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New applications give rise to new mathematical problems—
“never do what has been done before”

Nanotechnology is a very young field, and hence there
are many open questions:

I nanowire field-effect biosensors,
I nanowire gas sensors,
I nanopores, etc.

Physics-based modeling leads to new mathematical problems:
I Homogenization:

new multiscale problems arise in a natural manner.
I Uncertainty quantification:

to go beyond the calculation of averages.

It is important to compare measurements with
simulations. Optimal design.

2 of 52



Motivation: applications

I Ionic channels,
I Nanopores.
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Motivation: modeling

I Molecular dynamics,
I Brownian dynamics,
I Drift-diffusion equations.
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A transport equation for confined structures
such as nanowires, nanopores, and ionic channels

Derivation and analysis of a classical sub-band type model for particle
transport in narrowly confined geometries.

Confinement direction(s): treat particles on a microscopic level.
Unconfined direction(s): treat asymptotically on a much larger time scale.

Starting point is the 3D Boltzmann transport equation. We include the
complex geometry of the confinement potential.

For 2D confinement and a harmonic confinement potential, explicit expressions
for the transport coefficients in the diffusion-type equation were given.

Computationally, this yields an optimal reduction of the (6 + 1)-dimensional
problem to a (2 + 1)-dimensional problem.

[C.H. and Christian Ringhofer. A transport equation for confined structures
derived from the Boltzmann equation. Commun. Math. Sci., 9(3):829–857,
2011.]
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The basic equation

We start from the Boltzmann equation in the form

∂t f + {E , f }XP +Q[f ] = 0,

where the Hamiltonian transport term is given by the Poisson bracket

{g , f }XP := ∇Pg · ∇X f −∇Xg · ∇P f .

The energy E(X ,P) is given by

E(X ,P) := V (X ) +
|P|2

2m
,

where V (X ) is the external potential, |P|2/(2m) the kinetic energy, and m the
particle mass.
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Confinement and scaling

We split the position variable X into X = (x , y)
and the momentum variable P into P = (p, q) = (v ,w),
where x , p ∈ Rd are coordinates in the longitudinal transport direction(s)
and y , q ∈ R3−d are coordinates in the transverse confinement direction(s).

We split the potential V into two parts so that

V (x , y) = V0(x) + V1

(
x ,

y
ε

)
.

ε is the length scale of the structure in the (confined transverse) y -direction.
Hence ε� 1 is the aspect ratio of the tube or plate.

V1 is the confining potential and V0 is an external, applied potential driving
charged particles through the structure.

This scaling implies that |∇yV | = O( 1ε |∇xV |), i.e., the confining forces are
much larger that the external forces driving the particles.
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Confinement and scaling

Correspondingly, we split the energy and the Poisson bracket into

E(X ,P) := Ex(x , p) + Ey (x , y , q),

{g , f }XP = {g , f }xp + {g , f }yq,

Ex(x , p) := V0(x) +
|p|2

2m
,

Ey (x , y , q) := V1

(
x ,

y
ε

)
+
|q|2

2m
,

{g , f }xp = ∇x · (f∇pg)−∇p · (f∇xg),

{g , f }yq = ∇y · (f∇qg)−∇q · (f∇yg).

Then the Boltzmann equation becomes

∂t f + {Ex + Ey , f }xp + {Ey , f }yq +Q[f ] = 0.
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The collision operator

Due to the narrow confinement, collisions are much more likely to take place
in the transport x-direction than in the confinement y -direction.
Therefore, we model collisions to be described by a relaxation operator Q

I which locally conserves the transverse energy Ey (x , y , q) when averaged
over y

I while relaxing the longitudinal kinetic energy Ex(x , p) against a
Maxwellian distribution.

