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Collective behavior and self-organization

The mathematical description of emerging collective phenomena and
self-organization has gained increasing interest in various fields in biology,
robotics and control theory, as well as sociology and economics

Examples are groups of animals/humans with a tendency to flock or herd...

... but also interacting agents in a financial market, potential voters during
political elections and connected members of a social network.
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Modeling collective behavior and self-organization

Classical particles are replaced by more complex
structures (agents, active particles,...). No fundamental
physical laws derived from first principles and
experiments cannot be reproduced.

Various microscopic models have been introduced in different communities
with the aim to reproduce qualitatively the dynamics and to capture some
essential stylized facts (clusters, power laws, consensus, flocking, ...) 1

To analyze the formation of stylized facts and reduce the computational
complexity of the agents’ dynamics, it is of utmost importance to derive the
corresponding mesoscopic/kinetic and macroscopic dynamics 2.

1R. Hegselmann, U. Krause (’02), S. Solomon, M. Levy (’96), T. Vicsek et al. (’95),
F. Cucker, S. Smale (’07); M. D’Orsogna, A. Bertozzi et al. (’06); S. Motsch, E. Tadmor (’14)

2S. Cordier, L.P., G. Toscani (’05); J.A. Carrillo, M. Fornasier, G. Toscani, F. Vecil (’10);
S-Y. Ha, E. Tadmor (’08); P. Degond, S. Motsch (’07); L.P., G. Albi (’12); L.P., G. Toscani (’13)
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Modeling collective behavior and self-organization

In spite of many differences between classical particle dynamics and systems of
interacting agents one can apply similar methodological approaches.

microscopic models

(Newton’s equations,
Molecular dynamics, ...)

↘ (N →∞)

kinetic models

(Boltzmann, Enskong,
Vlasov-Fokker-Planck, ...)

↘ (equilibrium closure)

macroscopic models

(Euler, Navier-Stokes,
moment systems, ...)
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Examples of interacting agents models
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Opinion dynamics

Opinion dynamics

Evolution of N agents where each agent has an opinion wi = wi(t) ∈ I,
I = [−1, 1], i = 1, . . . , N accordingly to an opinion averaging 3

Averaging opinion dynamics

ẇi(t) =
1

N

N∑
j=1

P (wi, wj)(wj(t)− wi(t)),

where P (·, ·) ∈ [−1, 1] characterizes the processes of agreement/disagreement.
The corresponding binary interaction model is defined by the discrete dynamics 4

Binary opinion dynamics

wi(t+ ∆t) = wi(t)(1−∆tP (wi, wj)) + ∆tP (wi, wj)wj(t),

wj(t+ ∆t) = wj(t)(1−∆tP (wj , wi)) + ∆tP (wj , wi)wi(t).

. An opinion dependent noise term modeling the self-thinking process and
characterized by a function D(wi) ∈ [0, 1] may be added to the dynamics.

3M.H. DeGroot (’74); R. Hegselmann, U. Krause (’02)
4G. Deffuant et al. (’00)
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Opinion dynamics

Consensus

∆ = 0.7, consensus is reached ∆ = 0.3, opinion clusters are formed

N = 100 agents with bounded confidence model P (wi, wj) = χ(|wi − wj | ≤ ∆).
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Opinion dynamics

Mean-field description

The empirical measure fN (w, t) = 1
N

∑N
i=1 δ(w − wi(t)) as N →∞ satisfies the

mean-field equation 5

∂tf(w, t) + ∂w (P[f ](w, t)f(w, t)) =
σ2

2
∂2
w(D2(w)f(w, t)),

where

P[f ](w, t) =

∫
I
P (w,w∗)(w∗ − w)f(w∗, t) dw∗.

In some cases explicit steady states are known. For example if P ≡ 1 and
D = (1− w2) then u =

∫
fw dw is conserved in time and we have

f∞(w) =
C

(1− w2)2

(
1 + w

1− w

)u/(2σ2)

exp

{
− (1− uw)

σ2 (1− w2)

}
,

with C a normalization constant such that ρ =
∫
f∞ dw = 1.

