

Transport equations for confined structures derived from the Boltzmann equation

Clemens Heitzinger

School of Mathematical and Statistical Sciences, Arizona State University, and Institute for Analysis and Scientific Computing, TU Vienna

Joint work with Christian Ringhofer

KI-net workshop, Chicago, March 28, 2014

New applications give rise to new mathematical problems— "never do what has been done before"

Nanotechnology is a very young field, and hence there are many open questions:

- nanowire field-effect biosensors,
- nanowire gas sensors,
- nanopores, etc.

Physics-based modeling leads to new mathematical problems:

- Homogenization: new multiscale problems arise in a natural manner.
- Uncertainty quantification: to go beyond the calculation of averages.

It is important to compare measurements with simulations. Optimal design.

Motivation: applications

- ► lonic channels,
- ► Nanopores.

Motivation: modeling

- Molecular dynamics,
- Brownian dynamics,
- ► Drift-diffusion equations.

A transport equation for confined structures such as nanowires, nanopores, and ionic channels

Derivation and analysis of a classical sub-band type model for particle transport in narrowly confined geometries.

Confinement direction(s): treat particles on a microscopic level. Unconfined direction(s): treat asymptotically on a much larger time scale.

Starting point is the 3D Boltzmann transport equation. We include the complex geometry of the confinement potential.

For 2D confinement and a harmonic confinement potential, explicit expressions for the transport coefficients in the diffusion-type equation were given.

Computationally, this yields an optimal reduction of the (6 + 1)-dimensional problem to a (2 + 1)-dimensional problem.

[C.H. and Christian Ringhofer. A transport equation for confined structures derived from the Boltzmann equation. *Commun. Math. Sci.*, 9(3):829–857, 2011.]

The basic equation

We start from the Boltzmann equation in the form

$$\partial_t f + \{\mathcal{E}, f\}_{XP} + \mathcal{Q}[f] = 0,$$

where the Hamiltonian transport term is given by the Poisson bracket

$$\{g,f\}_{XP} := \nabla_P g \cdot \nabla_X f - \nabla_X g \cdot \nabla_P f.$$

The energy $\mathcal{E}(X, P)$ is given by

$$\mathcal{E}(X,P) := V(X) + \frac{|P|^2}{2m},$$

where V(X) is the external potential, $|P|^2/(2m)$ the kinetic energy, and *m* the particle mass.

Confinement and scaling

We split the position variable X into X = (x, y)and the momentum variable P into P = (p, q) = (v, w), where $x, p \in \mathbb{R}^d$ are coordinates in the longitudinal transport direction(s) and $y, q \in \mathbb{R}^{3-d}$ are coordinates in the transverse confinement direction(s).

We split the potential V into two parts so that

$$V(x,y) = V_0(x) + V_1\left(x,\frac{y}{\epsilon}\right).$$

 ϵ is the length scale of the structure in the (confined transverse) y-direction. Hence $\epsilon \ll 1$ is the aspect ratio of the tube or plate.

 V_1 is the confining potential and V_0 is an external, applied potential driving charged particles through the structure.

This scaling implies that $|\nabla_y V| = O(\frac{1}{\epsilon} |\nabla_x V|)$, i.e., the confining forces are much larger that the external forces driving the particles.

Confinement and scaling

Correspondingly, we split the energy and the Poisson bracket into

$$\begin{split} \mathcal{E}(X,P) &:= \mathcal{E}_x(x,p) + \mathcal{E}_y(x,y,q),\\ \{g,f\}_{XP} &= \{g,f\}_{xp} + \{g,f\}_{yq},\\ \mathcal{E}_x(x,p) &:= V_0(x) + \frac{|p|^2}{2m},\\ \mathcal{E}_y(x,y,q) &:= V_1\left(x,\frac{y}{\epsilon}\right) + \frac{|q|^2}{2m},\\ \{g,f\}_{xp} &= \nabla_x \cdot (f\nabla_p g) - \nabla_p \cdot (f\nabla_x g),\\ \{g,f\}_{yq} &= \nabla_y \cdot (f\nabla_q g) - \nabla_q \cdot (f\nabla_y g), \end{split}$$

Then the Boltzmann equation becomes

$$\partial_t f + \{\mathcal{E}_x + \mathcal{E}_y, f\}_{xp} + \{\mathcal{E}_y, f\}_{yq} + \mathcal{Q}[f] = 0.$$

The collision operator

Due to the narrow confinement, collisions are much more likely to take place in the transport x-direction than in the confinement y-direction.

Therefore, we model collisions to be described by a relaxation operator ${\cal Q}$

- ▶ which locally conserves the transverse energy E_y(x, y, q) when averaged over y
- ▶ while relaxing the longitudinal kinetic energy *E_x(x, p)* against a Maxwellian distribution.

Hence, the collision operator ${\mathcal Q}$ is given by

$$\mathcal{Q}[f](x, y, p, q, t) := \frac{1}{\tau} \left(f - M(p) \frac{u_f(x, \mathcal{E}_y(x, y, q), t)}{N(x, \mathcal{E}_y(x, y, q))} \right),$$

where M is a Maxwellian, N is the density of states

$$\begin{split} N(x,\eta) &:= \int \delta(\mathcal{E}_y(x,y,q) - \eta) \, \mathrm{d}yq, \\ \text{and} \quad u_f(x,\eta,t) &:= \int \delta(\mathcal{E}_y(x,y,q) - \eta) f(x,y,p,q,t) \, \mathrm{d}ypq. \end{split}$$

Summary of the setup

Now the Boltzmann equation becomes

$$\epsilon \partial_t f + \{\mathcal{E}_x + \mathcal{E}_y, f\}_{xv} + \frac{1}{\epsilon} \{\mathcal{E}_y, f\}_{yw} + \frac{1}{\epsilon \tau} \mathcal{Q}[f] = 0.$$

- Transport occurs in a narrow, irregular structure with aspect ratio ϵ .
- ► The confining forces are much larger than the external forces that drive the particles through the structure, i.e., |∇_xV| = O(ε|∇_yV|).
- Collisions with the background conserve the transverse energy *E_y* while dissipating the longitudinal energy *E_x* in the transport direction *x*.
- Collisions occur frequently on the time scale of transport in the longitudinal transport x-direction.