Hence, the collision operator Q is given by

Q[f ](x , y , p, q, t) :=
1
τ

(
f −M(p)

uf (x , Ey (x , y , q), t)

N(x , Ey (x , y , q))

)
,

where M is a Maxwellian, N is the density of states

N(x , η) :=
∫
δ(Ey (x , y , q)− η) dyq,

and uf (x , η, t) :=
∫
δ(Ey (x , y , q)− η)f (x , y , p, q, t) dypq.
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Summary of the setup

Now the Boltzmann equation becomes

ε∂t f + {Ex + Ey , f }xv +
1
ε
{Ey , f }yw +

1
ετ
Q[f ] = 0.

I Transport occurs in a narrow, irregular structure with aspect ratio ε.
I The confining forces are much larger than the external forces that drive

the particles through the structure, i.e., |∇xV | = O(ε|∇yV |).
I Collisions with the background conserve the transverse energy Ey while

dissipating the longitudinal energy Ex in the transport direction x .
I Collisions occur frequently on the time scale of transport in the

longitudinal transport x-direction.
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Chapman-Enskog expansion

First, we observe that the linear relaxation operator Q is a projection operator.
We define the projection operator ¶ by

¶[f ](x , y , v ,w , t) :=
ρf (x , Ey (x , y ,w), t)

N(x , Ey (x , y ,w))
M(v),

N(x , η) :=

∫
δ(Ey (x , y ,w)− η) dyw ,

ρf (x , η, t) :=

∫
δ(Ey (x , y ,w)− η)f (x , y , v ,w , t) dyvw ,

where M(v) is the Maxwellian and N(x , η) is the density-of-states function.

We find that Q = I − ¶ with I being the identity operator.

The projection ¶ projects onto the linear manifold of functions which are
multiples of the Maxwellian M(v) and depend on y and w only through the
energy Ey (x , y ,w).
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Chapman-Enskog expansion

We split the density function f (x , y , v ,w , t) into

f = f0 + εf1,
f0(x , y , v ,w , t) := ¶[f ](x , y , v ,w , t),

f1(x , y , v ,w , t) :=
1
ε

(I − ¶)[f ](x , y , v ,w , t).

Then we split the Boltzmann equation by applying the projections ¶ and
I − ¶.
Then various identities (Poisson bracket is a directional derivative; cyclicity of
the commutator trace; {Ey , φ}yw = 0 holds for any function φ which depends
on y and w only through the energy Ey ) yield

ε∂t f0 + ¶[{Ex + Ey , f0 + εf1}xv ] = 0,

ε2∂t f1 + (I − ¶)[{Ex + Ey , f0 + εf1}xv ] +
1
ε
{Ey , f0 + εf1}yw +

1
τ
f1 = 0.
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Chapman-Enskog expansion

Further simplifications are possible using again algebraic properties of the
Poisson bracket and the projection operator ¶ so that we find

ε∂t f0 + ¶[{Ex + Ey , εf1}xv ] = 0,

ε2∂t f1 + {Ex + Ey , f0 + εf1}xv − ¶[{Ex + Ey , εf1}xv ] +
1
ε
{Ey , εf1}yw +

1
τ
f1 = 0.

The first equation gives the evolution on the kernel manifold of the
operator Q; the second equation gives the evolution on the orthogonal
complement.
The macroscopic approximation is obtained by formally dropping the O(ε)
terms, ∂t f0 + ¶[{Ex + Ey , f1}xv ] = 0,

{Ex + Ey , f0}xv + {Ey , f1}yw +
1
τ
f1 = 0.

In other words, the term εf1 will stay small for all time assuming that we start
on the kernel manifold.

13 of 52



The conservation law

The first equation can be written as a conservation law for the density ρf0 .
From the weak formulation, we find that

∂tρf0(x , η, t) +∇x · F x + ∂ηF η = 0,

where the fluxes are

F x(x , η, t) :=

∫
δ(Ey − η)vf1 dyvw ,

F η(x , η, t) :=

∫
δ(Ey − η)(∇xV1 · v)f1 dyvw .

