Semiclassical approximations of quantum mechanical equilibrium distributions

Stefan Teufel Universität Tübingen

March 2014, Chicago.

based on joint work with Wolfgang Gaim and Hans Stiepan.

Eugene Wigner, Phys. Rev. 40, 1932:

On the Quantum Correction For Thermodynamic Equilibrium

Quantum Hamiltonian Classical Hamiltonian

$$\hat{h}^{\varepsilon}: D(\hat{h}^{\varepsilon}) \to L^{2}(\mathbb{R}^{n})$$
 $h: \mathbb{R}^{2n} \to \mathbb{R}$

$$\hat{h}^{\varepsilon} = -\frac{\varepsilon^2}{2}\Delta_x + V(x) = h(x, -i\varepsilon\nabla_x)$$
 $h(q, p) = \frac{1}{2}|p|^2 + V(q)$

Equilibrium expectation values in the semiclassical regime $\varepsilon \ll 1$:

where

$$C(q,p) = rac{eta^3}{24} \left(|
abla V(q)|^2 + \langle p, D^2 V(q)p
angle_{\mathbb{R}^n} - rac{3}{eta} \, \Delta V(q)
ight)$$

For more general Hamiltonians and distributions

$$h: \mathbb{R}^{2n} \to \mathbb{R}$$
, $\hat{h}^{\varepsilon} = h(x, -i\varepsilon \nabla_x)$, $f: \mathbb{R} \to \mathbb{C}$,

it holds (by definition of the Weyl quantization rule) that

$$\operatorname{Tr}\left(\hat{a}^{\varepsilon} f(\hat{h}^{\varepsilon})\right) = \frac{1}{(2\pi\varepsilon)^{n}} \int_{\mathbb{R}^{2n}} \mathrm{d}q \mathrm{d}p \ a(q,p) \, f^{\varepsilon}(q,p) \,,$$

where

$$f^{\varepsilon} := \operatorname{Symb}\left(f(\hat{\boldsymbol{h}}^{\varepsilon})\right) = f \circ \boldsymbol{h} + \varepsilon^2 \, f_2 + \mathcal{O}(\varepsilon^3)$$

with

$$f_2 = \frac{1}{12} \left(f'''(h) \sum_{|\alpha+\beta|=2} \frac{(-1)^\beta}{\alpha!\beta!} (\partial_q^\alpha \partial_p^\beta h) (\partial_q h)^\beta (\partial_p h)^\alpha + f''(h) \{h,h\}_2 \right)$$

Can one find similar expressions for systems described by Hamiltonians with matrix- or operator-valued symbols?

$$H: \mathbb{R}^{2n} \to \mathcal{L}_{\mathrm{sa}}(\mathcal{H}_{\mathrm{f}}), \quad \hat{H}^{\varepsilon} = H(x, -\mathrm{i}\varepsilon \nabla_{x}) \in \mathcal{L}_{\mathrm{sa}}(L^{2}(\mathbb{R}^{n}, \mathcal{H}_{\mathrm{f}}))$$

Example: The Hamiltonian describing a molecule with nucleonic configuration $x \in \mathbb{R}^n$ and electronic configuration $y \in \mathbb{R}^m$ has the form

$$\hat{H}^{\varepsilon} = -\frac{\varepsilon^{2}}{2} \Delta_{x} \underbrace{-\frac{1}{2} \Delta_{y} + V(x, y)}_{H_{el}(x)}$$

with $\varepsilon^2 = \frac{1}{M}$ and

$$H(q,p) = rac{1}{2}|p|^2 \mathbf{1}_{\mathcal{H}_{\mathrm{f}}} + H_{\mathrm{el}}(q) \quad \in \mathcal{L}_{\mathrm{sa}}(L^2(\mathbb{R}_y^m))$$

In the Born-Oppenheimer approximation one replaces

$$\hat{H}^{\varepsilon} = -\frac{\varepsilon^2}{2} \Delta_x + H_{\rm el}(x)$$

by the effective Hamiltonian

$$\hat{h}^{\varepsilon} = -\frac{\varepsilon^2}{2}\Delta_{x} + e_0(x),$$

where $e_0(x)$ is the lowest eigenvalue of $H_{\rm el}(x)$,

$$H_{\rm el}(x) P_0(x) = e_0(x) P_0(x),$$

and $P_0(x)$ the corresponding spectral projection.