5G. Toscani (’06); L. Boudin, F. Salvarani (’09); B. Düring, P.A. Markowich,
J.F. Pietschmann, M.T. Wolfram (’09); G. Albi, L. P., G. Toscani, M. Zanella (’16)
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Opinion dynamics

Boltzmann description

The binary interaction model in the limiting case N →∞ yields the following
Boltzmann equation for f(w, t) in weak form 6

∂t

∫
I
φ(w)f(w, t) dw = λ

〈∫
I2
f(w)f(w∗) (φ(w′)− φ(w)) dw∗ dw

〉
,

where
w′ = w + αP (w,w∗)(w∗ − w) + ηD(w),

η is a random variable with mean 〈η〉 = 0 and variance ζ2. In contrast with
classical kinetic theory, equilibrium states of the Boltzmann model are not known.

In the quasi-invariant limit 7

α→ 0, ζ → 0, ζ2/α = σ2, λ = 1/α

we recover the mean-field model (approximate equilibrium states).

6G. Toscani (’06); J. Gómez-Serrano, C. Graham, J.-Y. Le Boudec (’11); G. Albi, L. P.,
G. Toscani, M. Zanella (’16)

7P. Degond, B. Lucquin-Desreux (’92); L. Desvillettes (’92); S. McNamara, W.R. Young
(’93); C. Villani (’98)
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Market economy

Market economy

Each agent has a wealth wi = wi(t) ∈ R+, i = 1, . . . , N which can change over a
discrete time according to a generalized Lotka-Volterra dynamics 8

Market trades dynamics

wi(t+ ∆t) = wi(t) +
∆t

N

N∑
j=1

aij(wj(t)− wi(t))−
∆t

N

N∑
j=1

cijwiwj + ∆tηwi(t),

where aij ∈ [0, 1] characterize the trading dynamics, cij ∈ [0, 1] describe the
competition for limited resources and η is a random variable with zero mean and
variance σ2 modeling the increase/decrease of the capital of investor i.
In a binary setting the trade becomes 9

Binary trade dynamics

wi(t+ ∆t) = wi(t)(1−∆taij −∆tcijwj(t)) + ∆taijwj(t) + ∆tηwi(t),

wj(t+ ∆t) = wj(t)(1−∆taji −∆tcjiwi(t)) + ∆tajiwi(t) + ∆tηwj(t),

8S. Solomon, M. Levy (’96)
9A. Chakraborti, B.K. Chakrabarti (’00)
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Market economy

Mean field limit

A mean-field model can be derived as N →∞ and reads 10

∂tf(w, t) + ∂w ((A[f ]− C[f ]w) f(w, t)) =
σ2

2
∂2
w(w2f(w, t)),

where

A[f ] =

∫
R+

a(w,w∗)(w∗ − w)f(w∗) dw∗, C[f ] =

∫
R+

c(w,w∗)w∗f(w∗) dw∗.

Steady states present the formation of power-laws and for a ≡ 1, c ≡ 0 reads

f∞(w) =
(µ− 1)µ

Γ(µ)w1+µ
exp

(
−µ− 1

w

)

with µ = 1 + 2/σ2 > 1 the Pareto exponent and u =
∫
R f∞(w)w dw = 1.

10J.P. Bouchard, M. Mezard (’00); S. Cordier, L. P., G. Toscani (’05); B. Düring, G. Toscani
(’09)
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Market economy

Emergence of power laws

N = 100, σ = 1 Histogram for N = 5000, σ = 1

Microscopic LSS model with aij ≡ 1 and cij ≡ 0.
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Swarming models

Swarming models

Agents are characterized by position xi ∈ R3, velocity vi ∈ R3 and follow 11

Swarming models

ẋi(t) = vi(t),

v̇i(t) = αvi(t)(1− |vi(t)|2) +
1

N

N∑
j=1

a(xi, xj)(vj(t)− vi(t))

where a(·, ·) ∈ [0, 1] defines the alignment and α ≥ 0 the self-propulsion force.

