Defeating the curse of dimensionality to compute a vibrational spectrum

Gustavo Avila, Arnaud Leclerc, and Tucker Carrington

Chemistry Department
Queen's University

27 mars 2014

Objective

Compute a vibrational spectrum by solving the vibrational Schroedinger equation

$$
\begin{aligned}
& \hat{H} \psi_{k}=E_{k} \psi_{k} \\
& \hat{H}=\hat{K}+\hat{V} .
\end{aligned}
$$

Represent wavefunctions with basis functions

$$
\psi_{k}(\mathbf{q})=\sum_{n} c_{n}^{k} f_{n}(\mathbf{q})
$$

General potentials

If the potential, \hat{V}, is general, i.e.,

- not as a sum-of-products
- not a sum of terms with one, two, etc coordinates

We have developed two methods :

- one with a Smolyak quadrature
- one based a Smolyak-inspired collocation
both these methods require storing vectors with as many components as basis functions.

Sum-of-products potentials

If the potential is a sum of products one can exploit its structure to avoid storing vectors with as many components as basis functions.

We have developed a reduced rank power method scheme.

- represent wavefunctions with basis functions

$$
\psi_{k}(\mathbf{q})=\sum_{n} c_{n}^{k} f_{n}(\mathbf{q})
$$

- multiply on the left with $f_{m}(\mathbf{q})$, integrate to obtain a matrix eigenvalue problem
- compute eigenvalues and eigenvectors of the Hamiltonian matrix

Basis sets and quadrature grids are huge

Often one uses product basis functions :

$$
f_{k_{1}, k_{2}, \cdots}=\phi_{k_{1}}\left(r_{1}\right) \phi_{k_{2}}\left(r_{2}\right) \cdots \phi_{k_{N}}\left(\theta_{1}\right) \cdots
$$

Between 10 and 100 1-D functions required for each coordinate.
If n basis functions are required for each coordinate and there are
D coordinates then the size of the basis is n^{D}.
To compute vibrational levels $>10^{3 N-6}$ multi-d basis functions are required.

Does this poor scaling matter?

$$
n_{1 d} \approx 10
$$

$\mathrm{H}_{2} \mathrm{O}$
Size of matrix 10^{3}
$\mathrm{CH}_{2} \mathrm{O}$
Size of matrix 10^{6}
$\mathrm{C}_{2} \mathrm{H}_{4}$
Size of matrix 10^{12}

The curse of dimensionality

- coordinates and (orthogonal) basis functions are chosen so that matrix elements of the kinetic energy operator (KEO) can be calculated exactly (analytically)
- a quadrature is chosen that is exact for all overlap matrix elements
- one solves $\mathbf{H U}=\mathbf{U E}$
- there are no efficient iterative eigensolvers for HU = SUE

To make an effective variational method one must reduce the size of the basis and the quadrature grid

It is common to use product basis functions that are eigenfunctions of a zeroth-order Hamiltonian,

$$
H=H_{0}+\Delta
$$

H_{0} is a sum of 1 d Hamiltonians (separable).
One can remove basis functions with large zeroth-order energies.
If all the 1d Hamiltonians are identical one simply removes basis functions for which

$$
\sum_{c} n_{c}>b
$$

Pruned basis for the 2 d problem

If $3 N-6=15$ and 15 basis functions are used for each coordinate then the size of the direct product basis is 4×10^{17}.

By discarding all functions for which $\sum_{c} n_{c}>b=15$ the size of the basis is reduced to 7.7×10^{7}.

$$
\text { Basis vector : } 3 \times 10^{9} \mathrm{~GB} \rightarrow 0.6 \mathrm{~GB}
$$

It is also possible to reduce the size of the quadrature grid

- For a 12D problem, a direct product quadrature has $\sim 15^{12}$ points. Storing one vector requires about $10^{6} \mathrm{~GB}$.
- We must find a smaller grid with enough structure that we can efficiently evaluate matrix-vector products

Smolyak grids

The Smolyak quadrature equation for integrating a function $g\left(x_{1}, x_{2}, \cdots, x_{D}\right)$ can be written as a sum of D-dimensional product quadrature grids,

$$
S(D, H)=\sum_{i_{1}+i_{2}+\cdots \leq H} C_{i_{1}, \ldots, i_{D}}\left[Q^{i_{1}}\left(x_{1}\right) \otimes \cdots \otimes Q^{i_{D}}\left(x_{D}\right)\right],
$$

Using these ideas calculations for molecules with 6 atoms are possible.