One still has the identity

$$\operatorname{Tr}\left(\hat{\boldsymbol{a}}^{\varepsilon}\,f(\hat{\boldsymbol{H}}^{\varepsilon})\right) = \frac{1}{(2\pi\varepsilon)^{n}}\int_{\mathbb{R}^{2n}}\mathrm{d}\boldsymbol{q}\mathrm{d}\boldsymbol{p}\,\,\boldsymbol{a}(\boldsymbol{q},\boldsymbol{p})\operatorname{tr}_{\mathcal{H}_{f}}\!\left(\operatorname{Symb}\left(f(\hat{\boldsymbol{H}}^{\varepsilon})\right)\right)\,,$$

but it is not obvious how to get a useful expression from this. However, it is not difficult to see that

$$\operatorname{Tr}\left(\hat{a}^{\varepsilon}\,f(\hat{H}^{\varepsilon})\,P_{0}\right) = \frac{1}{(2\pi\varepsilon)^{n}}\left(\int_{\mathbb{R}^{2n}}\mathrm{d}q\mathrm{d}p\,\,a(q,p)\,f(h_{0}(q,p))\,+\,\mathcal{O}(\varepsilon)\right)$$

with

$$h_0(q,p) = \frac{1}{2}|p|^2 + e_0(q).$$

Here

$$\operatorname{Ran} P_0 = \left\{ \Psi \in L^2(\mathbb{R}^n_x \times \mathbb{R}^m_v) \,|\, \Psi(x, \cdot) \in \operatorname{Ran} P_0(x) \right\}.$$

Question: Is this the right quantity to compute and what are the higher order corrections?

2. Adiabatic slow-fast systems

Consider a composite system with Hilbert space

$$\mathcal{H} = L^2(\mathbb{R}^n_{\times}) \otimes \mathcal{H}_{\mathrm{f}} \cong L^2(\mathbb{R}^n_{\times}, \mathcal{H}_{\mathrm{f}})$$

and Hamiltonian

$$\hat{H}^{\varepsilon} = H(x, -\mathrm{i}\varepsilon\nabla_x) \in \mathcal{L}_{\mathrm{sa}}(L^2(\mathbb{R}^n, \mathcal{H}_{\mathrm{f}}))$$

for an operator valued symbol

$$H: \mathbb{R}^{2n} \to \mathcal{L}_{\mathrm{sa}}(\mathcal{H}_{\mathrm{f}})$$
.

Here

$$(\hat{H}^{\varepsilon}\psi)(x) = \frac{1}{(2\pi\varepsilon)^n} \int_{\mathbb{R}^n} \mathrm{d}p \, \mathrm{d}y \, \mathrm{e}^{\mathrm{i}p \cdot (x-y)/\varepsilon} \, H\left(\frac{1}{2}(x+y), p\right) \, \psi(y)$$

is defined as in the case of scalar symbols.

2. Adiabatic slow-fast systems

Let

$$e: \mathbb{R}^{2n} \to \mathbb{R}$$

be a non-degenerate and isolated eigenvalue band for

$$H: \mathbb{R}^{2n} \to \mathcal{L}_{\mathrm{sa}}(\mathcal{H}_{\mathrm{f}})$$
,

i.e. a continuous function such that

$$H(q, p) P_0(q, p) = e(q, p) P_0(q, p)$$

and

$$[e(q,p)-\delta,e(q,p)+\delta]\cap\sigma(H_{\mathrm{f}}(q,p))=e(q,p)$$

for all $(q, p) \in \mathbb{R}^{2n}$ and some $\delta > 0$.

2. Adiabatic slow-fast systems

Adiabatic projections:

 $\overline{(\mathsf{Helffer}\text{-}\mathsf{Sj\"{o}strand}\ 90,\ \mathsf{E}\mathsf{mmrich}\text{-}\mathsf{Weinstein}\ 96,\ \mathsf{Nenciu}\text{-}\mathsf{Sordoni}\ 04,\dots)}$

Under suitable technical conditions there exists a projection operator $\hat{\textit{P}}^{\varepsilon}$ with symbol

$$P(\varepsilon,q,p) = P_0(q,p) + \mathcal{O}(\varepsilon)$$

such that

$$[\hat{P}^{\varepsilon}, \hat{H}^{\varepsilon}] = \mathcal{O}(\varepsilon^{\infty}).$$

