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MAIN POINT OF THE TALK

We will discuss the possible emergence of non-trivial systems of
interacting particles out of pure noise, without local interactions.

Our starting point will be the stochastic model of a brownian
point cloud in the Euclidean space.
The emerging models will be
i) some simple rank-based dynamics in one space dimension,
ii) some models of inviscid chemotaxis generalizing the inviscid
Burgers equation in higher dimensions,
ii) the classical Newtonian model of gravitation (*).

(*) This last statement might be considered as a VERY ROUGH CARICATURE of
the claim, in String Theory, that the Einstein equation is just an output of the
quantization of strings.
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AN EXAMPLE OF RANK-BASED DYNAMICS IN 1D

Consider N taxpayers labelled by α ∈ {1, · · ·,N}.
Zn(α) ≥ 0 is the taxable income of year n.

σn(α) ∈ {1, · · ·,N} is the rank of Zn(α) in {Zn(1), · · ·,Zn(N)}.

Model: Zn+1(α) = Zn(α) exp(rτ) exp(−G(σn)τ) with a uniform growth
rate r for all incomes and a tax rate G that depends only on the rank.

This can be related to hyperbolic scalar conservation laws, the
formation of shock waves corresponding to the emergence of classes.
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Example: formation of 2 classes
Evolution of the income distribution, starting from a linear profile, with formation of two
classes (i.e. two "shocks" in terms of conservation laws).
(Data: N = 100, τ = 0, 01, F (u) = u + sin(4πu)

4 , u ∈ [0, 1], t ∈ [0, 1], τ = 0, 01.)
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RANK BASED DYNAMICS IN 1D: (old) RESULTS

For the slightly more general model (with pseudo-noise in option)

Xn+1(α) = Xn(α) + τ F (w) + (−1)(N−1)w
√

2ητ R(w), w =
σn(α)− 1

N − 1

1) Asymptotic behavior τ << 1, N >> 1, for un(x) = 1
N

∑N
α=1 1{x>Xn(α)}

∂tu + ∂x (f (u)) = η ∂xx (r(u)), F (u) = f ′(u), R(u) = r ′(u) ≥ 0

2) A unique "class" emerges whenever ∀u ∈]0, 1[, f (u) > f (0) = f (1).

Y.B. CRAS 1981-82, SINUM 1984, thèse d’état 1986, J. Comp. Appl. Math. 1990.
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CORE OF THE TALK:
STOCHASTIC ORIGIN OF RANK-BASED
DYNAMICS AND NEWTONIAN GRAVITATION

We consider N particles in Rd subject to independent Brownian
motions and issued from a cubic lattice {A(α) ∈ Rd , α = 1, · · ·,N}

Yt (α) = A(α) +
√
εBt (α), α = 1, · · ·,N

We call "point cloud at time t" the collection of positions {Yt (α)}
reached by these particles, disregarding their label α ∈ {1, · · ·,N}.

In other words, the cloud lives in (Rd )N/SN , where SN is the
symmetric group (of all permutations of the N first integers).

Yann Brenier (CNRS) From pure noise to non-trivial interactions Zürich, 4 Nov 2016 6 / 18



CORE OF THE TALK:
STOCHASTIC ORIGIN OF RANK-BASED
DYNAMICS AND NEWTONIAN GRAVITATION

We consider N particles in Rd subject to independent Brownian
motions and issued from a cubic lattice {A(α) ∈ Rd , α = 1, · · ·,N}

Yt (α) = A(α) +
√
εBt (α), α = 1, · · ·,N

We call "point cloud at time t" the collection of positions {Yt (α)}
reached by these particles, disregarding their label α ∈ {1, · · ·,N}.

In other words, the cloud lives in (Rd )N/SN , where SN is the
symmetric group (of all permutations of the N first integers).

Yann Brenier (CNRS) From pure noise to non-trivial interactions Zürich, 4 Nov 2016 6 / 18



WHERE IS THE BROWNIAN CLOUD AT TIME T ?