For α = 0, the Cucker-Smale model corresponds to

a(xi, xj) = H(|xi − xj |) = 1/(1 + (xi − xj)2)γ), γ ≥ 0.

If γ ≤ 1/2 all agents tend to move exponentially fast with the same velocity,
while their relative distances tend to remain constant (flocking theorem).

Other models considers a non symmetric alignment dynamic a(xi, xj) 6= a(xj , xi),
for example a(xi, xj) = H(|xi−xj |)/

∑
kH(|xi−xk|) in Motsch-Tadmor model.

11F. Cucker, S. Smale ’07; M. D’Orsogna, A. Bertozzi et al.’06; S.Motsch, E.Tadmor (’11)
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Swarming models

Flocking

γ = 0.25, flocking is reached γ = 1, no alignment

N = 100 agents with Cucker-Smale model α = 0, H(|xi − xj |) = 1/(1 + (xi − xj)2)γ)
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Swarming models

Mean-field limit

As N →∞ the empirical measure fN (x, v, t) = 1
N

∑N
i=1 δ(x− xi(t))δ(v − vi(t))

satisfies 12

∂tf(x, v, t) + v · ∇xf(x, v, t) = ∇v ·
(
αv(|v|2 − 1)f(x, v, t)

−H[f ](t)f(x, v, t) +D∇vf(x, v, t)) ,

where D is a diffusion coefficient and

H[f ](t) =

∫
R3×R3

H(|x− y|)(v∗ − v)f(y, v∗, t) dv∗ dy.

In the homogeneous case f = f(v, t), exact stationary solutions can be computed

f∞(v) = C exp
{
− 1

D

[
α
|v|4

4
+ (1− α)

|v|2

2
− u∞v

]}
,

where u∞ =
∫
R3 vf∞(v)dv.

A phase change phenomenon takes place as diffusion decreases 13.
12S-Y. Ha, E. Tadmor (’08); A. Carrillo, M. Fornasier, G. Toscani, F. Vecil (’10)
13A.B.T. Barbaro, J.A. Cañizo, J.A. Carrillo, P. Degond ’15
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Swarming models

Macroscopic models

Barbaro-Degond model: the diffusion and social forces are simultaneously
large, while the parameters of the self-propulsion are kept of order 1.
The stationary state of the mean-field model (Gaussians) permit to close the
moments equations and to obtain 14

∂tρ+∇x · (ρu) = 0

∂t(ρu) +∇x · (ρu⊗ u) +D∇xρ = −αρu
(
|u|2 + 5D − 1

)
.

Ha-Tadmor model: for D = 0, α = 0, stationary states are Dirac deltas, using
the mono-kinetic approximation f(x,w, t) = ρ(x, t)δ(v − u(x, t)) we get 15

∂tρ+∇x · (ρu) = 0

∂t(ρu) +∇x · (ρu⊗ u) = ρ(x)

∫
R3

a(x, y) (u(y)− u(x)) ρ(y) dy.

14A. Barbaro, P.Degond (’12)
15S-Y. Ha, E. Tadmor (’08)
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Numerical methods
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Computational considerations

The numerical solution of kinetic equations for collective
behavior is challenging due to the high dimensionality,
preservation of structural properties (nonnegativity,
conservations) and asymptotic steady states.

In particular we will focus on stochastic methods for Boltzmann equations
and deterministic discretizations for mean-field problems.

For Boltzmann-type models, we consider stochastic methods which efficiently
compute the interaction integral even in the quasi invariant limit 16.

For mean-field models, we focus on numerical schemes which preserves
positivity and correctly describe the large time behavior of the system 17.