Hence, \hat{H}^{ε} is $\mathcal{O}(\varepsilon^{\infty})$ -almost block-diagonal with respect to \hat{P}^{ε} ,

$$\hat{\textit{H}}^{\varepsilon} = \hat{\textit{P}}^{\varepsilon} \, \hat{\textit{H}}^{\varepsilon} \, \hat{\textit{P}}^{\varepsilon} + \left(1 - \hat{\textit{P}}^{\varepsilon}\right) \hat{\textit{H}}^{\varepsilon} \left(1 - \hat{\textit{P}}^{\varepsilon}\right) + \mathcal{O}(\varepsilon^{\infty}) \,,$$

while for \hat{P}_0^{ε} one only has

$$\hat{\textit{H}}^{\varepsilon} = \hat{\textit{P}_{0}}^{\varepsilon} \, \hat{\textit{H}}^{\varepsilon} \, \hat{\textit{P}_{0}}^{\varepsilon} + \left(1 - \hat{\textit{P}_{0}}^{\varepsilon}\right) \hat{\textit{H}}^{\varepsilon} \left(1 - \hat{\textit{P}_{0}}^{\varepsilon}\right) + \mathcal{O}(\varepsilon) \,. \label{eq:Hamiltonian_Hamiltonian}$$

3. Results: First order corrections

Theorem (Stiepan, Teufel; CMP 320, 2013)

Under suitable conditions on H and f it holds that for all $a \in A \subset C^{\infty}(\mathbb{R}^{2n}) \cap L^{1}(\mathbb{R}^{2n})$

$$\operatorname{Tr}\left(\hat{a}^{\varepsilon} f(\hat{H}^{\varepsilon}) \, \hat{P}^{\varepsilon}\right) = \frac{1}{(2\pi\varepsilon)^{n}} \left(\int_{\mathbb{R}^{2n}} \mathrm{d}\lambda^{\varepsilon} \, a(q,p) \, f(h^{\varepsilon}(q,p)) \, + \, \mathcal{O}(\varepsilon^{2} \|a\|_{L^{1}}) \right)$$

where

$$h^{\varepsilon}(q,p) = e(q,p) + \varepsilon \frac{\mathrm{i}}{2} \operatorname{tr}_{\mathcal{H}_{\mathrm{f}}} \{ P_0 | H | P_0 \} =: e(q,p) + \varepsilon m(q,p)$$

and

$$\mathrm{d}\lambda^{\varepsilon} = \left(1 + \mathrm{i}\varepsilon\mathrm{tr}_{\mathcal{H}_{\varepsilon}}(P_0\{P_0, P_0\})\right) \,\mathrm{d}q \,\mathrm{d}p$$

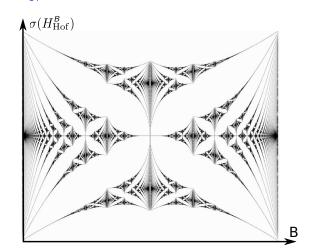
is the Liouville measure of the symplectic form

$$\sigma_{ii}^arepsilon := \sigma_{ii}^0 - \mathrm{i}\,arepsilon\,\mathrm{tr}_{\mathcal{H}_{arepsilon}}\left(P_0[\partial_{z_i}P_0,\partial_{z_i}P_0]
ight)\,.$$

For the molecular Hamiltonian both correction terms vanish!

The Hofstadter model

$$\mathcal{H}^B_{\mathrm{Hof}} = \sum_{|\cdot|=1}^{|\cdot|} \mathcal{T}^B_j$$
 on $\ell^2(\mathbb{Z}^2)$ with $(\mathcal{T}^B_j \psi)_i = \mathrm{e}^{\mathrm{i} j \cdot \mathbf{B} i} \psi_{i-j}$



The Hofstadter model

$$H_{ ext{Hof}}^B = \sum_{|i|=1} T_j^B$$
 on $\ell^2(\mathbb{Z}^2)$ with $(T_j^B \psi)_i = \mathrm{e}^{\mathrm{i} j \cdot \mathbf{B} i} \psi_{i-j}$

For $B_0=2\pi \frac{p}{q}$ and $B=B_0+b$ one obtains through a magnetic Bloch-Floquet transformation

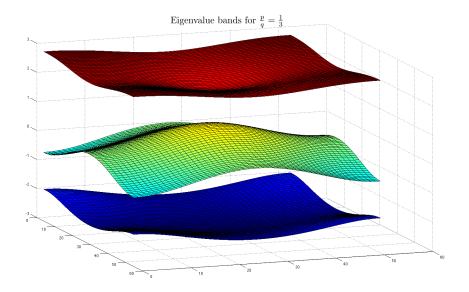
$$U^{B_0}: \ell^2(\mathbb{Z}^2) \to L^2(M_q; \mathbb{C}^q)$$