Chapman-Enskog expansion

First, we observe that the linear relaxation operator ${\cal Q}$ is a projection operator. We define the projection operator \P by

$$\begin{split} \P[f](x, y, v, w, t) &:= \frac{\rho_f(x, \mathcal{E}_y(x, y, w), t)}{N(x, \mathcal{E}_y(x, y, w))} M(v), \\ N(x, \eta) &:= \int \delta(\mathcal{E}_y(x, y, w) - \eta) \, \mathrm{d}yw, \\ \rho_f(x, \eta, t) &:= \int \delta(\mathcal{E}_y(x, y, w) - \eta) f(x, y, v, w, t) \, \mathrm{d}yvw, \end{split}$$

where M(v) is the Maxwellian and $N(x, \eta)$ is the density-of-states function.

We find that $\mathcal{Q}=\mathcal{I}-\P$ with $\mathcal I$ being the identity operator.

The projection ¶ projects onto the linear manifold of functions which are multiples of the Maxwellian M(v) and depend on y and w only through the energy $\mathcal{E}_y(x, y, w)$.

Chapman-Enskog expansion

We split the density function f(x, y, v, w, t) into

$$egin{aligned} f &= f_0 + \epsilon f_1, \ f_0(x,y,v,w,t) &:= \P[f](x,y,v,w,t), \ f_1(x,y,v,w,t) &:= rac{1}{\epsilon} (\mathcal{I} - \P)[f](x,y,v,w,t). \end{aligned}$$

Then we split the Boltzmann equation by applying the projections \P and $\mathcal{I}-\P.$

Then various identities (Poisson bracket is a directional derivative; cyclicity of the commutator trace; $\{\mathcal{E}_y, \phi\}_{yw} = 0$ holds for any function ϕ which depends on y and w only through the energy \mathcal{E}_y) yield

$$\begin{split} \epsilon \partial_t f_0 + \P[\{\mathcal{E}_x + \mathcal{E}_y, f_0 + \epsilon f_1\}_{xv}] &= 0, \\ \epsilon^2 \partial_t f_1 + (\mathcal{I} - \P)[\{\mathcal{E}_x + \mathcal{E}_y, f_0 + \epsilon f_1\}_{xv}] + \frac{1}{\epsilon}\{\mathcal{E}_y, f_0 + \epsilon f_1\}_{yw} + \frac{1}{\tau}f_1 = 0. \end{split}$$

Chapman-Enskog expansion

Further simplifications are possible using again algebraic properties of the Poisson bracket and the projection operator \P so that we find

$$\epsilon \partial_t f_0 + \P[\{\mathcal{E}_x + \mathcal{E}_y, \epsilon f_1\}_{xv}] = 0,$$

 $\epsilon^2 \partial_t f_1 + \{\mathcal{E}_{\mathsf{x}} + \mathcal{E}_{\mathsf{y}}, f_0 + \epsilon f_1\}_{\mathsf{x}\mathsf{v}} - \P[\{\mathcal{E}_{\mathsf{x}} + \mathcal{E}_{\mathsf{y}}, \epsilon f_1\}_{\mathsf{x}\mathsf{v}}] + \frac{1}{\epsilon}\{\mathcal{E}_{\mathsf{y}}, \epsilon f_1\}_{\mathsf{y}\mathsf{w}} + \frac{1}{\tau}f_1 = 0.$

The first equation gives the evolution on the kernel manifold of the operator Q; the second equation gives the evolution on the orthogonal complement.

The macroscopic approximation is obtained by formally dropping the $O(\epsilon)$ terms, $\partial_t f_0 + \P[\{\mathcal{E}_x + \mathcal{E}_y, f_1\}_{yy}] = 0.$

$$\{\mathcal{E}_x + \mathcal{E}_y, f_0\}_{xv} + \{\mathcal{E}_y, f_1\}_{yw} + \frac{1}{\tau}f_1 = 0.$$

In other words, the term ϵf_1 will stay small for all time assuming that we start on the kernel manifold.

The conservation law

The first equation can be written as a conservation law for the density ρ_{f_0} . From the weak formulation, we find that

$$\partial_t \rho_{f_0}(x,\eta,t) + \nabla_x \cdot F^x + \partial_\eta F^\eta = 0,$$

where the fluxes are

$$\begin{split} F^{\mathsf{x}}(x,\eta,t) &:= \int \delta(\mathcal{E}_{\mathsf{y}} - \eta) \mathsf{v} f_{1} \, \mathrm{d} \mathsf{y} \mathsf{v} \mathsf{w}, \\ F^{\eta}(x,\eta,t) &:= \int \delta(\mathcal{E}_{\mathsf{y}} - \eta) (\nabla_{\mathsf{x}} \mathsf{V}_{1} \cdot \mathsf{v}) f_{1} \, \mathrm{d} \mathsf{y} \mathsf{v} \mathsf{w} \end{split}$$

This is a conservation law for the mesoscopic fluid density ρ_{f_0} , which still depends on the free energy $\eta = \mathcal{E}_y$. The mesoscopic equation for ρ_{f_0} will contain second-order partial derivatives w.r.t. x and η .

The challenge is to compute the fluxes F^x and F^η , i.e., to compute the density f_1 for a given f_0 of the form $f_0(x, y, v, w, t) = M(v)\rho_{f_0}(x, \mathcal{E}_y, t)/N(x, \mathcal{E}_y)$.

An entropy estimate

There are two goals:

- To show well-posedness. We will show that there is a convex functional of the density ρ, an entropy, which decays in time.
- To make the system amenable to computations (stability). We will use a Galerkin approximation later.

We write the system as

$$\partial_t
ho(x,\eta,t) + \mathcal{L}_1[f_1](x,\eta,t) = 0,$$

 $\mathcal{L}_2[
ho](x,y,v,w,t) + \{\mathcal{E}_y,f_1\}_{yw} + rac{1}{ au}f_1 = 0$

with the linear operators \mathcal{L}_1 and \mathcal{L}_2 defined by

$$\mathcal{L}_1[f_1](x,\eta,t) := \int \delta(\mathcal{E}_y(x,y,w) - \eta) \{\mathcal{E}_x + \mathcal{E}_y, f_1\}_{xv} \, \mathrm{d}yvw,$$
$$\mathcal{L}_2[\rho](x,y,v,w,t) := \left\{ \mathcal{E}_x + \mathcal{E}_y, M(v) \frac{\rho(x,\mathcal{E}_y,t)}{N(x,\mathcal{E}_y)} \right\}_{xv}.$$

An adjoint property

Let $\mathcal{L}_1^{\mathrm{adj}}$ denote the adjoint of \mathcal{L}_1 with respect to the L^2 inner product.

