and
le(q. p) — 6, e(q, p) + 6] No(Hi(q, p)) = e(q. p)

for all (g, p) € R?" and some § > 0.



2. Adiabatic slow-fast systems

Adiabatic projections:
(Helffer-Sjéstrand 90, Emmrich-Weinstein 96, Nenciu-Sordoni 04,.. )

Under suitable technical conditions there exists a projection operator
AE .
P~ with symbol

P(e.q,p) = Po(q, p) + O(e)

such that
[P°, A7 = O(>).

Hence, A” is O(c>)-almost block-diagonal with respect to P,

A*=P A P +(1-PYA (1-P)+0(™),
while for f’g one only has

A ~

A =P AP +1-P)A (1-F)+0().



3. Results: First order corrections

Theorem (Stiepan, Teufel; CMP 320, 2013)

Under suitable conditions on H and f it holds that for all a € A C
COO(RZ”) a LI(R2H)

T (5 1A P7) = o ([ 0¥ a0 £ aup) + Ol

where

h*(q,p) = e(q,p) + &5 tra, { PolH|Po} =: e(q, p) + em(q, p)
and
dX® = (1 + i&ter(Po{Po, Po})) dgdp
is the Liouville measure of the symplectic form
O'E- = (72- —lietry, (Po[azipo, 8ZJP0]) .

For the molecular Hamiltonian both correction terms vanish!



3. Application
The Hofstadter model
Hifor = Z TP on (%(Z%) with (TPy);=e Py
li|=1
“‘O—(Hﬁof)
\ = ‘%4 N\ Zf{??’ ’

—%4 >

S XY
N /4




3. Application
The Hofstadter model
HE =3 TE on (3(Z%) with (TPy) =By
Ll=1

For By = 2n2 and B = By + b one obtains through a magnetic
Bloch-Floquet transformation

Bo - 2(2%) — L2(Mg; C9)

that
By B B B 1. 1.
u~* HHofU 0o = H o(kl + §1b8k2, ko — §1b(‘)kl)
with
2 cos(ka) e~k 0 elk1
etk 2 cos(kp + Bp) e ik S 0
B 0 etk 2cos(ky +2By) - - 0
H> (k) =
0
0 e~ ik

etk 0 cee ek 2cos(ky + (g — 1)Bg)



r =
3

3. Application
Eigenvalue bands for
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3. Application
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3. Application

The free energy per unit area in the Hofstadter model with magnetic
field B = By + b, inverse temperature 3 and chemical potential y is

1 5
= L im ——— —B(HE o —1)
p(baﬁa,u') — B nII—r>noo ||Xn||L1 tI‘g2(Z2) (Xn( X) In (1 + e Hof )) X



3. Application

The free energy per unit area in the Hofstadter model with magnetic
field B = By + b, inverse temperature 3 and chemical potential y is

1 5
p(b, 5, 2 |' ——trp(z2) ( xn(bx) In 14 e PHiroe=1) ) ) |
(05010 = 3 i, e (xaB) i )

For By = 27r§ and g odd one obtains using the magnetic Bloch-
Floquet transformation

tre(z2) (Xn(bx) In (1 + e—ﬁ("’ﬁof—u)» _
= trie(m,,co) (xn(ibvk) In (1 4 efﬁ(HBO(k—ibvk)w)))

zq: tri2(pm, o) < a(ibVi) In (1 + e_B(HBO(k—ika)—u)> /SIJ’)



3. Results
Corollary (Stiepan, Teufel; CMP 320, 2013)

The free energy per unit area in the Hofstadter model with magnetic
field B = By + b, with By = 27T§ and g odd, is

q
plo. B = 5 > [

dk (1+ buwj(k) In<1 + eﬂ(ej<k)+bm,-<k>u)>

*

From this one can compute, for example, the orbital magnetization

M(Bo, B, 1) := %p(b,ﬁ,u)\bzo
q
=9 dk le(k) In 1+e_f3(ej(k)—u)
o o L4k [ 5t o )

— mj(k) 1}

1+ oAe(—n)
Gat, Avron '03; Xiao, Shi, Niu 05'; Ceresoli, Thonhauser, Vanderbilt, Resta '06



3. Results
Corollary (Stiepan, Teufel; CMP 320, 2013)

The free energy per unit area in the Hofstadter model with magnetic
field B = By + b, with By = 27T§ and g odd, is

q

p(b, B, p) =

[ k(1 + buy(k)) (1_Feﬂ(q00+bmﬂnu)>
J:
O(b 2)

However, in order to compute the susceptibility

X(BOaﬁnu) ' (b B) ‘b:O

02
op”
one needs to know the O(b?) term explicitly.

Existing results:
Briet, Cornean, Savoie '11; Savoie '13; Schulz-Baldes, Teufel '13



3. Results

Related result on the time-evolution:

Theorem (Stiepan, Teufel; CMP 320, 2013)

Under suitable conditions on H and f it holds that for all a € A C
COO(Rzn) N Ll(RZn)

uniformly on bounded time intervals, where
. R2 2
o7 R°" — R”

is the classical flow of h® with respect to the symplectic form o°.



3. Results

Theorem (Gaim, Teufel; work in progress)

Under suitable conditions on H and f it holds that for all a € A C
COO(Rzn) N Ll(R2n)

T (£ P) = s ([ 0 alacp) Flap) + Ol )

(2me)n
where . _
fE—=Ffok + 52 <f2W1gner(e) + f2ad1(67 PO))
with
h*(q,p) = e(q,p) +em(q, p) +m(q, p)
and

AN = (1 +eM(g, p) +e2(q, p))dq dp.



3. Results

For the corrections to Born-Oppenheimer one finds:

(3. ) = 316l + e(a) + 2% ((p, C(@)phes + biren(D(a)

dA\® = (1 +2¢2 tr@n(C(q)))dqdp,

and

59(q. p) = f'(ho(q. p)) trer (D(q)) + " (ho(q. p)) (P, D(q)p)cn -
with
Ci(a) = trae, (9:Pola) (Ha(a) — ela)) ™" 5Po(a))

and
Dj(g) = trr; ( Po(4) 9:Po(9) 9Po())



Thanks for your attention!



4. Strategy of proof (First order result)
With the identity

~

Tr (38 f(/fle) l5€> = (27715)” /Rzn dqdp a(q, p) tr(Symb (f(lfle) Ps)) ,

we need to expand the symbol of f(A°) P~ in powers of .
To this end note that [P°, A] = O(c>) implies
FIAT) P  =f(P° AP )+ O(c™).

Lemma: There is a scalar semiclassical symbol h(e, g, p) such that
P°A° P =P K P° + O(?)

and thus

F(PTA PY=F(P h P°)+0O(?).
Lemma:

F(PTR P =P f(h") P + O(?)