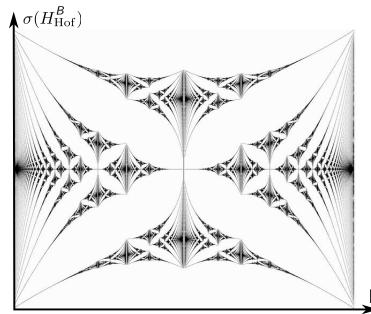
that

$$U^{B_0} H_{\mathrm{Hof}}^B U^{B_0*} = H^{B_0} (k_1 + \frac{1}{2} \mathrm{i} b \partial_{k_2}, k_2 - \frac{1}{2} \mathrm{i} b \partial_{k_1})$$

with

$$H^{B_0}(k) = \begin{pmatrix} 2\cos(k_2) & e^{-ik_1} & 0 & \cdots & e^{ik_1} \\ e^{ik_1} & 2\cos(k_2 + B_0) & e^{-ik_1} & \cdots & 0 \\ 0 & e^{ik_1} & 2\cos(k_2 + 2B_0) & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & & & & e^{-ik_1} \\ e^{-ik_1} & 0 & \cdots & e^{ik_1} & 2\cos(k_2 + (q-1)B_0) \end{pmatrix}$$





В

The free energy per unit area in the Hofstadter model with magnetic field $B = B_0 + b$, inverse temperature β and chemical potential μ is

$$p(b,\beta,\mu) = \frac{1}{\beta} \lim_{n \to \infty} \frac{1}{\|\chi_n\|_{L^1}} \operatorname{tr}_{\ell^2(\mathbb{Z}^2)} \left(\chi_n(x) \ln \left(1 + e^{-\beta (H_{\mathrm{Hof}}^B - \mu)} \right) \right).$$

The free energy per unit area in the Hofstadter model with magnetic field $B=B_0+b$, inverse temperature β and chemical potential μ is

$$p(b,\beta,\mu) = \frac{1}{\beta} \lim_{n \to \infty} \frac{1}{\frac{1}{h^2} \|\chi_n\|_{L^1}} \operatorname{tr}_{\ell^2(\mathbb{Z}^2)} \left(\chi_n(bx) \ln \left(1 + e^{-\beta(H_{\mathrm{Hof}}^B - \mu)} \right) \right) .$$

For $B_0 = 2\pi \frac{p}{q}$ and q odd one obtains using the magnetic Bloch-Floquet transformation

$$\begin{split} &\operatorname{tr}_{\ell^2(\mathbb{Z}^2)}\left(\chi_n(b\mathsf{x})\,\operatorname{ln}\left(1+\mathrm{e}^{-\beta(H^B_{\operatorname{Hof}}-\mu)}\right)\right) = \\ &= \quad \operatorname{tr}_{L^2(M_q,\mathbb{C}^q)}\left(\chi_n(\mathrm{i}b\nabla_k)\,\operatorname{ln}\left(1+\mathrm{e}^{-\beta(H^B_0(k-\mathrm{i}\mathbf{b}\nabla_k)-\mu)}\right)\right) \\ &= \quad \sum_{i=1}^q \operatorname{tr}_{L^2(M_q,\mathbb{C}^q)}\left(\chi_n(\mathrm{i}b\nabla_k)\,\operatorname{ln}\left(1+\mathrm{e}^{-\beta(H^B_0(k-\mathrm{i}\mathbf{b}\nabla_k)-\mu)}\right)\,\hat{P}_j^b\right) \end{split}$$

Corollary (Stiepan, Teufel; CMP 320, 2013)

The free energy per unit area in the Hofstadter model with magnetic field $B=B_0+b$, with $B_0=2\pi\frac{p}{a}$ and q odd, is

$$\begin{split} p(b,\beta,\mu) &= \frac{q}{(2\pi)^2} \sum_{j=1}^q \int_{\mathbb{T}^*} \mathrm{d}k \left(1 + b \, \omega_j(k) \right) \; \ln \left(1 + \mathrm{e}^{-\beta \left(e_j(k) + b m_j(k) - \mu \right)} \right) \\ &+ \mathcal{O}(b^2) \, . \end{split}$$

