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Dispersion

» Dispersion: waves of different wavelengths have different propagation velocities

» One quantum particle in vacuum:

u(t,x) = e®™Puy solves i0,u=—Au with u(0,x) = ug(x)

and spreads out like a melting snowman
» Example: coherent states
|x[?

ug = (7T0,2)7d/4e:p-xefﬁ
|x—2tp|?

— }eitAuO|2 _ (wa(t)2)_d/2e o(t)?

— e~ t2
a(t): o2+4

o2

Dispersion for one
quantum particle in vacuum
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Dispersion in infinite quantum systems

» New question: starting with an infinite quantum systems close to equilibrium,
will dispersion help to converge back to it for large times?

» Application: large-time stability of crystals close to equilibrium

» Our work: o )
@ infinitely extended Fermi gas

@ homogeneous (translation-invariant)
@ short range interactions

o Kohn-Sham / Hartree-Fock theory,
no exchange

Difficulties:

@ infinitely many particles
Return to equilibrium for an . . .
infinitely extended homogeneous Fermi gas @ Interacting with each other
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Model

State of the system

one-particle density matrix = self-adjoint operator 0 < ~(< 1) acting on L?(R9)

Evolution of states: von Neumann equation

0y = [-D+wxp,, 1]
7(0) =

w € L*(R) = short range interaction

p~(x) = v(x, x) = density of particles in the system

w o py = [og w(x — y)p~(y) dy = mean-field potential
N = [o4 py = tr(7) = total nb of particles

~(t) unitarily equivalent to 7o

N N
» Example: if o = Z |uo,j) (uo,j| then y(t) = Z |uj(t))(uj(t)] with
j=1 j=1

N
i Oy = (—A+ w (Z|uk\2))uj, j=1,..,N
k=1
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Homogeneous gas

Homogeneous gas with momentum distribution g

Translation-invariant ~
< Fourier multiplier by k — g(k) € [0, 1]
& convolution kernel y(x,y) = (27)~92g(x — y)

Notation: v = g(—iV)
@ constant den5|ty pg( ) = (2m)"92(0) = (27)"? [.0 g(k) dk
@ W Pg(—iv) = fRdngd w = [-A+wxpg_iv),g(—iV)] =

If we LY(RY), any v = g(—iV) with g € L}(RY) is a stationary state! J

» Important physical examples:

1 1 _lkP—p

g(k) = 1(k<p) BT P e 7
e T +1 e 17T -1

Fermi gas Fermi gas Bose gas Boltzmann

T=0 T>0 T>0 T>0

wnw>0 nweR n<0 neR
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Summary of results

0y = [—A+wxp,, ]
~(0) g(—=iV)+ Qo

Qo = (small?) local perturbation

o [LewSab-14a]: local + global existence, use relative (free) energy, T > 0
o [LewSab-14a’]: entropy bounds

o [LewSab-14b]: dispersion and scattering in 2D, T > 0

o [FraLewLieSei-14]: new Strichartz inequality for operators

[LewSab-14a] M.L. & J. Sabin. The Hartree equation for infinitely many particles. |. Well-posedness theory,
Comm. Math. Phys., 2014.

[LewSab-14b] M.L. & J. Sabin. The Hartree equation for infinitely many particles. Il. Dispersion and
scattering in 2D, preprint arXiv, 2013.
[LewSab-14a’] M.L. & J. Sabin. A family of monotone quantum relative entropies, Lett. Math. Phys, 2014.
[FraLewLieSei-14] R.L. Frank, M.L., E.H. Lieb & R. Seiringer. Strichartz inequality for orthonormal functions,
J. Eur. Math. Soc., 2014.
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Equation for the perturbation

Let g € LX(RY, [0, 1]).