Lemma (adjoint property for \mathcal{L}_1 and \mathcal{L}_2)

The operators \mathcal{L}_1 and \mathcal{L}_2 are related by the equation

$$\mathcal{L}_{2}[\rho](x, y, v, w, t) = -c \mathrm{e}^{-\mathcal{E}_{x} - \mathcal{E}_{y}} \mathcal{L}_{1}^{\mathrm{adj}} \left[\frac{\mathrm{e}^{V_{0}(x) + \eta} \rho(x, \eta, t)}{N(x, \eta)} \right] (x, y, v, w, t).$$

Furthermore, the identity $\Re\left(\int e^{\mathcal{E}_x + \mathcal{E}_y} f^* \{\mathcal{E}_y, f\}_{yw} dyw\right) = 0 \quad \forall x \text{ holds for all x and for all complex functions } f(y, w), where <math>\Re e$ is the real part.

Here the constant c denotes the normalization constant of the Maxwellian so that $M(v) = c \exp(-|v|^2/2)$ holds.

The entropy estimate

We use this lemma to rewrite the system as

$$\begin{aligned} \partial_t \rho(x,\eta,t) + \mathcal{L}_1[f_1](x,\eta,t) &= 0, \\ -c \mathrm{e}^{-\mathcal{E}_x - \mathcal{E}_y} \mathcal{L}_1^{\mathrm{adj}} \left[\frac{\mathrm{e}^{V_0(x) + \eta} \rho(x,\eta,t)}{N(x,\eta)} \right] + \{\mathcal{E}_y, f_1\}_{yw} + \frac{1}{\tau} f_1 = 0 \end{aligned}$$

and can now proof the following entropy estimate.

Theorem (entropy estimate)

Solutions (ρ, f_1) of the system satisfy the entropy estimate

$$\frac{1}{2}\partial_t \int \frac{\mathrm{e}^{V_0(\mathbf{x})+\eta}}{N(\mathbf{x},\eta)} |\rho(\mathbf{x},\eta,t)|^2 \,\mathrm{d}\mathbf{x}\eta = -\frac{1}{c\tau} \int \mathrm{e}^{\mathcal{E}_{\mathbf{x}}+\mathcal{E}_{\mathbf{y}}} |f_1|^2 \,\mathrm{d}\mathbf{x}\mathbf{y}\mathbf{v}\mathbf{w} \leq 0.$$

The Galerkin approximation: eliminating the lateral momentum v

The dependence of the operator \mathcal{L}_2 on the momentum v takes the form of a multiple of the function M(v)v, i.e.,

$$\mathcal{L}_{2}[\rho](x, y, v, w, t) = M(v)v \cdot \left(\nabla_{x}\left(\frac{\rho(x, \mathcal{E}_{y}, t)}{N(x, \mathcal{E}_{y})}\right) + \frac{\rho(x, \mathcal{E}_{y}, t)}{N(x, \mathcal{E}_{y})}\nabla_{x}(V_{0} + V_{1})\right).$$

Since the Poisson bracket $\{\mathcal{E}_y, f_1\}_{yw}$ does not operate on the momentum component v, the second equation allows a solution of the form

$$f_1(x, y, v, w, t) = M(v)v \cdot g(x, y, w, t),$$

where the function $g(x, y, w, t) \in \mathbb{R}^d$ is vector valued for the case of a plate (d = 2) and scalar in the case of a tube (d = 1).

The adjoint property revisited

To exploit this structures of \mathcal{L}_1 and $\mathcal{L}_2,$ we define the operators Λ_1 and Λ_2 as

$$\begin{split} &\Lambda_1[g](x,\eta,t) := \mathcal{L}_1[M(v)v \cdot g](x,\eta,t), \\ &\mathcal{L}_2[\rho](x,y,v,w,t) = M(v)v \cdot \Lambda_2[\rho](x,y,w,t), \\ &\Lambda_2[\rho](x,y,w,t) := \nabla_x \left(\frac{\rho(x,\mathcal{E}_y,t)}{N(x,\mathcal{E}_y)}\right) + \frac{\rho(x,\mathcal{E}_y,t)}{N(x,\mathcal{E}_y)} \nabla_x(V_0+V_1). \end{split}$$

Then the system becomes

$$\partial_t \rho(x, \eta, t) + \Lambda_1[g](x, \eta, t) = 0,$$

$$\Lambda_2[\rho](x, y, w, t) + \{\mathcal{E}_y, g\}_{yw} + \frac{1}{\tau}g = 0.$$

The operator Λ_1 equals

$$\begin{split} \Lambda_1[g](x,\eta,t) &= \int \nabla_x \cdot \left(\delta(\mathcal{E}_y - \eta) g(x,y,w,t) \right) \\ &+ \partial_\eta \left(\delta(\mathcal{E}_y - \eta) \nabla_x V_1(x,y) \cdot g \right) \mathrm{d} y w \end{split}$$

and the operator Λ_2 is given in terms of the adjoint of Λ_1 by

$$\Lambda_{2}[\rho](x, y, w, t) = -e^{-V_{0}-\mathcal{E}_{y}}\Lambda_{1}^{\mathrm{adj}}\left[e^{V_{0}+\eta}\frac{\rho(x, \eta, t)}{N(x, \eta)}\right](x, y, w, t).$$

Furthermore the identity

$$\mathfrak{Re}\Big(\int \mathrm{e}^{\mathcal{E}_{\mathbf{x}}+\mathcal{E}_{\mathbf{y}}}g^{H}\{\mathcal{E}_{\mathbf{y}},g\}_{\mathbf{yw}}\,\mathrm{d}\mathbf{yw}\Big)=0\quad\forall\mathbf{x}$$

holds for all complex functions g(y, w).