At a fixed time T > 0, the probability for the moving cloud

Yt (α) = A(α) +
√
εBt (α), α = 1, · · ·,N

to be observed at XT = (XT (α), α = 1, · · ·,N) ∈ RdN has density

1
Z

∑
σ∈SN

N∏
α=1

exp(−|XT (α)− A(σ(α))|2

2εT
)

=
1
Z

∑
σ∈SN

exp(−||XT − Aσ||2

2εT
)

Z = N!
√

2πεT
Nd

, | · | and || · || = euclidean norms in Rd and RNd .

Here, we crucially used that the particles are indistinguishable!!!
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VANISHING NOISE AND APPARENT MOTION

− lim
ε→0

ε log
1
Z

∑
σ∈SN

exp(−||XT − Aσ||2

2εT
) =

1
2T

inf σ∈SN ||XT − Aσ||2

As a simple consequence of the "large deviation principle", we
note that, as ε→ 0, the observer at time T feels that the particles

have travelled along straight lines by "optimal transport"

Xt = (1− t
T

)Aσopt +
t
T

XT , σopt = Argsup σ∈SN ((XT ,Aσ)), t ∈ [0,T ]
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LAW AND DISORDER!

From the apparent motion of the cloud up to time T

Xt = (1− t
T

)Aσopt +
t
T

XT , σopt = Arginf σ∈SN ||XT − Aσ||2

we easily deduce σopt = Arginf σ∈SN ||Xt − Aσ||2, ∀t ∈]0,T ]

This leads to the apparent "law"

dXt

dt
=

Xt − Aσopt

t
, σopt = Arginf σ∈SN ||Xt − Aσ||2, t ∈]0,T ]

just resulting of the observation of a purely random motion!
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ZELDOVICH MODEL AND INVISCID CHEMOTAXIS

t = eθ leads to
dXθ

dθ
= Xθ − Aσopt , σopt = Arginf σ∈SN ||Xθ − Aσ||2

Using optimal transport tools, we find, as formal continuous limit,

∂θρ−∇ · (ρ∇xϕ) = 0, det(I + D2
xϕ) = ρ; ρ ≥ 0, ϕ ∈ R, (θ, x) ∈ R1+d

This is a multidimensional generalization of the rank based dynamics discussed
at the beginning of this talk. It is equivalent to the Zeldovich model (1970) in
Cosmology. It can also be seen as a fully nonlinear version of the (inviscid)

chemotaxis model: ∂θρ−∇ · (ρ∇xϕ) = 0, 4ϕ = ρ− ρ, ρ =

∫
ρ(t , x)dx = 1
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Monge-Ampère gravitation: a simulation of the Zeldovich model
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Last part: EN ROUTE TO NEWTON’S GRAVITY

We first observe that the probability density we found for the
Brownian point cloud to be found at X ∈ RNd at time t > 0

1

N!
√

2πεt
Nd

∑
σ∈SN

exp(−||X − Aσ||2

2εt
), X ∈ RNd

is just the solution ρ(t ,X ) of the heat equation in RNd/SN

∂ρ

∂t
(t ,X ) =

ε

2
4 ρ(t ,X ), ρ(t = 0,X ) =

1
N!

∑
σ∈SN

δ(X − Aσ), X ∈ RNd
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"SURFING THE HEAT WAVE"

∂ρ

∂t
(t ,X ) =

ε

2
4 ρ(t ,X ), ρ(t = 0,X ) =

1
N!

∑
σ∈SN

δ(X − Aσ), X ∈ RNd

For arbitrarily chosen position Xt0 ∈ RNd at t0 > 0, let us "surf" the
"heat wave" by solving the ODE

dXt

dt
= v(t ,Xt ), v(t ,X ) = − ε

2
∇X log ρ(t ,X ), t ≥ t0

This is an adaptation of de Broglie’s "onde pilote" concept. As a matter of fact,
a similar calculation also works for the free Schrödinger equation:
(i∂t +4)ψ = 0, ψ(0,X ) =

∑
σ exp(−||X − Aσ||2/a2), v = ∇Im logψ
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SURFING THE "HEAT WAVE" SYSTEM
... WITH ADDITIONAL NOISE!