From this one can compute, for example, the orbital magnetization

$$\begin{aligned} M(B_0, \beta, \mu) &:= \frac{\partial}{\partial b} p(b, \beta, \mu) \big|_{b=0} \\ &= \frac{q}{(2\pi)^2} \sum_{j=1}^q \int_{\mathbb{T}^*} \mathrm{d}k \, \left[\, \frac{1}{\beta} \, \omega_j(k) \, \ln \left(1 + \mathrm{e}^{-\beta \left(e_j(k) - \mu \right)} \right) \right. \\ &\left. - m_j(k) \, \frac{1}{1 + \mathrm{e}^{\beta \left(e_j(k) - \mu \right)}} \, \right] \end{aligned}$$

Gat, Avron '03; Xiao, Shi, Niu 05'; Ceresoli, Thonhauser, Vanderbilt, Resta '06

Corollary (Stiepan, Teufel; CMP 320, 2013)

The free energy per unit area in the Hofstadter model with magnetic field $B=B_0+b$, with $B_0=2\pi\frac{p}{q}$ and q odd, is

$$p(b,\beta,\mu) = \frac{q}{(2\pi)^2} \sum_{j=1}^q \int_{\mathbb{T}^*} dk \left(1 + b \omega_j(k)\right) \ln\left(1 + e^{-\beta\left(e_j(k) + bm_j(k) - \mu\right)}\right) + \mathcal{O}(b^2).$$

However, in order to compute the susceptibility

$$\chi(B_0,\beta,\mu) := \frac{\partial^2}{\partial b^2} p(b,\beta,\mu) \big|_{b=0}$$

one needs to know the $\mathcal{O}(b^2)$ term explicitly.

Existing results:

Briet, Cornean, Savoie '11; Savoie '13; Schulz-Baldes, Teufel '13

Related result on the time-evolution:

Theorem (Stiepan, Teufel; CMP 320, 2013)

Under suitable conditions on H and f it holds that for all $a \in \mathcal{A} \subset C^{\infty}(\mathbb{R}^{2n}) \cap L^{1}(\mathbb{R}^{2n})$

$$\left\|\hat{\boldsymbol{P}}^{\boldsymbol{\varepsilon}}\left(\mathrm{e}^{\mathrm{i}\hat{\boldsymbol{H}}^{\boldsymbol{\varepsilon}}\frac{t}{\boldsymbol{\varepsilon}}}\,\hat{\boldsymbol{a}}^{\boldsymbol{\varepsilon}}\,\mathrm{e}^{-\mathrm{i}\hat{\boldsymbol{H}}^{\boldsymbol{\varepsilon}}\frac{t}{\boldsymbol{\varepsilon}}}-\mathrm{Weyl}^{\boldsymbol{\varepsilon}}(\boldsymbol{a}\circ\boldsymbol{\Phi}_{t}^{\boldsymbol{\varepsilon}})\right)\hat{\boldsymbol{P}}^{\boldsymbol{\varepsilon}}\right\|=\mathcal{O}(\boldsymbol{\varepsilon}^{2})$$

uniformly on bounded time intervals, where

$$\Phi_t^{\varepsilon}: \mathbb{R}^{2n} \to \mathbb{R}^{2n}$$

is the classical flow of h^{ε} with respect to the symplectic form σ^{ε} .

Theorem (Gaim, Teufel; work in progress)

Under suitable conditions on H and f it holds that for all $a \in \mathcal{A} \subset C^{\infty}(\mathbb{R}^{2n}) \cap L^{1}(\mathbb{R}^{2n})$

$$\operatorname{Tr}\left(\hat{\boldsymbol{a}}^{\varepsilon}\,f(\hat{\boldsymbol{H}}^{\varepsilon})\,\hat{\boldsymbol{P}}^{\varepsilon}\right) = \frac{1}{(2\pi\varepsilon)^{n}}\left(\int_{\mathbb{R}^{2n}}\mathrm{d}\lambda^{\varepsilon}\,\,\boldsymbol{a}(\boldsymbol{q},\boldsymbol{p})\,f^{\varepsilon}(\boldsymbol{q},\boldsymbol{p})\,+\,\,\mathcal{O}(\varepsilon^{3}\|\boldsymbol{a}\|_{L^{1}})\right)\,,$$

where

$$f^{\varepsilon} = f \circ h^{\varepsilon} + \varepsilon^{2} \left(f_{2}^{\mathrm{Wigner}}(e) + f_{2}^{\mathrm{adi}}(e, P_{0}) \right)$$

with

$$h^{\varepsilon}(q,p) = e(q,p) + \varepsilon m_1(q,p) + \varepsilon^2 m_2(q,p)$$

and

$$\mathrm{d}\lambda^arepsilon = \left(1 + arepsilon\,\lambda_1(q,p) + arepsilon^2\lambda_2(q,p)
ight)\!\mathrm{d}q\,\mathrm{d}p\,.$$