The system

After eliminating the lateral momentum v and using the adjoint property for Λ_2 , the system becomes

$$\partial_t \rho(x,\eta,t) + \Lambda_1[g](x,\eta,t) = 0,$$

$$-\mathrm{e}^{-V_0 - \mathcal{E}_y} \Lambda_1^{\mathrm{adj}} \left[\mathrm{e}^{V_0 + \eta} \frac{\rho(x,\eta,t)}{N(x,\eta)} \right] (x,y,w,t) + \{\mathcal{E}_y,g\}_{yw} + \frac{1}{\tau} g(x,y,w,t) = 0.$$

In order to obtain a closed equation for the mesoscopic density $\rho(x, \eta, t)$, the second equation has to be inverted for g in terms of ρ .

For a general confinement potential $V_1(x, y)$, this can only be done approximatively. This approximation will take the form of a series expansion, i.e., Galerkin solution.

The variable transformation Γ and its inverse Ω

A crucial aspect is the usage of a bijective variable transformation that maps

$$(y,w)\in \mathbb{R}^{6-2d}$$
 to $(u=\mathcal{E}_y(x,y,w), heta),$

where $u \in \mathbb{R}$ denotes an energy and $\theta \in \mathbb{R}^{5-2d}$ an angle. (Recall $x, v \in \mathbb{R}^d$ and $y, w \in \mathbb{R}^{3-d}$.)

We write

$$(u, \theta) = \Gamma(x, y, w);$$
$$(y, w) = \Omega(x, u, \theta),$$
$$\Gamma(x, \Omega(x, u, \theta)) = (u, \theta),$$
$$\Omega(x, \Gamma(x, y, w)) = (y, w),$$

since the variable transformation can depend on x. Importantly,

 $\mathcal{E}_{y}(x,\Omega(x,u,\theta))=u$

holds.

The system after the variable transformation $\boldsymbol{\Gamma}$

Three lemmata and a couple of pages later, we have calculated the transformed system $% \left({{{\boldsymbol{x}}_{i}}} \right)$

$$\partial_t \rho(x,\eta,t) + \mathcal{A}[g_1](x,\eta,t) = 0,$$

$$-e^{-V_0 - u} \mathcal{A}^{\mathrm{adj}} \left[e^{V_0 + \eta} \frac{\rho(x,\eta,t)}{N(x,\eta)} \right] (x,u,\theta,t) + \sigma(S \cdot \nabla_\theta) g_1 + \frac{\sigma}{\tau} g_1(x,u,\theta,t) = 0,$$

where

$$\begin{aligned} \mathcal{A}[g_1](x,\eta,t) &:= \int \nabla_x \cdot \left(\sigma g_1(x,\eta,\theta,t)\right) \\ &\quad + \partial_\eta \left(\sigma(x,\eta,\theta) \nabla_1 V_1(x,\Omega_y(x,\eta,\theta)) \cdot g_1\right) \mathrm{d}\theta, \\ \mathcal{S}(x,u,\theta) &:= \left(\gamma_{21} \gamma_{12}^T - \gamma_{22} \gamma_{11}^T\right) (x,\Omega(x,u,\theta) \in \mathbb{R}^{5-2d}, \\ \sigma(x,u,\theta) &:= \left|\det(\partial\Omega(x,u,\theta))\right|, \\ \partial\Gamma(x,y,w) &= \frac{\partial(u,\theta)}{\partial(y,w)} =: \begin{pmatrix}\gamma_{11} & \gamma_{12} \\ \gamma_{21} & \gamma_{22}\end{pmatrix}. \end{aligned}$$

Galerkin approximation: series expansions

To calculate solutions, we have to solve for g_1 in the second equation and substitute in the first to obtain an equation for the density ρ .

We choose an orthonormal system of basis functions $\kappa_{\mathcal{K}}(\theta)$ with $\mathcal{K} \in \mathcal{K}$ satisfying

$$\int \kappa_{\mathcal{K}}(\theta)^* \kappa_{\mathcal{K}'}(\theta) \,\mathrm{d}\theta = \delta_{\mathcal{K}\mathcal{K}'},$$

where K is a multiindex varying in a (5-2d)-dimensional index set K.

We expand g_1 into the basis functions as

$$g_1(x,\eta,\theta,t) = \sum_{K\in\mathcal{K}} \kappa_K(\theta) G_K(x,\eta,t).$$

Lemma (entropy estimate)

Regardless of the choice of basis functions and the number of terms used in the Galerkin approximation, we have the inequality

$$\frac{1}{2}\partial_t \int e^{V_0+\eta} \frac{|\rho(x,\eta,t)|^2}{N(x,\eta)} \, \mathrm{d} x \eta = -\int \frac{\sigma}{\tau} e^{V_0+\eta} |g_1(x,\eta,\theta,t)|^2 \, \mathrm{d} x \eta \theta \leq 0.$$

After the series expansion, the first equation (the conservation law) becomes

 $\partial_t \rho(x,\eta,t) + \sum_{K \in \mathcal{K}} \nabla_x \cdot \left(a_K(x,\eta) G_K(x,\eta,t) \right) + \partial_\eta \left(A_K(x,\eta) \cdot G_K(x,\eta,t) \right) = 0$

and the second equation becomes

$$\begin{aligned} \mathsf{a}_{\mathcal{K}}(x,\eta)^{*}\mathrm{e}^{-V_{\mathbf{0}}}\nabla_{x}\big(\mathrm{e}^{V_{\mathbf{0}}}\tfrac{\rho}{N}\big) + \mathcal{A}_{\mathcal{K}}(x,\eta)^{*}\mathrm{e}^{-\eta}\partial_{\eta}\big(\mathrm{e}^{\eta}\tfrac{\rho}{N}\big) \\ &+ \sum_{\mathcal{K}'\in\mathcal{K}} \mathcal{C}_{\mathcal{K}\mathcal{K}'}(x,\eta)\mathcal{G}_{\mathcal{K}'}(x,\eta,t) = 0 \quad \forall \mathcal{K}\in\mathcal{K}. \end{aligned}$$

Galerkin approximation: summary

The potential V_1 is given, however the variable transformation Γ can still be chosen in a suitable manner.