16K. Nanbu (’78); G. Bird (’95); A.V. Bobylev, K. Nanbu (’00); R.E. Caflisch, L.P.,
G. Dimarco (’10); G. Albi, L.P. (’13); L.P., G. Toscani (’13)

17J.S. Chang, G. Cooper (’70); E.W. Larsen, D. Levermore, G.C. Pomraning, J.G. Sanderson
(’85); C. Buet, S. Cordier, P. Degond, M. Lemou (’97); L. Gosse (’13); G. Albi, L.P., M. Zanella
(’16)
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Stochastic simulation methods

Prototype Boltzmann equation

The kinetic density f = f(x, v, t) satisfies the Boltzmann-like equation

Boltzmann swarming

∂tf + v · ∇xf = λQα(f, f), (x, v) ∈ Rd × Rd,

where the interaction term in weak form reads18∫
R2d

Qα(f, f)φ(x, v) dv dx =

∫
R4d

f(x, v)f(y, w) (φ(x, v′)− φ(x, v)) dw dy dv dx,

with v′ = v + αH(x, y) (w − v).
In the quasi-invariant scaling, α = ε, λ = 1/ε we recover 19

Mean-field swarming

∂tf + v · ∇xf = −∇v · (H[f ]f) ,

H[f ](t) =

∫
R2d

H(|x− y|)(v∗ − v)f(y, v∗, t) dv∗ dy.

18A.Y. Povzner (’62)
19S-Y. Ha, E. Tadmor (’08); A. Carrillo, M. Fornasier, G. Toscani, F. Vecil (’10)
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Stochastic simulation methods

Stochastic simulation methods

High computational cost of Qα(f, f) for a product-type quadrature
formula based on N parameters is O(Nd).

Structural properties (conservation of mass, momentum, ...) are difficult
to preserve at the discrete level.

Staring point is a standard splitting method between transport and
interaction in the scaled Boltzmann equation

∂tf = −v · ∇xf, ∂tf =
1

ε
Qε(f, f).

Transport step can be solved by shift of the statistical samples (free
transport).

Interaction step can be rewritten as

∂tf =
1

ε

[
Q+
ε (f, f)− f

]
, ρ =

∫
R2d

f dx dv = 1,

where Q+
ε ≥ 0 is the gain part of the interaction operator.
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Stochastic simulation methods

An asymptotic Monte Carlo method

The forward Euler scheme for the interaction step writes

fn+1 =

(
1− ∆t

ε

)
fn +

∆t

ε
Q+
ε (fn, fn).

Since fn is a probability density also Q+
ε (fn, fn) is a probability density. Under

the restriction ∆t ≤ ε then fn+1 is a convex combination of probability densities
and we can construct a Monte Carlo simulation process 20.

Taking ∆t = ε, for ∆t� 1 we approximate the mean-field model through
the asymptotic Monte Carlo algorithm derived from 21

fn+1 = Q+
∆t(f

n, fn).

The computational cost to advance one time step is linear, O(Ns), where Ns
is the number of statistical samples from fn.

At variance with Direct Simulation Monte Carlo (DSMC) methods, the
algorithm is fully meshless since the binary interactions are averaged in space.

20K. Nanbu (’78); G. Bird (’95)
21A.V. Bobylev, K. Nanbu (’00); R.E. Caflisch, L.P., G. Dimarco (’10); G. Albi, L.P. (’13)
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Stochastic simulation methods

Visualization of Monte Carlo algorithms

ANMC algorithm MFMCm algorithm with m = 5

ANMC (and ABMC) are the Boltzmann solvers based on Nanbu’s and Bird’s methods.

MFMCm is the random evaluation of the mean-field sum with m elements.
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Stochastic simulation methods

Accuracy and efficiency
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Asymptotically accurate entropic schemes

Asymptotically accurate entropic schemes

Next we focus on the construction of numerical schemes which describe correctly
the large time behavior of the mean-field kinetic equation 22

Prototype Fokker-Planck equation

∂tf(w, t) = ∇w · F [f ](w, t),

F [f ](w, t) = B[f ](w, t)f(w, t) +∇w(D(w)f(w, t)),

with suitable boundary condition on w.

Central differences typically ask for a computational grid in w which
resolves the fine scales of the solution: B[f ]∆w ≈ D(w).

Upwind schemes give poor approximations of the steady state when
D(w) 6= 0.