Smolyak Quadrature: 2D Level4 17x1 component

(v)

Smolyak Quadrature: 2D Level4 9x3 component

$\sqrt{7}$

つac

Smolyak Quadrature: 2D Level4 5×5 component

$\sqrt{7}$

つac

Smolyak Quadrature: 2D Level4 3x9 component

Smolyak Quadrature: 2D Level4 1x17 component

(v)

Smolyak quadratures adapted to our bases work well

Grid size $\sim 5.7 \times 10^{13} \rightarrow 8.5 \times 10^{6}$
memory cost $500 \mathrm{~TB} \rightarrow 0.07 \mathrm{~GB}$

Why bother with collocation?

Collocation obviates

- integrals
- the need for basis functions with which matrix elements of the KEO are exact
- the need for orthogonal basis functions

What is collocation?

Apply $\hat{H}-E_{k}$ to

$$
\psi_{k}(\mathbf{q})=\sum_{n} u_{n}^{k} f_{n}(\mathbf{q})
$$

and determine the u_{n}^{k} by demanding that the Schroedinger equation be satisfied at a set of points, i.e. solve

$(T+V B) U=B U E$,

- $\mathbf{B} \neq 1$
and it is necessary to solve a generalized eigenvalue problem
- The \mathbf{H} and \mathbf{B} matrices of the collocation eigenvalue problem, $\mathbf{H U}=\mathbf{B U E}$
are not symmetric

Overcoming the drawbacks

$\mathbf{B} \neq \mathbf{I}$ makes collocation almost unusable (when the number of basis functions is larger than about 50'000).
There are good tools for computing eigenvalues and eigenvectors of a nonsymmetric eigenvalue problem, if $\mathbf{B}=\mathbf{I}$

> | In this talk I present a new collocation method that |
| :--- |
| obviates the need to solve a generalized eigenvalue |
| problem |

- A new tool for solving the Schroedinger equation.

Avoiding a generalized eigenvalue problem

In 1-D this is easily accomplished by using as basis functions Lagrange-like basis functions that are one at one of the collocation points and zero at all the others.
($\mathbf{B}=\mathbf{I}$ because $f_{b}\left(x_{a}\right)=\delta_{a b}$)

1-D Lagrange-like functions

Functions that spans the same space as the first m harmonic oscillator functions,

$$
a_{j}(x)=\exp \left(\frac{-x^{2}+x_{j}^{2}}{2}\right) \prod_{\substack{i=1 \\ i \neq j}}^{m}\left(\frac{x-x_{i}}{x_{j}-x_{i}}\right)
$$

Functions that spans the same space as the first m 1-D wavefunctions, ϕ_{q},

$$
a_{k}^{m}(x)=\sum_{q} \phi_{q}(x) c_{q}^{k},
$$

where $\sum_{q=1}^{m-1} M_{k^{\prime} q} c_{q}^{k}=\delta_{k, k^{\prime}}$ with $M_{k^{\prime} q}=\phi_{q}\left(x_{k^{\prime}}\right)$.

In D dimensions

In D dimensions a generalized eigenvalue problem can be avoided by using a direct product Lagrange-like basis.

The usefulness of a direct-product basis is limited by the curse of dimensionality.

If 10 basis functions per coordinate are necessary, the size of a direct product basis is $10^{3 N-6}$. This makes calculations costly, even when the Hamiltonian matrix is not computed, stored, and diagonalized.

How can one both avoid the curse and avoid a generalized eigenvalue problem?