The coefficients, depending on V_1 and Γ , are

$$\begin{aligned} \mathsf{a}_{\mathsf{K}}(x,\eta) &= \int \kappa_{\mathsf{K}}(\theta)\sigma(x,\eta,\theta)\,\mathrm{d}\theta, \\ \mathsf{A}_{\mathsf{K}}(x,\eta) &= \int \kappa_{\mathsf{K}}(\theta)\sigma(x,\eta,\theta)\nabla_{1}V_{1}(x,\Omega_{y}(x,\eta,\theta))\,\mathrm{d}\theta, \\ \mathsf{C}_{\mathsf{K}\mathsf{K}'}(x,\eta) &= \int \kappa_{\mathsf{K}}(\theta)^{*}\sigma(x,\eta,\theta)\big((S\cdot\nabla_{\theta})\kappa_{\mathsf{K}'}(\theta) + \frac{1}{\tau}\kappa_{\mathsf{K}'}(\theta)\big)\,\mathrm{d}\theta, \\ \mathsf{S}(x,\eta,\theta) &= (\gamma_{21}\gamma_{12}^{\mathsf{T}} - \gamma_{22}\gamma_{11}^{\mathsf{T}})(x,\Omega(x,\eta,\theta)), \\ \sigma(x,\eta,\theta) &= |\mathsf{det}(\partial\Omega(x,\eta,\theta))|\,. \end{aligned}$$

Galerkin approximation: the conservation law

If the inverse of the matrix C exists, we can express the coefficients G_K in terms of ρ to find the conservation law

$$\partial_t \rho(x,\eta,t) + \nabla_x \cdot F^x(x,\eta,t) + \partial_\eta F^\eta(x,\eta,t) = 0,$$

where the d-dimensional flux vector F^{\times} and the scalar flux F^{η} are

$$\begin{aligned} F^{x}(x,\eta,t) &= -\sum_{K,K'\in\mathcal{K}} a_{K}(x,\eta)C_{KK'}^{-1}(x,\eta) \cdot \\ &\cdot \left(a_{K'}(x,\eta)^{*}\mathrm{e}^{-V_{0}}\nabla_{x}\left(\mathrm{e}^{V_{0}}\frac{\rho}{N}\right) + A_{K'}(x,\eta)^{*}\mathrm{e}^{-\eta}\partial_{\eta}\left(\mathrm{e}^{\eta}\frac{\rho}{N}\right)\right), \\ F^{\eta}(x,\eta,t) &= -\sum_{K,K'\in\mathcal{K}} A_{K}(x,\eta)^{T}C_{KK'}^{-1}(x,\eta) \cdot \\ &\cdot \left(a_{K'}(x,\eta)^{*}\mathrm{e}^{-V_{0}}\nabla_{x}\left(\mathrm{e}^{V_{0}}\frac{\rho}{N}\right) + A_{K'}(x,\eta)^{*}\mathrm{e}^{-\eta}\partial_{\eta}\left(\mathrm{e}^{\eta}\frac{\rho}{N}\right)\right). \end{aligned}$$

Galerkin approximation: goals and remarks

The actual computational challenge lies in computing the inconspicuous looking term $C_{KK'}^{-1}(x,\eta)$. (K is a multiindex of the same dimension as the angular variable θ , and θ denotes an angle in the (6-2d)-dimensional (y, w)-space. Hence K and θ have 5-2d components.)

For the case of a plate where d = 2, K is a scalar and the matrix $C(x, \eta)$ has to be inverted for every point (x, η) .

For the case of a tube where d = 1, the multiindex K has three components and the resulting tensor $C(x, \eta)$ is very large even if a moderate number of expansions terms are used in each component of θ . This is the computationally most demanding case.

Since our goal is to derive a simple macroscopic system, we treat the case of a tube (d = 1) in the following. To make the calculations more concrete, we assume a harmonic confinement potential V_1 in the following.

Harmonic confinement potentials

A harmonic confinement potential V_1 has the quadratic form

$$V_1(x,y) = \frac{1}{2}(y-b(x))^{\top}B(x)(y-b(x)),$$

where $y, b \in \mathbb{R}^2$ and the diagonal matrix B(x) has the form

$$B(x) = \begin{pmatrix} B_1(x) & 0\\ 0 & B_2(x) \end{pmatrix}.$$

(In order to approximate arbitrary confinement potentials, we can always minimize the difference in the forces, i.e., we minimize the functional

$$\int_{\mathcal{B}} \left| B(x)(y - b(x)) - \nabla_y V_1(x, y) \right|^2 \mathrm{d}y$$

for every value of x.)

Defining the variable transformation Ω

What is a suitable variable transformation?

1. First, we transform $(y_j, w_j), j \in \{1, 2\}$, using polar coordinates. We set

$$y_j =: b_j + \sqrt{\frac{2r_j}{B_j}} \cos \theta_j, \quad w_j =: \sqrt{2r_j} \sin \theta_j$$

with $r_j \in [0,\infty)$ and $\theta_j \in [-\pi,\pi)$ for $j \in \{1,2\}$.

2. Next, we use the transformation

 $\eta := r_1 + r_2, \quad \theta_3 := \frac{r_2 - r_1}{r_2 + r_1}, \quad r_1 = \eta \frac{1 - \theta_3}{2}, \quad r_2 = \eta \frac{1 + \theta_3}{2}$

with $\eta \in [0, \infty)$ and $\theta_3 \in [-1, 1]$. We have $\mathcal{E}_y(x, y, w) = \eta$ as required. 3. Finally, combining the two transformations yields Ω as

$$\begin{pmatrix} y\\ w \end{pmatrix} = \Omega(x,\eta,\theta) = \begin{pmatrix} \Omega_y(x,\eta,\theta)\\ \Omega_w(x,\eta,\theta) \end{pmatrix} = \begin{pmatrix} b_1 + \sqrt{\frac{\eta(1-\theta_3)}{B_1}}\cos\theta_1\\ b_2 + \sqrt{\frac{\eta(1+\theta_3)}{B_2}}\cos\theta_2\\ \sqrt{\eta(1-\theta_3)}\sin\theta_1\\ \sqrt{\eta(1+\theta_3)}\sin\theta_2 \end{pmatrix}$$

Having found a reasonable variable transformation, how should we choose the basis functions for the Galerkin approximation?