This is a conservation law for the mesoscopic fluid density ρf0 , which still
depends on the free energy η = Ey . The mesoscopic equation for ρf0 will
contain second-order partial derivatives w.r.t. x and η.

The challenge is to compute the fluxes F x and F η, i.e., to compute the density
f1 for a given f0 of the form f0(x , y , v ,w , t) = M(v)ρf0(x , Ey , t)/N(x , Ey ).
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An entropy estimate

There are two goals:
I To show well-posedness. We will show that there is a convex functional

of the density ρ, an entropy, which decays in time.
I To make the system amenable to computations (stability). We will use a

Galerkin approximation later.

We write the system as
∂tρ(x , η, t) + L1[f1](x , η, t) = 0,

L2[ρ](x , y , v ,w , t) + {Ey , f1}yw +
1
τ
f1 = 0

with the linear operators L1 and L2 defined by

L1[f1](x , η, t) :=

∫
δ(Ey (x , y ,w)− η){Ex + Ey , f1}xv dyvw ,

L2[ρ](x , y , v ,w , t) :=

{
Ex + Ey ,M(v)

ρ(x , Ey , t)

N(x , Ey )

}
xv
.
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An adjoint property

Let Ladj
1 denote the adjoint of L1 with respect to the L2 inner product.

Lemma (adjoint property for L1 and L2)

The operators L1 and L2 are related by the equation

L2[ρ](x , y , v ,w , t) = −ce−Ex−EyLadj
1

[
eV0(x)+ηρ(x , η, t)

N(x , η)

]
(x , y , v ,w , t).

Furthermore, the identity Re
(∫

eEx+Ey f ∗{Ey , f }yw dyw
)

= 0 ∀x holds for
all x and for all complex functions f (y ,w), where Re is the real part.

Here the constant c denotes the normalization constant of the Maxwellian so
that M(v) = c exp(−|v |2/2) holds.
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The entropy estimate

We use this lemma to rewrite the system as

∂tρ(x , η, t) + L1[f1](x , η, t) = 0,

−ce−Ex−EyLadj
1

[
eV0(x)+ηρ(x , η, t)

N(x , η)

]
+ {Ey , f1}yw +

1
τ
f1 = 0

and can now proof the following entropy estimate.

Theorem (entropy estimate)

Solutions (ρ, f1) of the system satisfy the entropy estimate

1
2
∂t

∫
eV0(x)+η

N(x , η)
|ρ(x , η, t)|2 dxη = − 1

cτ

∫
eEx+Ey |f1|2 dxyvw ≤ 0.
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The Galerkin approximation:
eliminating the lateral momentum v

The dependence of the operator L2 on the momentum v takes the form of a
multiple of the function M(v)v , i.e.,

L2[ρ](x , y , v ,w , t) = M(v)v ·
(
∇x

(
ρ(x , Ey , t)

N(x , Ey )

)
+
ρ(x , Ey , t)

N(x , Ey )
∇x(V0 + V1)

)
.

Since the Poisson bracket {Ey , f1}yw does not operate on the momentum
component v , the second equation allows a solution of the form

f1(x , y , v ,w , t) = M(v)v · g(x , y ,w , t),

where the function g(x , y ,w , t) ∈ Rd is vector valued for the case of a plate
(d = 2) and scalar in the case of a tube (d = 1).
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The adjoint property revisited

To exploit this structures of L1 and L2, we define the operators Λ1 and Λ2 as

Λ1[g ](x , η, t) := L1[M(v)v · g ](x , η, t),

L2[ρ](x , y , v ,w , t) = M(v)v · Λ2[ρ](x , y ,w , t),

Λ2[ρ](x , y ,w , t) := ∇x

(
ρ(x , Ey , t)

N(x , Ey )

)
+
ρ(x , Ey , t)

N(x , Ey )
∇x(V0 + V1).