Multidimensional collocation

The key idea is not to apply $\hat{H}-E_{n}$ to a basis representation of a wavefunction, but to a Smolyak or sparse-grid interpolant.

$$
I(D, H) \Phi_{n}\left(x_{1}, x_{2}, \cdots, x_{D}\right)=\sum_{g\left(i_{1}, i_{2}, \cdots, i_{D}\right) \leq H} C_{i_{1}, i_{2}, \cdots, i_{D}}
$$

$\times \sum_{k_{1}=1}^{m_{i_{1}}} \sum_{k_{2}=1}^{m_{i_{2}}} \cdots \sum_{k_{D}=1}^{m_{i_{D}}} \Phi_{n}\left(x_{k_{1}}^{i_{1}}, x_{k_{2}}^{i_{2}}, \cdots, x_{k_{D}}^{i_{D}}\right) a_{k_{1}}^{i_{1}}\left(x_{1}\right) a_{k_{2}}^{i_{2}}\left(x_{2}\right) \cdots a_{k_{D}}^{i_{D}}\left(x_{D}\right)$.
$C_{i_{1}, i_{2}, \cdots, i_{D}}$ coefficients are the same as those used with Smolyak quadrature and ($\mathbf{B}=\mathbf{I}$).

Multidimensional collocation

We use

$$
g\left(i_{1}, i_{2}, \cdots, i_{D}\right)=i_{1}+i_{2}+\cdots+i_{D},
$$

but better choices exist.

Smolyak interpolation is usually used with piecewise-linear basis functions. Instead, we use Lagrange-like functions that span the same space as a set 1-D eigenfunctions.

When $D=6$ and $K(=H-D+1)=11$,

$$
R_{S D P}=\frac{N_{\text {Smolyak }}}{N_{\text {direct product }}} \approx 5 \times 10^{-3} .
$$

The ratio decreases as D increases :
for $D=10$ and $K=11$,

$$
R_{S D P}=\frac{2 \times 10^{5}}{11^{10}} \approx 7 \times 10^{-6}
$$

for $D=15$ and $K=11$,

$$
R_{S D P}=\frac{3 \times 10^{6}}{11^{15}} \approx 8 \times 10^{-10}
$$

$N_{\text {Smolyak }}$ does not scale exponentially with H or D.

Requiring that the Schroedinger equation be satisfied at a point on the Smolyak grid means imposing

$$
\begin{gathered}
\sum_{g\left(i_{1}, i_{2}, \cdots, i_{D}\right) \leq H} C_{i_{1}, i_{2}, \cdots, i_{D}} \\
\times \sum_{k_{1}=1}^{m_{i_{1}}} \sum_{k_{2}=1}^{m_{i_{2}}} \cdots \sum_{k_{D}=1}^{m_{i_{D}}} \hat{K} \Phi_{n}\left(x_{k_{1}}^{i_{1}}, x_{k_{2}}^{i_{2}}, \cdots, x_{k_{D}}^{i_{D}}\right) a_{k_{1}}^{i_{1}}\left(x_{k_{1}^{\prime}}\right) a_{k_{2}}^{i_{2}}\left(x_{k_{2}^{\prime}}\right) \cdots a_{k_{D}}^{i_{D}}\left(x_{k_{D}^{\prime}}\right) \\
+V_{x_{k_{1}^{\prime}}, x_{k_{2}^{\prime}}, \cdots, x_{k_{D}^{\prime}}} \Phi_{n}\left(x_{k_{1}^{\prime}}, x_{k_{2}^{\prime}}, \cdots, x_{k_{D}^{\prime}}\right)=E_{n} \Phi_{n}\left(x_{k_{1}^{\prime}}, x_{k_{2}^{\prime}}, \cdots, x_{k_{D}^{\prime}}\right) .
\end{gathered}
$$

The matrix eigenvalue problem

$(T+V) U=U E$,

- We do not construct \mathbf{T}.
- Elements of the eigenvectors are values of wavefunctions at points.
- As H is increased, diagonal elements of \mathbf{E} and columns of \mathbf{U} converge to exact energies and wavefunction values at the Smolyak grid points.
- The number of points on the Smolyak grid is equal to the number of basis functions.