For the corrections to Born-Oppenheimer one finds:

$$h^{\varepsilon}(q,p) = \frac{1}{2}|p|^2 + e(q) + \varepsilon^2\left(\langle p, C(q)p\rangle_{\mathbb{C}^n} + \frac{1}{2}\mathrm{tr}_{\mathbb{C}^n}(D(q))\right),$$

$$\mathrm{d}\lambda^{\varepsilon} = \left(1 + 2\,\varepsilon^2\,\mathrm{tr}_{\mathbb{C}^n}\big(\mathcal{C}(q)\big)\right)\mathrm{d}q\,\mathrm{d}p\,,$$

and

$$f_2^{\mathrm{adi}}(q,p) = f'ig(h_0(q,p)ig)\operatorname{tr}_{\mathbb{C}^n}ig(D(q)ig) + f''ig(h_0(q,p)ig)ig\langle p,D(q)pig
angle_{\mathbb{C}^n}.$$

with

$$\mathcal{C}_{ij}(q) = \operatorname{tr}_{\mathcal{H}_{\mathrm{f}}} \Big(\partial_i P_0(q) \left(\mathcal{H}_{\mathrm{el}}(q) - \mathrm{e}(q) \right)^{-1} \partial_j P_0(q) \Big)$$

and

$$D_{ij}(q) = \operatorname{tr}_{\mathcal{H}_{\mathrm{f}}} \Big(P_0(q) \, \partial_i P_0(q) \, \partial_j P_0(q) \Big)$$

Thanks for your attention!

4. Strategy of proof (First order result)

With the identity

$$\operatorname{Tr}\left(\hat{a}^{\varepsilon} f(\hat{H}^{\varepsilon}) \, \hat{P}^{\varepsilon}\right) = \frac{1}{(2\pi\varepsilon)^{n}} \int_{\mathbb{R}^{2n}} \mathrm{d}q \mathrm{d}p \, \, \mathsf{a}(q,p) \operatorname{tr}\left(\operatorname{Symb}\left(f(\hat{H}^{\varepsilon}) \, \hat{P}^{\varepsilon}\right)\right) \,,$$

we need to expand the symbol of $f(\hat{H}^{\varepsilon})\hat{P}^{\varepsilon}$ in powers of ε .

To this end note that
$$[\hat{P}^{\varepsilon}, \hat{H}^{\varepsilon}] = \mathcal{O}(\varepsilon^{\infty})$$
 implies
$$f(\hat{H}^{\varepsilon}) \hat{P}^{\varepsilon} = f(\hat{P}^{\varepsilon} \hat{H}^{\varepsilon} \hat{P}^{\varepsilon}) + \mathcal{O}(\varepsilon^{\infty}).$$

<u>Lemma:</u> There is a scalar semiclassical symbol $h(\varepsilon, q, p)$ such that

$$\hat{\boldsymbol{P}}^{\varepsilon}\,\hat{\boldsymbol{H}}^{\varepsilon}\,\hat{\boldsymbol{P}}^{\varepsilon}=\hat{\boldsymbol{P}}^{\varepsilon}\,\hat{\boldsymbol{h}}^{\varepsilon}\,\hat{\boldsymbol{P}}^{\varepsilon}+\mathcal{O}(\varepsilon^{2})$$

and thus

$$f(\hat{P}^{\varepsilon} \hat{H}^{\varepsilon} \hat{P}^{\varepsilon}) = f(\hat{P}^{\varepsilon} \hat{h}^{\varepsilon} \hat{P}^{\varepsilon}) + \mathcal{O}(\varepsilon^{2}).$$

<u>Lemma:</u>

$$f(\hat{P}^{\varepsilon}\,\hat{h}^{\varepsilon}\,\hat{P}^{\varepsilon}) = \hat{P}^{\varepsilon}\,f(\hat{h}^{\varepsilon})\,\hat{P}^{\varepsilon} + \mathcal{O}(\varepsilon^2)\,.$$