Q(t) :=v(t) — g(—iV), the perturbation at time ¢, solves

i9.Q = [-A, Q]+ [wxpg, g(=iV)]+[w=pg, Q]

linear nonlinear
Q) = G

e Q(t) is not unitarily equivalent to Qg

e Even if Qq is finite-rank, Q(t) is never finite-rank for t > 0 because of the
red term

@ Competition between the 2 linear terms

Main difficulties:
@ Which space for Q(t)? ~» Schatten spaces
@ Proper definition of pg(yy? ~~ new Strichartz
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Schatten spaces

Q self-adjoint compact operator with eigenvalues \; and eigenvectors (u;):

Q:Z)\j‘Uj><Uj| e Q(XLV)ZZ)‘J'UJ'(X)W J

The gth Schatten norm is

[QIE = INT=u(Q),  |QI=(Q"Q)" }
j

This spaces are included into one another

» Density?
@ pg =Y _Aj|u;? is well defined in L! when Q € &!
j
@ no clear definition of pg if Q € &9 with g > 1

[LewSab-14a): local well-posedness in G!, but no scattering result
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Strichartz inequality for orthonormal functions

Theorem ([FraLewLieSei-14])

2 2 d
Assume that p,q,d > 1 satisfy 1 < q < 1+g and;+6 =d. Then

pera ge=rall pue) < Caq | Qls20rn -

Equivalently, for any orthonormal system (u;) in L>(R9) and any ()\;) C C,

g+1
’ Dol
j

L2(L3)

29 \ 2q
SCd,q(Zl/\ﬂ"“) :
J
@ usual Strichartz for one fn «— &?

@ (g+1)/(2q) optimal for given g, cannot be increased (semi-classics)

1 1+2 1+ 72 1+ 725
_ m&* q

[FraLewLieSei-14] [FraSab-14] wrong!

@———usual Strichartz O
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Dispersion and scattering in 2D

Theorem ([LewSab-14b])
Assume that g € W*1(R?,[0,1]) is radial. Let w € WY(R?) be such that

181 12 @2y [ W oo g2y < 47 (1)
Then for | Qo ga/s Small enough, the equation has a unique global solution, with
PQ(t) = P(t) — Pe(—iv) € Li (R x R?)

Moreover, (t) scatters around g(—iV), in the sense that

lim He_"tA (7/(t) = g(—iV))e"tA - Qi”e4

t—+oo
" N oy itA —itA _
_tﬂgoonq(t) g(—iV) — ™ Qie ™ || =0
—0
for some Q1 € G*.
v

Rmk. T > 0 covered, but not T =0
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Strategy of proof: equation for pg € L},

» Duhamel’s formula

t

Q(t) = etA Qe A _ i/ ei(t_tl)A[w*pQ(tl),g(—iV) + Q(tl)]ei(tl—t)Adtl

0 ~——
?

Reinsert ad infinitum = Dyson series in pg, with parameter Q

pa(t) = ple"™® Qoe™ "] — (L1[p] + La[pq]) +higher orders

Strichartz Llpa]

t . .
el = p{i [ € s pa(n), g |
0

t . . . .
£2[p] =p {,/ el(t—tl)A[W " Po(tl), eltlAQoe—ltlA]el(tl—t)Adtl}
0

po(t) = (14 L) 1p[e® Que= ] + (1 4 L£) 'higher orders J

@ 1+ L invertible on L7, @ control higher orders = pq € L}, (Banach fixed point)
@ orders > d + 1 controlled similarly as for proof of Strichartz
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The Linhard function

t
La[p] = p {I/ e/t 1A w po(tl),g(—iV)]e’(tl‘t)Adtl}
0

is a space-time multiplier by

Linhard function

myg(w, k) :2vAv(k)/Re”'t‘” sin(t|k|?)g(2tk) dt

1+ L, invertible <= ming, « |1 4+ mg(w, k)| >0 J

| mg(w, k)| < 2], / £k (2tk) dt
= ()L |, 2],

R mg always takes < 0 and > 0 values
3 myg vanishes when w =0

Plot of ®#mg/w for d =2, T =100 and . = 1, in a
neighborhood of (w, |k|) = (0, 0)
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Conclusion

@ Return to equilibrium for an interacting homogeneous Fermi gas

@ Strichartz inequality in Schatten spaces

@ Linear response (Penrose type condition)

Many open problems!
@ other dimensions
o T =07
@ NLS (w = ¢d)
o

convergence rates
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