Matrix-vector products

Potential matrix-vector products are trivial.
Matrix-vector products for the KEO are done term by term.
For each term, sums are evaluated sequentially, exploiting the structure of the Smolyak grid.

The KEO can always be written

$$
\hat{K}=\sum_{i=1}^{D} W^{i}\left(x_{1}, \cdots, x_{D}\right) \frac{\partial}{\partial x_{i}}+\sum_{i=1}^{D} \sum_{j \leq i}^{D} W^{i, j}\left(x_{1}, \cdots, x_{D}\right) \frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{j}},
$$

- Cost of computing the spectrum does not depend on the form or complexity of the functions W^{i} and $W^{i, j}$
- Normal coordinates
- Full Watson KEO
- Cut eigenfunctions for 1-D bases

Results

Table: Energies computed with $b=20$ and $H=26$

sym	Assig	Exp	Luckhaus (b)	This work (c)	$b-c$
A_{1}	ground		5777.44	5777.446	-0.01
B_{1}	ν_{4}	1167.4	1171.09	1171.094	0.00
B_{2}	ν_{6}	1249.6	1252.89	1252.888	0.00
A_{1}	ν_{3}	1500.2	1508.60	1508.597	0.00
A_{1}	ν_{2}	1746.1	1749.66	1749.662	0.00
A_{1}	$2 \nu_{4}$	2327.5	2332.71	2332.716	-0.01
A_{2}	$\nu_{4}+\nu_{6}$	2422.4	2431.05	2431.051	0.00
A_{1}	$2 \nu_{6}$	2496.1	2501.93	2501.928	0.00
B_{1}	$\nu_{3}+\nu_{4}$	2667.1	2679.48	2679.477	0.00
B_{2}	$\nu_{3}+\nu_{6}$	2718.6	2728.98	2728.978	0.00
A_{1}	ν_{1}	2782.2	2782.84	2782.834	0.01
B_{2}	ν_{5}	2843.0	2841.67	2841.661	0.01
B_{1}	$\nu_{2}+\nu_{4}$	2906.0	2913.26	2913.259	0.00

Results

sym	Assig	Exp	Luckhaus (b)	This work (c)	$b-c$
A_{1}	$2 \nu_{3}$	2998.1	3015.72	3015.718	0.00
B_{2}	$\nu_{2}+\nu_{6}$	3000.6	3006.73	3006.724	0.01
A_{1}	$\nu_{2}+\nu_{3}$	3239.0	3250.41	3250.402	0.01
A_{1}	$2 \nu_{2}$	3471.6	3479.87	3479.865	0.01
B_{1}	$3 \nu_{4}$	3480.7	3485.00	3485.003	0.00
B_{2}	$2 \nu_{4}+\nu_{6}$	3586.6	3596.66	3596.665	-0.01
B_{1}	$\nu_{4}+2 \nu_{6}$	3673.5	3688.91	3688.910	0.00
B_{2}	$3 \nu_{6}$		3747.46	3747.460	0.00
A_{1}	$\nu_{3}+2 \nu_{4}$	3825.3	3840.19	3840.192	0.00
A_{2}	$\nu_{3}+\nu_{4}$				
	$+\nu_{6}$	3886.5	3902.61	3902.604	0.01
A_{1}	$\nu_{3}+2 \nu_{6}$	3937.4	3948.77	3948.759	0.01
B_{1}	$\nu_{1}+\nu_{4}$	3940.2	3946.77	3946.763	0.01