Then the system becomes

∂tρ(x , η, t) + Λ1[g ](x , η, t) = 0,

Λ2[ρ](x , y ,w , t) + {Ey , g}yw +
1
τ
g = 0.
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Lemma (adjoint property for Λ1 and Λ2)

The operator Λ1 equals

Λ1[g ](x , η, t) =

∫
∇x ·

(
δ(Ey − η)g(x , y ,w , t)

)
+ ∂η

(
δ(Ey − η)∇xV1(x , y) · g

)
dyw

and the operator Λ2 is given in terms of the adjoint of Λ1 by

Λ2[ρ](x , y ,w , t) = −e−V0−Ey Λadj
1

[
eV0+η

ρ(x , η, t)

N(x , η)

]
(x , y ,w , t).

Furthermore the identity

Re
(∫

eEx+Ey gH{Ey , g}yw dyw
)

= 0 ∀x

holds for all complex functions g(y ,w).



The system

After eliminating the lateral momentum v and using the adjoint property
for Λ2, the system becomes

∂tρ(x , η, t) + Λ1[g ](x , η, t) = 0,

−e−V0−Ey Λadj
1

[
eV0+η

ρ(x , η, t)

N(x , η)

]
(x , y ,w , t) + {Ey , g}yw +

1
τ
g(x , y ,w , t) = 0.

In order to obtain a closed equation for the mesoscopic density ρ(x , η, t), the
second equation has to be inverted for g in terms of ρ.

For a general confinement potential V1(x , y), this can only be done
approximatively. This approximation will take the form of a series expansion,
i.e., Galerkin solution.
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The variable transformation Γ and its inverse Ω

A crucial aspect is the usage of a bijective variable transformation that maps

(y ,w) ∈ R6−2d to
(
u = Ey (x , y ,w), θ

)
,

where u ∈ R denotes an energy and θ ∈ R5−2d an angle.
(Recall x , v ∈ Rd and y ,w ∈ R3−d .)

We write
(u, θ) = Γ(x , y ,w),

(y ,w) = Ω(x , u, θ),

Γ(x ,Ω(x , u, θ)) = (u, θ),

Ω(x , Γ(x , y ,w)) = (y ,w),

since the variable transformation can depend on x .

Importantly,
Ey (x ,Ω(x , u, θ)) = u

holds.
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The system after the variable transformation Γ

Three lemmata and a couple of pages later, we have calculated the
transformed system

∂tρ(x , η, t) +A[g1](x , η, t) = 0,

−e−V0−uAadj
[
eV0+η

ρ(x , η, t)

N(x , η)

]
(x , u, θ, t) + σ(S · ∇θ)g1 +

σ

τ
g1(x , u, θ, t) = 0,

where

A[g1](x , η, t) :=

∫
∇x ·

(
σg1(x , η, θ, t)

)
+ ∂η

(
σ(x , η, θ)∇1V1(x ,Ωy (x , η, θ)) · g1

)
dθ,

S(x , u, θ) := (γ21γ
T
12 − γ22γT

11)(x ,Ω(x , u, θ) ∈ R5−2d ,

σ(x , u, θ) := |det(∂Ω(x , u, θ))| ,

∂Γ(x , y ,w) =
∂(u, θ)

∂(y ,w)
=:

(
γ11 γ12
γ21 γ22

)
.
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Galerkin approximation: series expansions

To calculate solutions, we have to solve for g1 in the second equation and
substitute in the first to obtain an equation for the density ρ.

We choose an orthonormal system of basis functions κK (θ) with K ∈ K
satisfying ∫

κK (θ)∗κK ′(θ) dθ = δKK ′ ,

where K is a multiindex varying in a (5− 2d)-dimensional index set K.

We expand g1 into the basis functions as

g1(x , η, θ, t) =
∑
K∈K

κK (θ)GK (x , η, t).
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Lemma (entropy estimate)

Regardless of the choice of basis functions and the number of terms used in
the Galerkin approximation, we have the inequality

1
2
∂t

∫
eV0+η

|ρ(x , η, t)|2

N(x , η)
dxη = −

∫
σ

τ
eV0+η|g1(x , η, θ, t)|2 dxηθ ≤ 0.