Using t = e2θ, the "heat wave" ODE explicitly reads

dXθ

dθ
= vε(θ,Xθ) , vε(θ,X ) = X −

∑
σ∈SN

Aσ exp(−||X−Aσ ||2
2ε exp(2θ) )∑

σ∈SN
exp(−||X−Aσ ||2

2ε exp(2θ) )

To get Newton’s gravitation, our key idea is now to consider large
deviations of this ODE subject to additional noise:

dXθ

dθ
= vε(θ,Xθ) +

√
η

dBθ

dθ
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THROUGH LARGE DEVIATION
AND LEAST ACTION PRINCIPLES

we end up, as ε, η → 0, with the following dynamical system

d2Xθ(α)

dθ2 = Xθ(α)− A(σopt (α)) , Xθ(α) ∈ Rd , α = 1, · · ·,N

σopt = Arginf σ∈SN

N∑
α=1

|Xθ(α)− A(σ(α))|2

involving, at each time t , a discrete optimal transport problem
which leads, in the limit N →∞, to a Monge-Ampère equation.
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WRITTEN IN KINETIC TERMS:

∂θf (θ, x , ξ) +∇x · (ξ f (θ, x , ξ))−∇ξ · (∇xϕ(θ, x)f (θ, x , ξ)) = 0

det(I + D2
xϕ(θ, x)) =

∫
Rd

f (θ, x ,dξ), (θ, x , ξ) ∈ R1+d+d

(with possible large scale computations thanks to recent efficient
Monge-Ampère solvers by Quentin Mérigot and Bruno Lévy.)

For weak fields ϕ, we asymptotically recover the Poisson
equation 4ϕ =

∫
fdξ − 1 which describes Newtonian gravitation.

SPECIAL THANKS TO ANDREA, ANIL, EITAN, GIANLUCA,
SIDDHARTHA and TRISTAN!!!!

reference: Y. B., "A double LD principle for MA gravitation", arXiv 2015
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xϕ(θ, x)) =

∫
Rd

f (θ, x ,dξ), (θ, x , ξ) ∈ R1+d+d

(with possible large scale computations thanks to recent efficient
Monge-Ampère solvers by Quentin Mérigot and Bruno Lévy.)

For weak fields ϕ, we asymptotically recover the Poisson
equation 4ϕ =

∫
fdξ − 1 which describes Newtonian gravitation.

SPECIAL THANKS TO ANDREA, ANIL, EITAN, GIANLUCA,
SIDDHARTHA and TRISTAN!!!!

reference: Y. B., "A double LD principle for MA gravitation", arXiv 2015
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LARGE DEVIATIONS OF THE "HEAT WAVE" ODE

We first pass to the limit η → 0, while ε > 0 is kept fixed. The large
deviation theory tells us that the probability to join point Xθ0 at

θ = θ0 and point Xθ1 at later time θ = θ1 behaves as

exp(−A
η

), η → 0, A =
1
2

∫ θ1

θ0

||dXθ

dθ
− vε(θ,Xθ)||2dθ

where we call A the Freidlin-Vencel action.
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Γ−LIMIT OF THE VENCEL-FREIDLIN ACTION

We now pass to the Γ−limit ε ↓ 0 (*) in the Vencel-Freidlin action

A =
1
2

∫ θ1

θ0

||dXθ

dθ
− vε(θ,Xθ)||2dθ,

vε(θ,X ) = −∇X Φε(θ,X ), Φε(θ,X ) = εe2θ log
∑
σ∈SN

exp(
−||X − Aσ||2

2εe2θ )

noticing that

lim
ε↓0

Φε(θ,X ) = −1
2

inf
σ∈SN

N∑
α=1

|Xθ(α)− A(σ(α))|2

(*) thanks to L. Ambrosio, private communication.
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