Results

sym	Assig	Exp	Luckhaus (b)	This work (c)	$b-c$
A_{2}	$\nu_{4}+\nu_{5}$	3995.8	4001.17	4001.157	0.01
B_{2}	$\nu_{1}+\nu_{6}$		4027.23	4027.211	0.02
A_{1}	$\nu_{2}+2 \nu_{4}$	4058.3	4066.64	4066.641	0.00
A_{1}	$\nu_{5}+\nu_{6}$	4083.1	4088.52	4088.499	0.02
A_{2}	$\nu_{2}+\nu_{4}$				
	$+\nu_{6}$	4163.9	4175.55	4175.540	0.01
B_{1}	$2 \nu_{3}+\nu_{4}$		4186.18	4186.178	0.00
B_{2}	$2 \nu_{3}+\nu_{6}$		4210.67	4210.645	0.03
A_{1}	$\nu_{2}+2 \nu_{6}$	4248.7	4257.93	4257.923	0.01
A_{1}	$\nu_{1}+\nu_{3}$	4253.8	4265.94	4265.906	0.03
B_{2}	$\nu_{3}+\nu_{5}$	4335.1	4345.10	4345.066	0.03
B_{1}	$\nu_{2}+\nu_{3}$				
	$+\nu_{4}$	4397.5	4413.60	4413.591	0.01

Results

sym	Assig	Exp	Luckhaus (b)	This work (c)	$b-c$
B_{2}	$\nu_{2}+\nu_{3}$				
	$+\nu_{6}$	4466.8	4479.98	4479.949	0.03
A_{1}	$3 \nu_{3}$		4520.35	4520.328	0.02
A_{1}	$\nu_{1}+\nu_{2}$	4529.4	4533.11	4533.063	0.05
B_{2}	$\nu_{2}+\nu_{5}$	4571.5	4573.60	4573.555	0.05
B_{1}	$2 \nu_{2}+\nu_{4}$	4624.3	4635.90	4635.883	0.02
A_{1}	$4 \nu_{4}$	4629.0	4627.89	4627.888	0.00
A_{1}	$\nu_{2}+2 \nu_{3}$	4730.8	4749.30	4749.263	0.04
B_{2}	$2 \nu_{2}+\nu_{6}$	4733.8	4744.14	4744.108	0.03
A_{2}	$3 \nu_{4}+\nu_{6}$	4741.9	4751.76	4751.761	0.00
A_{1}	$2 \nu_{4}+2 \nu_{6}$	4842.0	4858.07	4858.069	0.00
A_{2}	$\nu_{4}+3 \nu_{6}$		4945.24	4945.238	0.00
A_{1}	$2 \nu_{2}+\nu_{3}$	4955.2	4972.31	4972.265	0.05
B_{1}	$\nu_{3}+3 \nu_{4}$	4977.1	4991.38	4991.380	0.00

Results

sym	Assig	Exp	Luckhaus (b)	This work (c)	$b-c$
A_{1}	$4 \nu_{6}$		4990.19	4990.178	0.01
B_{2}	$\nu_{3}+2 \nu_{4}$				
	$+\nu_{6}$	5043.7	5060.42	5060.409	0.01
A_{1}	$\nu_{1}+2 \nu_{4}$	5092.4	5100.25	5100.243	0.01
B_{1}	$\nu_{3}+\nu_{4}$				
	$+2 \nu_{6}$	5104.0	5129.87	5129.855	0.01
B_{2}	$2 \nu_{4}+\nu_{5}$	5140.1	5150.73	5150.710	0.02
B_{2}	$\nu_{3}+3 \nu_{6}$	5151.0	5168.21	5168.174	0.04
A_{1}	$3 \nu_{2}$	5177.6	5191.42	5191.382	0.04
A_{2}	$\nu_{1}+\nu_{4}$				
	$+\nu_{6}$		5197.60	5197.575	0.02
B_{1}	$\nu_{2}+3 \nu_{4}$	5205.2	5211.64	5211.638	0.00