Galerkin approximation: summary

After the series expansion, the first equation (the conservation law) becomes

∂tρ(x , η, t) +
∑
K∈K

∇x ·
(
aK (x , η)GK (x , η, t)

)
+ ∂η

(
AK (x , η) · GK (x , η, t)

)
= 0

and the second equation becomes

aK (x , η)∗e−V0∇x
(
eV0 ρ

N

)
+ AK (x , η)∗e−η∂η

(
eη ρN

)
+
∑

K ′∈K

CKK ′(x , η)GK ′(x , η, t) = 0 ∀K ∈ K.
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Galerkin approximation: summary

The potential V1 is given, however the variable transformation Γ can still be
chosen in a suitable manner.

The coefficients, depending on V1 and Γ, are

aK (x , η) =

∫
κK (θ)σ(x , η, θ) dθ,

AK (x , η) =

∫
κK (θ)σ(x , η, θ)∇1V1(x ,Ωy (x , η, θ)) dθ,

CKK ′(x , η) =

∫
κK (θ)∗σ(x , η, θ)

(
(S · ∇θ)κK ′(θ) +

1
τ
κK ′(θ)

)
dθ,

S(x , η, θ) = (γ21γ
T
12 − γ22γT

11)(x ,Ω(x , η, θ)),

σ(x , η, θ) = |det(∂Ω(x , η, θ))| .
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Galerkin approximation: the conservation law

If the inverse of the matrix C exists, we can express the coefficients GK in
terms of ρ to find the conservation law

∂tρ(x , η, t) +∇x · F x(x , η, t) + ∂ηF η(x , η, t) = 0,

where the d -dimensional flux vector F x and the scalar flux F η are

F x(x , η, t) = −
∑

K ,K ′∈K

aK (x , η)C−1KK ′(x , η) ·

·
(
aK ′(x , η)∗e−V0∇x

(
eV0

ρ

N
)

+ AK ′(x , η)∗e−η∂η
(
eη
ρ

N
))
,

F η(x , η, t) = −
∑

K ,K ′∈K

AK (x , η)TC−1KK ′(x , η) ·

·
(
aK ′(x , η)∗e−V0∇x

(
eV0

ρ

N
)

+ AK ′(x , η)∗e−η∂η
(
eη
ρ

N
))
.
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Galerkin approximation: goals and remarks

The actual computational challenge lies in computing the inconspicuous
looking term C−1KK ′(x , η).
(K is a multiindex of the same dimension as the angular variable θ, and θ
denotes an angle in the (6− 2d)-dimensional (y ,w)-space. Hence K and θ
have 5− 2d components.)

For the case of a plate where d = 2, K is a scalar and the matrix C (x , η) has
to be inverted for every point (x , η).

For the case of a tube where d = 1, the multiindex K has three components
and the resulting tensor C (x , η) is very large even if a moderate number of
expansions terms are used in each component of θ. This is the
computationally most demanding case.

Since our goal is to derive a simple macroscopic system, we treat the case of a
tube (d = 1) in the following. To make the calculations more concrete, we
assume a harmonic confinement potential V1 in the following.
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Harmonic confinement potentials

A harmonic confinement potential V1 has the quadratic form

V1(x , y) =
1
2
(
y − b(x)

)>B(x)
(
y − b(x)

)
,

where y , b ∈ R2 and the diagonal matrix B(x) has the form

B(x) =

(
B1(x) 0
0 B2(x)

)
.

(In order to approximate arbitrary confinement potentials, we can always
minimize the difference in the forces, i.e., we minimize the functional∫

B

∣∣B(x)(y − b(x))−∇yV1(x , y)
∣∣2 dy

for every value of x .)
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Defining the variable transformation Ω

What is a suitable variable transformation?