We define

$$\kappa_{\mathcal{K}}(\theta) := \frac{1}{2\pi} \mathrm{e}^{\mathrm{i}k_{1}\theta_{1} + \mathrm{i}k_{2}\theta_{2}} \mathcal{L}_{k_{3}}(\theta_{3}), \quad \mathcal{K} = (k_{1}, k_{2}, k_{3}) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{N},$$

where the $L_{k_3}(\theta_3)$ are Legendre polynomials of degree k_3 normalized in the L^2 -norm on the interval [-1, 1].

The success of our procedure still depends on the question if we can find usable/simple expressions for the coefficients a_K , A_K , C_{KK} , C_{KK}^{-1} , and hence the fluxes F^{\times} and F^{η} .

The coefficients a_K , A_K , and $C_{KK'}$

The coefficient a_K simplifies to

$$a_{\mathcal{K}}(x,\eta) = \int \kappa_{\mathcal{K}} \sigma \,\mathrm{d}\theta = \sqrt{2}\pi \frac{\eta}{\sqrt{B_1 B_2}} \int \kappa_0^* \kappa_{\mathcal{K}} \,\mathrm{d}\theta = \frac{\sqrt{2}\pi \eta}{\sqrt{B_1 B_2}} \delta_{0,\mathcal{K}}.$$

The coefficient A_K "simplifies" to

$$\begin{aligned} A_{\mathcal{K}}(x,\eta) &= \frac{\pi\eta}{2\sqrt{B_{1}B_{2}}} \cdot \\ & \cdot \left(\frac{1}{4}\eta\partial_{x}(\ln B_{1})\delta_{k_{2},0}(\delta_{k_{1},-2}+2\delta_{k_{1},0}+\delta_{k_{1},2})(\sqrt{2}\delta_{k_{3},0}-\sqrt{2/3}\delta_{k_{3},1})\right. \\ & + \frac{1}{4}\eta\partial_{x}(\ln B_{2})\delta_{k_{1},0}(\delta_{k_{2},-2}+2\delta_{k_{2},0}+\delta_{k_{2},2})(\sqrt{2}\delta_{k_{3},0}+\sqrt{2/3}\delta_{k_{3},1}) \\ & - \sqrt{\eta B_{1}}\partial_{x}b_{1}\delta_{k_{2},0}(\delta_{k_{1},-1}+\delta_{k_{1},1})L_{k_{3}}^{-} - \sqrt{\eta B_{2}}\partial_{x}b_{2}\delta_{k_{1},0}(\delta_{k_{2},-1}+\delta_{k_{2},1})L_{k_{3}}^{+} \Big), \end{aligned}$$

W

$$L_{k_3}^{\pm} := \int_{-1}^1 \sqrt{1 \pm \theta_3} L_{k_3}(\theta_3) \,\mathrm{d}\theta_3.$$

The coefficients a_K , A_K , and $C_{KK'}$

We find

$$C_{\mathcal{K}\mathcal{K}'}(x,\eta) = \frac{\eta}{2\sqrt{B_1B_2}} \left(\frac{1}{\tau} - \mathrm{i}k_1\sqrt{B_1} - \mathrm{i}k_2\sqrt{B_2}\right)\delta_{\mathcal{K}\mathcal{K}'}$$

after integrating out θ . Therefore C is a diagonal matrix.

Therefore we find the elements of the inverse matrix C^{-1} as

$$C_{KK'}^{-1}(x,\eta) = \frac{2\tau\sqrt{B_1B_2}}{\eta} \frac{1+\tau(k_1\sqrt{B_1}+k_2\sqrt{B_2})i}{1+\tau^2(k_1\sqrt{B_1}+k_2\sqrt{B_2})^2} \delta_{KK'}.$$

At this point, we have (more or less) determined the coefficients a_K , A_K , and $C_{KK'}$ that appear in the expressions for the fluxes F^{\times} and F^{η} in the conservation law. Of course, they depend on the coefficients b_j and B_j of the harmonic confinement potential V_1 .

The fluxes F^x and F^η

Recall the *d*-dimensional flux vector F^{\times} and the scalar energy flux F^{η} :

$$\begin{aligned} F^{\mathsf{x}}(x,\eta,t) &= -\sum_{K,K'\in\mathcal{K}} \mathsf{a}_{K}(x,\eta) C_{KK'}^{-1}(x,\eta) \cdot \\ &\cdot \left(\mathsf{a}_{K'}(x,\eta)^{*} \mathrm{e}^{-\mathsf{V}_{\mathbf{0}}} \nabla_{\mathsf{x}} \left(\mathrm{e}^{\mathsf{V}_{\mathbf{0}}} \frac{\rho}{N}\right) + \mathsf{A}_{K'}(x,\eta)^{*} \mathrm{e}^{-\eta} \partial_{\eta} \left(\mathrm{e}^{\eta} \frac{\rho}{N}\right)\right), \\ F^{\eta}(x,\eta,t) &= -\sum_{K,K'\in\mathcal{K}} \mathsf{A}_{K}(x,\eta)^{\mathsf{T}} C_{KK'}^{-1}(x,\eta) \cdot \\ &\cdot \left(\mathsf{a}_{K'}(x,\eta)^{*} \mathrm{e}^{-\mathsf{V}_{\mathbf{0}}} \nabla_{\mathsf{x}} \left(\mathrm{e}^{\mathsf{V}_{\mathbf{0}}} \frac{\rho}{N}\right) + \mathsf{A}_{K'}(x,\eta)^{*} \mathrm{e}^{-\eta} \partial_{\eta} \left(\mathrm{e}^{\eta} \frac{\rho}{N}\right)\right). \end{aligned}$$

Our Galerkin basis functions are $\kappa_{\mathcal{K}}(\theta) := \frac{1}{2\pi} e^{ik_1\theta_1 + ik_2\theta_2} L_{k_3}(\theta_3).$

The index set \mathcal{K} is unfortunately still $\mathbb{Z} \times \mathbb{Z} \times \mathbb{N}$: angles θ_1, θ_2 : indices $k_1, k_2 \in \mathbb{Z}$; Legendre polynomial L_{k_3} : index $k_3 \in \mathbb{N}$. Can we do better?

The fluxes F^{x} and F^{η}

First, we note the Kronecker delta in $a_{\mathcal{K}}(x,\eta) = \frac{\sqrt{2\pi\eta}}{\sqrt{B_1B_2}}\delta_{0,\mathcal{K}}$.