In addition we require preservation of some structural properties, like
nonnegativity of the solution and entropy dissipation.

22J.S.Chang, G.Cooper (’70); E.W.Larsen, D.Levermore, G.C.Pomraning, J.G. Sanderson
(’85); H.L. Scharfetter, H.K. Gummel (’69); C. Buet, S. Dellacherie, R. Sentis ’98, C. Buet, S.
Dellacherie ’10, L. Gosse (’13); M. Mohammadi, A. Borźı (’15)
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Asymptotically accurate entropic schemes

Numerical flux (d = 1)

We introduce a uniform grid wi, i = 0, . . . , N of space ∆w. We denote by
wi±1/2 = wi ±∆w/2 and define fi(t) = 1

∆w

∫ wi−1/2

wi+1/2
f(w, t) dw. We have

∂tfi(t) =
Fi+1/2[f ](t)−Fi−1/2[f ](t)

∆w
,

where Fi±1/2[f ](t) ≈ (B[f ]f +D∂wf)(wi±1/2), B[f ] = B[f ] +D′(w), is the flux
function characterizing the numerical discretization.
We assume Fi+1/2[f ] uses a convex combination of the grid values i and i+ 1

Fi+1/2[f ] = B̃[f ]i+1/2f̃i+1/2 +Di+1/2
fi+1 − fi

∆w
,

f̃i+1/2 = (1 − δi+1/2 )fi+1 + δi+1/2fi.

We want to define δi+1/2 and B̃[f ]i+1/2 in order to satisfy nonnegativity, second
order accuracy, asymptotic preservation and entropy dissipation 23.

23L.P., M. Zanella (’16)
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Asymptotically accurate entropic schemes

I. Chang-Cooper type flux

Numerical flux
Imposing the numerical flux equal to zero

fi+1

fi
=

−δi+1/2 B̃[f ]i+1/2 + 1
∆w

Di+1/2

(1 − δi+1/2 )B̃[f ]i+1/2 + 1
∆w

Di+1/2

.

By equating the ratio fi+1/fi of the nu-
merical and the exact flux and setting

B̃i+1/2[f ] =
Di+1/2

∆w

∫ wi+1

wi

1

D(w)
B[f ] dw,

we recover

δi+1/2=
1

λi+1/2

+
1

1− exp(λi+1/2)
,

λi+1/2 =

∫ wi+1

wi

1

D(w)
B[f ] dw.

Exact flux
Integrating the exact stationary flux we obtain

fi+1

fi
= exp

(
−
∫ wi+1

wi

1

D(w)
B[f ] dw

)
.

In fact, from

B[f ](w, t)f(w, t) +D(w)∂wf(w, t) = 0,

in the cell [wi, wi+1], we get∫ wi+1

wi

(
1

f
∂wf

)
(w, t) dw

= −
∫ wi+1

wi

1

D(w)
B[f ] dw.

and therefore

log

(
fi+1

fi

)
= −

∫ wi+1

wi

1

D(w)
B[f ] dw.

. Note that using midpoint quadrature we have B̃i+1/2[f ] = B[f ](wi+1/2).
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Asymptotically accurate entropic schemes

Remarks

Higher order accuracy of the steady state can be recovered using more
accurate quadrature formulas (for example open Newton-Cotes or Gaussian).

At variance with classical Chang-Cooper discretization the weights δi±1/2

depend on the solution itself and therefore the scheme is nonlinear.

Since δi+1/2 ∈ (0, 1) we have a convex combination of the grid values i and
i+ 1 in the numerical flux
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w ∈ I = [−1, 1]∫
I
f0(w)w dw = 0

C(w) = (1− w2)2

B[f ](w) = w + C′(w)

∆w = 0.05
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Asymptotically accurate entropic schemes

Positivity

If we consider the fully discrete explicit scheme

fn+1
i − fni

∆t
=
Fni+1/2 −F

n
i−1/2

∆w
,

it is easy to show the following

Proposition

Under the time step restriction

∆t ≤ ∆w2

2(M∆w +D)
,

with M = maxi

{
|B̃ni+1/2|

}
, D = maxi

{
Di+1/2

}
, we have fn+1

i ≥ 0 if fni ≥ 0.