1. First, we transform (yj ,wj), j ∈ {1, 2}, using polar coordinates. We set

yj =: bj +
√

2rj
Bj

cos θj , wj =:
√

2rj sin θj

with rj ∈ [0,∞) and θj ∈ [−π, π) for j ∈ {1, 2}.
2. Next, we use the transformation

η := r1 + r2, θ3 := r2−r1
r2+r1

, r1 = η 1−θ3
2 , r2 = η 1+θ3

2

with η ∈ [0,∞) and θ3 ∈ [−1, 1]. We have Ey (x , y ,w) = η as required.
3. Finally, combining the two transformations yields Ω as

(
y
w

)
= Ω(x , η, θ) =

(
Ωy (x , η, θ)
Ωw (x , η, θ)

)
=


b1 +

√
η(1−θ3)

B1
cos θ1

b2 +
√

η(1+θ3)
B2

cos θ2√
η(1− θ3) sin θ1√
η(1 + θ3) sin θ2

 .
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Defining the basis functions

Having found a reasonable variable transformation, how should we choose the
basis functions for the Galerkin approximation?

We define

κK (θ) :=
1
2π

eik1θ1+ik2θ2Lk3(θ3), K = (k1, k2, k3) ∈ Z× Z× N,

where the Lk3(θ3) are Legendre polynomials of degree k3 normalized in the
L2-norm on the interval [−1, 1].

The success of our procedure still depends on the question if we can find
usable/simple expressions for the coefficients aK , AK , CKK , C−1KK , and hence
the fluxes F x and F η.
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The coefficients aK , AK , and CKK ′

The coefficient aK simplifies to

aK (x , η) =

∫
κKσ dθ =

√
2π

η√
B1B2

∫
κ∗0κK dθ =

√
2πη√
B1B2

δ0,K .

The coefficient AK “simplifies” to

AK (x , η) =
πη

2
√
B1B2

·

·
(1
4
η∂x(lnB1)δk2,0(δk1,−2 + 2δk1,0 + δk1,2)(

√
2δk3,0 −

√
2/3δk3,1)

+
1
4
η∂x(lnB2)δk1,0(δk2,−2 + 2δk2,0 + δk2,2)(

√
2δk3,0 +

√
2/3δk3,1)

−
√
ηB1∂xb1δk2,0(δk1,−1 + δk1,1)L−k3

−
√
ηB2∂xb2δk1,0(δk2,−1 + δk2,1)L+k3

)
,

where
L±k3

:=

∫ 1

−1

√
1± θ3Lk3(θ3) dθ3.
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The coefficients aK , AK , and CKK ′

We find

CKK ′(x , η) =
η

2
√
B1B2

(
1
τ
− ik1

√
B1 − ik2

√
B2

)
δKK ′

after integrating out θ. Therefore C is a diagonal matrix.

Therefore we find the elements of the inverse matrix C−1 as

C−1KK ′(x , η) =
2τ
√
B1B2

η

1 + τ(k1
√
B1 + k2

√
B2)i

1 + τ2(k1
√
B1 + k2

√
B2)2

δKK ′ .

At this point, we have (more or less) determined the coefficients aK , AK , and
CKK ′ that appear in the expressions for the fluxes F x and F η in the
conservation law. Of course, they depend on the coefficients bj and Bj of the
harmonic confinement potential V1.
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The fluxes F x and F η

Recall the d -dimensional flux vector F x and the scalar energy flux F η:

F x(x , η, t) = −
∑

K ,K ′∈K

aK (x , η)C−1KK ′(x , η) ·

·
(
aK ′(x , η)∗e−V0∇x

(
eV0

ρ

N
)

+ AK ′(x , η)∗e−η∂η
(
eη
ρ

N
))
,

F η(x , η, t) = −
∑

K ,K ′∈K

AK (x , η)TC−1KK ′(x , η) ·

·
(
aK ′(x , η)∗e−V0∇x

(
eV0

ρ

N
)

+ AK ′(x , η)∗e−η∂η
(
eη
ρ

N
))
.