Second, the coefficient A_K vanishes for $|k_1| > 2$ and $|k_2| > 2$, since the complex exponentials are orthogonal to $\cos \theta_j$ and $\cos^2 \theta_j$ for all $j \in \{1, 2\}$. Therefore, regardless of the number of terms used in the expansion, the fluxes F^{\times} and F^{η} are of the form

$$\begin{split} F^{x}(x,\eta,t) &= -a_{0}(x,\eta)C_{00}^{-1}(x,\eta) \cdot \\ & \cdot \left(a_{0}(x,\eta)^{*}\mathrm{e}^{-V_{0}}\nabla_{x}\left(\mathrm{e}^{V_{0}}\frac{\rho}{N}\right) + A_{0}(x,\eta)^{*}\mathrm{e}^{-\eta}\partial_{\eta}\left(\mathrm{e}^{\eta}\frac{\rho}{N}\right)\right), \\ F^{\eta}(x,\eta,t) &= -\sum_{k_{1}=-2}^{2}\sum_{k_{2}=-2}^{2}\sum_{k_{3}=0}^{\infty}A_{K}(x,\eta)C_{KK}^{-1}(x,\eta) \cdot \\ & \cdot \left(\delta_{0,K}a_{0}(x,\eta)^{*}\mathrm{e}^{-V_{0}}\nabla_{x}\left(\mathrm{e}^{V_{0}}\frac{\rho}{N}\right) + A_{K}(x,\eta)^{*}\mathrm{e}^{-\eta}\partial_{\eta}\left(\mathrm{e}^{\eta}\frac{\rho}{N}\right)\right). \end{split}$$

Now the index set is $\mathcal{K}=\{0\}\times\{-2,-1,0,1,2\}^2\times\mathbb{N}.$ Can we do better?

The flux F^{x}

To simplify notation, we define

$$T_1 := \mathrm{e}^{-V_0}
abla_{\mathsf{x}} ig(\mathrm{e}^{V_0} rac{
ho}{N} ig) \qquad ext{and} \qquad T_2 := \mathrm{e}^{-\eta} \partial_\eta ig(\mathrm{e}^{\eta} rac{
ho}{N} ig).$$

(cf. Slotboom, Scharfetter-Gummel).

We find

$$F^{x}(x,\eta,t) = -\frac{4\pi^{2}\tau\eta}{\sqrt{B_{1}B_{2}}}T_{1} - \frac{\pi^{2}\tau\eta^{2}}{\sqrt{B_{1}B_{2}}}(\partial_{x}(\ln B_{1}) + \partial_{x}(\ln B_{2}))T_{2}.$$

This is the explicit expression for F^{\times} that can be conveniently used for numerical calculations.

The flux F^{η}

After summing over $k_1, k_2 \in \{-2, -1, 0, 1, 2\}$ and simplifying, the energy flux F^{η} still contains the infinite sum over k_3 :

$$\begin{split} F^{\eta}(x,\eta,t) &= -\frac{\pi^{2}\tau\eta^{2}}{\sqrt{B_{1}B_{2}}} \left(\partial_{x}(\ln B_{1}) + \partial_{x}(\ln B_{2})\right) T_{1} \\ &- \sum_{k_{3}=0}^{\infty} \frac{\pi^{2}\tau\eta^{2}}{24\sqrt{B_{1}B_{2}}} \left(4\eta\partial_{x}(\ln B_{1})\partial_{x}(\ln B_{2})(3\delta_{k_{3},0} - \delta_{k_{3},1})\right. \\ &+ \left(\frac{\eta(3+8\tau^{2}B_{1})(\partial_{x}(\ln B_{1}))^{2}}{1+4\tau^{2}B_{1}} + \frac{\eta(3+8\tau^{2}B_{2})(\partial_{x}(\ln B_{2}))^{2}}{1+4\tau^{2}B_{2}}\right) \left(3\delta_{k_{3},0} + \delta_{k_{3},1}\right) \\ &+ \frac{24B_{1}(\partial_{x}b_{1})^{2}}{1+\tau^{2}B_{1}} \left(L_{k_{3}}^{-}\right)^{2} + \frac{24B_{2}(\partial_{x}b_{2})^{2}}{1+\tau^{2}B_{2}} \left(L_{k_{3}}^{+}\right)^{2}\right) T_{2}. \end{split}$$

What do we know about the integrals $L_{k_3}^{\pm} = \int_{-1}^{1} \sqrt{1 \pm \theta_3} L_{k_3}(\theta_3) d\theta_3$?

Lemma

Let L_n be the Legendre polynomials on the interval [-1,1] normalized in the L^2 -norm. Then the equation

$$L_n^{\pm} = \int_{-1}^1 \sqrt{1 \pm x} L_n(x) \, \mathrm{d}x = \frac{-4(\pm 1)^n}{(2n+3)(2n-1)\sqrt{2n+1}} \qquad \forall n \in \mathbb{N}$$

holds.

Now we can sum the squares of the integrals to find

$$\sum_{k_{3}=0}^{K_{3}} (L_{k_{3}}^{+})^{2} = \sum_{k_{3}=0}^{K_{3}} (L_{k_{3}}^{-})^{2} = \frac{16(2K_{3}^{4} + 8K_{3}^{3} + 11K_{3}^{2} + 6K_{3} + 1)}{(4K_{3}^{2} + 8K_{3} + 3)^{2}},$$

whose limit as $K_3 \rightarrow \infty$ is clearly 2,

$$\sum_{k_3=0}^{\infty} (L_{k_3}^+)^2 = \sum_{k_3=0}^{\infty} (L_{k_3}^-)^2 = 2$$

Theorem (Macroscopic transport equation for tubes (d = 1))

In a tube (d = 1) given by a harmonic confinement potential, diffusive transport is described by the conservation law