The above result can be extended to general explicit SSP methods 24.

Fully implicit schemes originate a nonlinear system of equations. However,
nonnegativity holds true also in the case of semi-implicit discretizations where
the weight functions are evaluated explicitly at time n.

24S. Gottlieb, C. W. Shu, E. Tadmor ’01
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Examples of interacting agents models Numerical methods Conclusions and perspectives

Asymptotically accurate entropic schemes

Entropy for Fokker-Planck equations in bounded domains

Let us consider the equation

Fokker-Planck equation

∂tf(w, t) = ∂w [(w − u)f(w, t) + ∂w(D(w)f(w, t))] , w ∈ I = [−1, 1],

with u =
∫
I
fw dw a given constant and boundary conditions

∂w(D(w)f(w, t)) + (w − u)f(w, t) = 0, w = ±1.

If we define the relative entropy for all positive functions f(w, t), g(w, t) as follows

H(f, g) =

∫
I

f(w, t) log

(
f(w, t)

g(w, t)

)
,

and denote by f∞ the stationary state, we have 25

d

dt
H(f, f∞) = −ID(f, f∞),

ID(f, f∞) =

∫
I
D(w)f(w, t)

(
∂w log

(
f(w, t)

f∞(w)

))2

dw.

25G. Furioli, A. Pulvirenti, E. Terraneo, G. Toscani, ’16
Lorenzo Pareschi (University of Ferrara) Numerics for kinetic equations of collective behavior ETH Zürich, November 1-4, 2016 30 / 44
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Asymptotically accurate entropic schemes

Numerical entropy dissipation

We can prove the following 26

Theorem
If we define the discrete relative entropy

H∆w(f, f∞) = ∆w

N∑
i=0

fi log

(
fi
f∞i

)
for the semi-discrete Chang-Cooper type scheme we have

d

dt
H∆(f, f∞) = −I∆(f, f∞),

where I∆ is the positive discrete dissipation function

I∆(f, f∞) =

N∑
i=0

[
log

(
fi+1

f∞i+1

)
− log

(
fi
f∞i

)]
·
(
fi+1

f∞i+1

− fi
f∞i

)
f̂∞i+1/2Di+1/2 ≥ 0,

with f̂∞i+1/2 = f∞i+1f
∞
i log(f∞i+1/f

∞
i )/(f∞i+1 − f∞i ) ≥ 0.

26L.Pareschi, M.Zanella ’16
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Asymptotically accurate entropic schemes

Free energy and gradient flow

Let us now consider the class of mean-field equations with gradient flow structure

Gradient flow structure

∂tf(w, t) = ∇w · [f(w, t)∇wξ(w, t)], w ∈ Rd

with no-flux boundary conditions. In case of constant diffusion D > 0 we have

∇wξ(w, t) = B[f ](w, t) +D∇w log f(w, t).

We consider the following general form for ξ(w, t), w ∈ Rd 27

ξ = V (w) + (U ∗ f)(w, t) +D log f(w, t).

The free energy associated with the model is given by

E(t) =

∫
Rd

V (w)f(w, t)dw +
1

2

∫
Rd

(U ∗ f)(w, t)f(w, t) +D

∫
Rd

f(w, t) log f(w, t)dw

27A.Barbaro, J.A.Cañizo, J.A.Carrillo, P.Degond ’16, J.A.Carrillo, A.Chertock, Y.Huang ’15
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Asymptotically accurate entropic schemes

Entropy dissipation

The dissipation of entropy along solutions is given by

d

dt
E(t) = −I(t), I(t) =

∫
Rd

|∇wξ|2f(w, t)dw.