Our Galerkin basis functions are κK (θ) :=
1
2π

eik1θ1+ik2θ2Lk3(θ3).

The index set K is unfortunately still Z× Z× N:
angles θ1, θ2: indices k1, k2 ∈ Z; Legendre polynomial Lk3 : index k3 ∈ N.
Can we do better?
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The fluxes F x and F η

First, we note the Kronecker delta in aK (x , η) =
√
2πη√
B1B2

δ0,K .

Second, the coefficient AK vanishes for |k1| > 2 and |k2| > 2, since the
complex exponentials are orthogonal to cos θj and cos2 θj for all j ∈ {1, 2}.
Therefore, regardless of the number of terms used in the expansion, the fluxes
F x and F η are of the form

F x(x , η, t) = −a0(x , η)C−100 (x , η) ·

·
(
a0(x , η)∗e−V0∇x

(
eV0

ρ

N
)

+ A0(x , η)∗e−η∂η
(
eη
ρ

N
))
,

F η(x , η, t) = −
2∑

k1=−2

2∑
k2=−2

∞∑
k3=0

AK (x , η)C−1KK (x , η) ·

·
(
δ0,Ka0(x , η)∗e−V0∇x

(
eV0

ρ

N
)

+ AK (x , η)∗e−η∂η
(
eη
ρ

N
))
.

Now the index set is K = {0} × {−2,−1, 0, 1, 2}2 × N. Can we do better?
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The flux F x

To simplify notation, we define

T1 := e−V0∇x
(
eV0

ρ

N
)

and T2 := e−η∂η
(
eη
ρ

N
)
.

(cf. Slotboom, Scharfetter–Gummel).

We find

F x(x , η, t) = − 4π2τη√
B1B2

T1 −
π2τη2√
B1B2

(
∂x(lnB1) + ∂x(lnB2)

)
T2.

This is the explicit expression for F x that can be conveniently used for
numerical calculations.
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The flux F η

After summing over k1, k2 ∈ {−2,−1, 0, 1, 2} and simplifying, the energy flux
F η still contains the infinite sum over k3:

F η(x , η, t) = − π2τη2√
B1B2

(
∂x(lnB1) + ∂x(lnB2)

)
T1

−
∞∑

k3=0

π2τη2

24
√
B1B2

(
4η∂x(lnB1)∂x(lnB2)(3δk3,0 − δk3,1)

+

(
η(3 + 8τ2B1)(∂x(lnB1))2

1 + 4τ2B1
+
η(3 + 8τ2B2)(∂x(lnB2))2

1 + 4τ2B2

)
(3δk3,0 + δk3,1)

+
24B1(∂xb1)2

1 + τ2B1
(L−k3

)2 +
24B2(∂xb2)2

1 + τ2B2
(L+k3

)2
)
T2.

What do we know about the integrals L±k3
=

∫ 1

−1

√
1± θ3Lk3(θ3) dθ3?
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Lemma

Let Ln be the Legendre polynomials on the interval [−1, 1] normalized in the
L2-norm. Then the equation

L±n =

∫ 1

−1

√
1± xLn(x) dx =

−4(∓1)n

(2n + 3)(2n − 1)
√
2n + 1

∀n ∈ N

holds.

Now we can sum the squares of the integrals to find

K3∑
k3=0

(L+k3
)2 =

K3∑
k3=0

(L−k3
)2 =

16(2K 4
3 + 8K 3

3 + 11K 2
3 + 6K3 + 1)

(4K 2
3 + 8K3 + 3)2

,

whose limit as K3 →∞ is clearly 2,
∞∑

k3=0

(L+k3
)2 =

∞∑
k3=0

(L−k3
)2 = 2.