 $\partial_t \rho(x,\eta,t) + \partial_x F^x(x,\eta,t) + \partial_\eta F^\eta(x,\eta,t) = 0$

with the constitutive relations

W

$$F^{x}(x,\eta,t) = -\frac{4\pi^{2}\tau\eta}{\sqrt{B_{1}B_{2}}}T_{1} - \frac{\pi^{2}\tau\eta^{2}}{\sqrt{B_{1}B_{2}}}(\partial_{x}(\ln B_{1}) + \partial_{x}(\ln B_{2}))T_{2},$$

$$\begin{split} F^{\eta}(x,\eta,t) &= -\frac{\pi^{2}\tau\eta^{2}}{\sqrt{B_{1}B_{2}}} \big(\partial_{x}(\ln B_{1}) + \partial_{x}(\ln B_{2})\big) T_{1} \\ &- \frac{\pi^{2}\tau\eta^{2}}{6\sqrt{B_{1}B_{2}}} \Big(\frac{12B_{1}(\partial_{x}b_{1})^{2}}{1+\tau^{2}B_{1}} + \frac{12B_{2}(\partial_{x}b_{2})^{2}}{1+\tau^{2}B_{2}} + 2\eta\partial_{x}(\ln B_{1})\partial_{x}(\ln B_{2}) \\ &+ \frac{\eta(3+8\tau^{2}B_{1})(\partial_{x}(\ln B_{1}))^{2}}{1+4\tau^{2}B_{1}} + \frac{\eta(3+8\tau^{2}B_{2})(\partial_{x}(\ln B_{2}))^{2}}{1+4\tau^{2}B_{2}}\Big) T_{2}, \end{split}$$
where
$$T_{1} := e^{-V_{0}}\partial_{x} \Big(e^{V_{0}}\frac{\rho}{N}\Big) \quad and \quad T_{2} := e^{-\eta}\partial_{\eta} \Big(e^{\eta}\frac{\rho}{N}\Big).$$

Numerical example no. 1 (no applied potential)

Concentration $\rho(x, \eta)$

Streamlines plot of $F^{x}(x,\eta)\mathbf{e}_{x} + F^{\eta}(x,\eta)\mathbf{e}_{\eta}$

The concentration gradient between the two baths drives the current. Current $\int F^x(10, \eta) d\eta = 0.063120$. $x \in [0, 10]$. $\eta \in [0, 10]$. $\tau := 1$. No applied potential: $V_0(x) := 0$. Confinement: $B_1(x) := B_2(x) := 1 + 5 \exp(-(x-5)^2/2)$. $b_1(x) := b_2(x) := 0$. Boundary conditions: $\rho(0, \eta) := 2 \exp(-\eta)$, $\rho(10, \eta) := \exp(-\eta)$.

Numerical example no. 2 (with applied potential)

Concentration $\rho(x, \eta)$

Streamlines plot of $F^{x}(x,\eta)\mathbf{e}_{x} + F^{\eta}(x,\eta)\mathbf{e}_{\eta}$

The applied potential works against the concentration gradient. Current $\int F^x(10,\eta) d\eta = -0.891 \, 181$. Applied potential: $V_0(x) := x$, other parameters as before.

Application to ion channels: Gramicidin A

Gramicidin A is an antibiotic.

Gramicidin increases the permeability of bacterial cell membranes inducing a current of inorganic monovalent cations (e.g., Na^+).

This lowers the ion gradient between the cytoplasm and the extracellular environment killing the bacteria.

Comparison of simulations with measured current-voltage characteristics of Gramicidin A

Left: three different ionic bath concentrations. Right: selectivity between Cs^+ and K^+ .

Application to ion channels: the KcsA channel

Ion channels such as KcsA are fundamental to signal conduction in nerves.

 Na^+ : smaller ion, but cannot pass through the channel; K^+ : larger ion, but can pass through the channel.

Comparison of simulations with measured current-voltage characteristics of KcsA

The simulated values agree very well with the observed selectivity between Na^+ and K^+ (three orders of magnitude). (Note the different units, pA and fA.)

Recent experimental realization of such confined structures

Ulrich Keyser (Cavendish Labs, Cambridge) has used optical tweezers to create a fully controlled and tunable environment to study diffusion.

[S. Pagliara, C. Schwall, and U.F. Keyser. Optimizing diffusive transport through a synthetic membrane channel. *Adv. Mater.*, 25:844–849, 2013.]

Another experiment:

[J.H. Park, J. He, B. Gyarfas, S. Lindsay, and P.S. Krstic. DNA translocating through a carbon nanotube can increase ionic current. *Nanotechnology*, 23:455107, 2012.]

Understanding nanopores for DNA sequencing and single-molecule sensing

Hagan Bayley (Oxford) and Oxford Nanopore Technologies use certain nanopores as the platform for next-generation DNA sequencing and single-molecule sensing.

Ulrich Keyser (Cavendish Labs, Cambridge) also fabricates artificial, reproducible nanopores for biosensing applications. [N.A.W. Bell et al. DNA origami nanopores. *Nano Letters*, 12(1):512–517, 2012.]

Acknowledgments: students

Master's students:

- ► Claus Aichinger: April 2013.
- ► Marina Rehrl: Sep 2011.
- Klemens Katterbauer: Dec 2010.
- Stefan Baumgartner: July 2009.

PhD students:

- Amirreza Khodadadian, MSc: Nov 2012 present.
- ► Mag. Gerhard Tulzer: Sep 2011 present.
- Mag. Stefan Baumgartner: PDE models for field-effect sensors, Aug 2009 – Dec 2012.
- Mag. Alena Bulyha: Modeling and simulation of field-effect biosensors, Oct 2008 – July 2011 (co-advised).

Postdoc:

▶ Dipl.-Ing. Dr. Martin Vasicek: Jan 2010 – Jan 2012.

Acknowledgments: funding

```
Nov 2013 – 2019 (projected):
              FWF START Prize and Project PDE models for
              nanotechnology. (9 out of 96 proposals were funded in an
              international competition among all areas of science.)
Jan 2010 - Dec 2013:
              High-potential project funded by WWTF (Viennese Science and
              Technology Fund), Mathematics and nanosensors.
Jan 2009 - Feb 2013:
              FWF project Mathematical models and characterization of
              BioFFTs
Apr 2008 - Jun 2009:
              Jubilee-fund project of the ÖAW (Austrian Academy of
              Sciences), Multiscale modeling and simulation of field-effect
              nano-biosensors. (2 out of 30 proposals were selected for
              funding.)
```


Thank you for your attention!

Homepage (with list of publications, reprints, and preprints): http://Clemens.Heitzinger.name/.