The discrete version of the free energy of the system is given by

E∆w(t) = ∆w

N∑
i=0

1

2
∆w

N∑
j=0

Ui−jfifj + Vifi +Dfi log fi

 .
After time differentiation and summation by parts we obtain

d

dt
E∆w = −

N∑
i=0

(ξi+1 − ξi)Fi+1/2 = −∆w

N∑
i=0

(
B̃i+1/2 +D log

(
fi+1

fi

))
Fi+1/2,

where ξi is the discrete version of the potential ξ, that is

ξi = Vi + U ∗ fi +D log fi.
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Asymptotically accurate entropic schemes

II. Entropic average flux

If we now use the Chang-Cooper type fluxes, in general, it is not possible to prove
a discrete equivalent of the entropy dissipation. This can be achieved by
introducing the entropic average fluxes defined as 28

FEi+1/2[f ] = B̃[f ]i+1/2f̃
E
i+1/2 +Di+1/2

fi+1 − fi
∆w

,

f̃Ei+1/2 = (1 − δEi+1/2 )fi+1 + δEi+1/2fi,

where now

δEi+1/2 =
fi+1

fi+1 − fi
+

1

log fi − log fi+1
∈ (0, 1).

The entropic average fluxes and the Chang-Cooper type fluxes define the
same quantities at the steady state when f = f∞.

28C. Buet, S. Dellacherie, R. Sentis ’98
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Asymptotically accurate entropic schemes

Numerical entropy dissipation

Theorem
For the entropic averaged flux we have

FEi+1/2[f ] =

(
B̃[f ]i+1/2 +Di+1/2

log fi+1 − log fi
∆w

)
f̃Ei+1/2

and therefore we obtain the discrete entropy dissipation

d

dt
E∆w = −∆w2

N∑
i=0

(
B̃i+1/2 +

D

∆w
log

(
fi+1

fi

))2

f̃Ei+1/2.

Remark: In the case of Fokker-Planck equations, like the one considered before,
the entropic averaged fluxes lead to the entropy dissipation

d

dt
H(f, f∞) = −

N∑
i=0

[
log

(
fi+1

f∞i+1

)
− log

(
fi
f∞i

)]2

Di+1/2f̃
E
i+1/2.
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Asymptotically accurate entropic schemes

Remarks

Nonnegativity restrictions on entropic average fluxes are more severe then
those for Chang-Cooper type fluxes and require D > 0.

Both fluxes are second order accurate and typically increase their order of
accuracy as the solution approaches the steady state.

In the limit case D → 0 the Chang-Cooper fluxes become a standard first
order upwind flux for the corresponding transport/aggregation problem.

Extension to second order upwind fluxes in the limit D → 0 are possible for
Chang-Cooper type schemes.
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Examples of interacting agents models Numerical methods Conclusions and perspectives

Asymptotically accurate entropic schemes

Convergence to steady state
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Asymptotically accurate entropic schemes

Accuracy test
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Asymptotically accurate entropic schemes

Two dimensional case
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Asymptotically accurate entropic schemes

Two dimensional case
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Asymptotically accurate entropic schemes

Two dimensional case
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Conclusions and perspectives

Difficulties that distinguish the agent-based dynamics

No Newtonian laws and first principles derivations
Active particles are not classical particles (behavioral aspects)

Kinetic equations can be derived for a very large number of agents

Information on the large time behavior of the system
Development of efficient numerical tools which preserve the structural
properties of the system

Perspectives and research directions

Application of these schemes to optimal control problems where the
alignment/consensus is forced by an external action or by the presence of
multiple populations. For example persuading voters, influencing buyers,
forcing human crowds or group of animals to follow a path.
Development of efficient modeling and numerical tools for the quantification
of uncertainty. The introduction of stochastic parameters reflecting the
uncertainty in the terms defining the interaction rules is an essential step
towards more realistic applications
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Mean-field control problems
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton8'){ocgs[i].state=false;}}


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton9'){ocgs[i].state=false;}}



Examples of interacting agents models Numerical methods Conclusions and perspectives

UQ in mean-field swarming

Mean-field swarming for Cucker-Smale interactions, α = 2, D = 0.6 + θ/2, θ ∼ U([−1, 1]).
Third order WENO in space and IMEX methods.
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