Results

sym	Assig	Exp	Luckhaus (b)	This work (c)	$b-c$
B_{1}	$\nu_{4}+\nu_{5}$				
	$+\nu_{6}$	5244.1	5258.99	5258.969	0.02
A_{1}	$\nu_{1}+2 \nu_{6}$		5265.19	5265.134	0.06
B_{2}	$\nu_{5}+2 \nu_{6}$	5312.2	5324.82	5324.788	0.03
A_{1}	$2 \nu_{3}+2 \nu_{4}$	5321.3	5345.49	5345.469	0.02
B_{2}	$\nu_{2}+2 \nu_{4}$				
	$+\nu_{6}$	5325.6	5336.91	5336.893	0.02
A_{2}	$2 \nu_{3}+\nu_{4}$				
	$+\nu_{6}$	5353.2	5382.63	5382.600	0.03
A_{1}	$2 \nu_{3}+2 \nu_{6}$	5389.4	5404.04	5403.954	0.09
B_{1}	$\nu_{1}+\nu_{3}$				
	$+\nu_{4}$		5430.42	5430.388	0.03
B_{1}	$\nu_{2}+\nu_{4}$	5417.6	5434.25	5434.234	0.02
	$+2 \nu_{6}$	5417.6			

Results

sym	Assig	Exp	Luckhaus (b)	This work (c)	$b-c$
B_{2}	$\nu_{1}+\nu_{3}$				
	$+\nu_{6}$	5433.4	5442.37	5442.232	0.14
A_{1}	$2 \nu_{1}$	5462.7	5472.06	5471.900	0.16
B_{2}	$\nu_{2}+3 \nu_{6}$		5504.12	5504.070	0.05
A_{2}	$\nu_{3}+\nu_{4}$				
	$+\nu_{5}$	5489.0	5506.75	5506.717	0.03
B_{2}	$\nu_{1}+\nu_{5}$	5530.5	5542.45	5542.290	0.16
A_{1}	$\nu_{2}+\nu_{3}$				
	$+2 \nu_{4}$	5546.5	5567.85	5567.824	0.03
A_{1}	$\nu_{3}+\nu_{5}$				
	$+\nu_{6}$	5551.3	5557.47	5557.357	0.11
A_{2}	$\nu_{2}+\nu_{3}$				
	$+\nu_{4}+\nu_{6}$	5625.5	5644.84	5644.797	0.04
A_{1}	$2 \nu_{5}$	5651.0	5653.58	5653.395	0.18

If the potential is a SOP it is possible to drastically reduce the memory cost by using different ideas

$$
n^{2 D} \rightarrow n^{D} \rightarrow \frac{(D+n)!}{D!n!} \rightarrow n
$$

If $D=20$ and $n=15$

$$
9 \times 10^{38} \mathrm{~GB} \rightarrow 3 \times 10^{15} \mathrm{~GB} \rightarrow 26 \mathrm{~GB} \rightarrow 1 \mathrm{~GB}
$$

A basis function,

$$
\Psi\left(q_{1}, \ldots, q_{D}\right)=\sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{D}=1}^{n_{D}} F_{i_{1} i_{2} \ldots i_{D}} \prod_{j=1}^{D} \theta_{i_{j}}^{j}\left(q_{j}\right)
$$

is itself a SOP if

$$
F_{i_{1} i_{2} \ldots i_{D}}=\sum_{\ell=1}^{R} \prod_{j=1}^{D} f_{i_{j}}^{(\ell, j)}
$$

The memory cost scales as $R n D$
The canonical polyadic (CP) decomposition for tensors.

- Start with
$F_{i_{1} i_{2} \ldots i_{D}}=\prod_{j=1}^{D} f_{i_{j}}^{(1, j)}$,
with some random $f_{i j}^{(1, j)}$
- the Hamiltonian is

$$
\hat{H}\left(q_{1}, \ldots, q_{D}\right)=\sum_{k=1}^{T} \prod_{j=1}^{D} h_{k j}\left(q_{j}\right)
$$

- Make basis vectors by applying \mathbf{H} to $F_{i_{1} i_{2} \ldots i_{D}}$

Block Power Method

Make a basis by applying $\widetilde{\mathbf{H}}$ to a set of B start vectors.