Theorem (Macroscopic transport equation for tubes (d = 1))

In a tube (d = 1) given by a harmonic confinement potential, diffusive
transport is described by the conservation law

∂tρ(x , η, t) + ∂xF x(x , η, t) + ∂ηF η(x , η, t) = 0

with the constitutive relations

F x(x , η, t) = − 4π2τη√
B1B2

T1 −
π2τη2√
B1B2

(
∂x(lnB1) + ∂x(lnB2)

)
T2,

F η(x , η, t) = − π2τη2√
B1B2

(
∂x(lnB1) + ∂x(lnB2)

)
T1

− π2τη2

6
√
B1B2

(
12B1(∂xb1)2

1 + τ2B1
+

12B2(∂xb2)2

1 + τ2B2
+ 2η∂x(lnB1)∂x(lnB2)

+
η(3 + 8τ2B1)(∂x(lnB1))2

1 + 4τ2B1
+
η(3 + 8τ2B2)(∂x(lnB2))2

1 + 4τ2B2

)
T2,

where T1 := e−V0∂x
(
eV0

ρ

N
)

and T2 := e−η∂η
(
eη
ρ

N
)
.



Numerical example no. 1 (no applied potential)

Concentration ρ(x , η) Streamlines plot of F x(x , η)ex + F η(x , η)eη

The concentration gradient between the two baths drives the current.
Current

∫
F x(10, η) dη = 0.063 120.

x ∈ [0, 10]. η ∈ [0, 10]. τ := 1. No applied potential: V0(x) := 0.
Confinement: B1(x) := B2(x) := 1+ 5 exp(−(x − 5)2/2). b1(x) := b2(x) := 0.
Boundary conditions: ρ(0, η) := 2 exp(−η), ρ(10, η) := exp(−η).
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Numerical example no. 2 (with applied potential)

Concentration ρ(x , η) Streamlines plot of F x(x , η)ex + F η(x , η)eη

The applied potential works against the concentration gradient.
Current

∫
F x(10, η) dη = −0.891 181.

Applied potential: V0(x) := x , other parameters as before.
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Application to ion channels: Gramicidin A

Gramicidin A is an antibiotic.

Gramicidin increases the permeability of bacterial cell membranes inducing a
current of inorganic monovalent cations (e.g., Na+).

This lowers the ion gradient between the cytoplasm and the extracellular
environment killing the bacteria.
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Comparison of simulations with measured
current-voltage characteristics of Gramicidin A
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Application to ion channels: the KcsA channel

Ion channels such as KcsA are fundamental to signal conduction in nerves.

Na+: smaller ion, but cannot pass through the channel;
K+: larger ion, but can pass through the channel.
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Comparison of simulations with measured
current-voltage characteristics of KcsA

The simulated values agree very well with the observed selectivity between
Na+ and K+ (three orders of magnitude). (Note the different units, pA and fA.)
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Recent experimental realization
of such confined structures

Ulrich Keyser (Cavendish Labs, Cambridge)
has used optical tweezers to create a fully
controlled and tunable environment to study
diffusion.
[S. Pagliara, C. Schwall, and U.F. Keyser.
Optimizing diffusive transport through a
synthetic membrane channel. Adv. Mater.,
25:844–849, 2013.]

Another experiment:
[J.H. Park, J. He, B. Gyarfas, S. Lindsay, and
P.S. Krstic. DNA translocating through a
carbon nanotube can increase ionic current.
Nanotechnology, 23:455107, 2012.]
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Understanding nanopores
for DNA sequencing and single-molecule sensing

Hagan Bayley (Oxford) and Oxford Nanopore Technologies use certain
nanopores as the platform for next-generation DNA sequencing and
single-molecule sensing.

Ulrich Keyser (Cavendish Labs, Cambridge) also fabricates artificial,
reproducible nanopores for biosensing applications. [N.A.W. Bell et al. DNA
origami nanopores. Nano Letters, 12(1):512–517, 2012.]
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Thank you for your attention!

Homepage (with list of publications, reprints, and preprints):
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