$$
\widetilde{H}=H-\sigma l
$$

Alternating successive applications of $\widetilde{\mathbf{H}}$ with a modified Gram-Schmidt orthogonalization, we obtains a basis of SOP vectors,

Block Power Method

The key step is

$$
\left(\mathbf{F}^{\prime}\right)_{i_{1}^{\prime} i_{2}^{\prime} \ldots i_{D}^{\prime}}=(\mathbf{H F})_{i_{1}^{\prime} \ldots i_{D}^{\prime}}
$$

$$
\begin{aligned}
& \left(\mathbf{F}^{\prime}\right)_{i_{1}^{\prime} i_{2}^{\prime} \ldots i_{D}^{\prime}}^{\prime}=(\mathbf{H F})_{i_{1}^{\prime} \ldots i_{D}^{\prime}} \\
& =\sum_{i_{1}, i_{2}, \ldots, i_{D}} \sum_{k=1}^{T} \prod_{j^{\prime}=1}^{D}\left(\mathbf{h}_{k j^{\prime}}\right)_{i_{j^{\prime}}^{\prime} i_{j}^{\prime}} \sum_{\ell=1}^{R} \prod_{j=1}^{D} f_{i_{j}}^{(\ell, j)} \\
& =\sum_{k=1}^{T} \sum_{\ell=1}^{R} \prod_{j=1}^{D} \sum_{i_{j}}\left(\mathbf{h}_{k j}\right)_{i_{i_{j}^{\prime}} i_{j}} f_{i_{j}}^{(\ell, j)} .
\end{aligned}
$$

Only 1-D matrix-vector products are required

The rank of \mathbf{F}^{\prime} is a factor of T larger than the rank of \mathbf{F}.
Applying \mathbf{H} to \mathbf{F}, with R terms, yields a vector with $R T$ terms.
The rank must therefore be reduced after each matrix-vector product.

Rank reduction

To reduce the rank, we use an alternating least squares algorithm of Beylkin and Mohlenkamp to replace

$$
\begin{aligned}
F_{i_{1} i_{2} \ldots i_{D}}^{\text {old }} & =\sum_{\ell=1}^{R_{\text {old }}} \prod_{j=1}^{D}{ }^{\text {old }} f_{i_{j}}^{(\ell, j)} \\
& \Longrightarrow F_{i_{1} i_{2} \ldots i_{D}}^{\text {new }}=\sum_{\ell=1}^{R_{\text {new }}} \prod_{j=1}^{D}{ }^{\text {new }} f_{i_{j}}^{(\ell, j)}
\end{aligned}
$$

by choosing $f_{i_{j}}^{(\ell, j)}$ to minimize $\left\|\mathbf{F}^{\text {new }}-\mathbf{F}^{\text {old }}\right\|$.

$$
\begin{aligned}
H\left(q_{1}, \ldots, q_{D}\right) & =\sum_{j=1}^{D} \frac{\omega_{j}}{2}\left(p_{j}^{2}+q_{j}^{2}\right)+\sum_{\substack{i, j=1 \\
i>j}}^{D} \alpha_{i j} q_{i} q_{j} \\
\omega_{j} & =\sqrt{j / 2}, j=1, \ldots, 6 .
\end{aligned}
$$

$\alpha_{i j}=0.1$
$D=20$
$n=10$
Reduction rank $=20$
Block size $=56$
$\operatorname{Max}\left(N_{\text {pow }}\right)=5000$

Memory cost

A single vector has 10^{20} components; $8 \times 10^{11} \mathrm{~GB}$.

With the rank reduction method, we require less than 1 GB

Table: Energy levels of the 20 coupled oscillator Hamiltonian. From left to right : energy level number, exact energy level, RRBPM energy level, relative error, normal mode assignment.

n	$E_{n, \text { th }}$	$E_{n, \text { num }}$	$\frac{E_{n, \text { num }}-E_{n, \text { th }}}{E_{n, \text { th }}}$	Assignment
0	21.719578	21.719587	4.2×10^{-7}	-
1	22.398270	22.398294	1.1×10^{-6}	ν_{1}
2	22.691775	22.691826	2.2×10^{-6}	ν_{2}
3	22.917012	22.917129	5.1×10^{-6}	ν_{3}
4	23.076962	23.077014	2.3×10^{-6}	$2 \nu_{1}$
5	23.106960	23.107006	2.0×10^{-6}	ν_{4}
6	23.274380	23.274502	5.3×10^{-6}	ν_{5}
7	23.370467	23.370629	6.9×10^{-6}	$\nu_{1}+\nu_{2}$
8	23.425814	23.425951	5.8×10^{-6}	ν_{6}
9	23.565153	23.565222	2.9×10^{-6}	ν_{7}
\vdots	\vdots	\vdots	\vdots	\vdots

n	$E_{n, \text { th }}$	$E_{n, \text { num }}$	$\frac{E_{n, \text { num }}-E_{n, \text { th }}}{E_{n, \text { h }}}$	Assignment
20	24.049160	24.049374	8.9×10^{-6}	$2 \nu_{1}+\nu_{2}$
21	24.079158	24.079914	3.1×10^{-5}	$\nu_{3}+\nu_{4}$
22	24.104506	24.104878	1.6×10^{-5}	$\nu_{1}+\nu_{6}$
23	24.114446	24.114570	5.2×10^{-6}	$2 \nu_{3}$
\vdots	\vdots	\vdots	\vdots	\vdots
30	24.342665	24.343080	1.7×10^{-5}	$\nu_{1}+2 \nu_{2}$
31	24.346217	24.346365	6.1×10^{-6}	ν_{14}
32	24.373625	24.373996	1.5×10^{-5}	$\nu_{1}+\nu_{8}$
33	24.398012	24.398676	2.7×10^{-5}	$\nu_{2}+\nu_{6}$
\vdots	\vdots	\vdots	\vdots	\vdots

n	$E_{n, \text { th }}$	$E_{n, \text { num }}$	$\frac{E_{n, \text { num }}-E_{n, \text { th }}}{E_{n, \text { th }}}$	Assignment
40	24.532333	24.533376	4.3×10^{-5}	ν_{16}
41	24.537351	24.539130	7.3×10^{-5}	$\nu_{2}+\nu_{7}$
42	24.567902	24.570246	9.5×10^{-5}	$\nu_{1}+\nu_{2}+\nu_{3}$
43	24.611100	24.613013	7.8×10^{-5}	$\nu_{1}+\nu_{10}$
\vdots	\vdots	\vdots	\vdots	\vdots
50	24.709939	24.725314	6.2×10^{-4}	ν_{18}
51	24.721068	24.765667	1.8×10^{-3}	$\nu_{1}+\nu_{11}$
52	24.727852	24.786084	2.4×10^{-3}	$3 \nu_{1}+\nu_{2}$
53	24.757850	24.810515	2.1×10^{-3}	$\nu_{1}+\nu_{2}+\nu_{4}$
54	24.762587	24.823982	2.5×10^{-3}	$\nu_{3}+\nu_{7}$
55	24.783198	24.863299	3.2×10^{-3}	$2 \nu_{1}+\nu_{6}$

Conclusion

- Smolyak ideas, whether used to do quadrature or with collocation, significantly reduce the memory cost of computing vibrational spectra
- Polynomial basis functions are much better than piecewise linear functions
- With collocation one can use non-orthogonal basis functions and obviate the need to solve a generalized eigenvalue problem.
- 12-D calculations are possible. Grid size $\sim 5.7 \times 10^{13} \rightarrow 8.5 \times 10^{6}$ Memory cost $500 \mathrm{~GB} \rightarrow 0.07 \mathrm{~GB}$
- When the potential is simple, SOP basis functions, a shifted power method, and rank reduction scheme make 20-D calculations are possible with a memory cost of less than 1 GB .

This work has been supported by the Natural Sciences and Engineering Research Council of Canada, the Réseau québécois de calcul de haute performance, and the Canada Research Chairs programme.

