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Objective

Compute a vibrational spectrum by solving the vibrational
Schroedinger equation

Ĥψk = Ekψk

Ĥ = K̂ + V̂ .

Represent wavefunctions with basis functions

ψk(q) =
∑
n

ckn fn(q)

2 / 57



General potentials

If the potential, V̂ , is general, i.e.,

not as a sum-of-products

not a sum of terms with one, two, etc coordinates

We have developed two methods :

one with a Smolyak quadrature

one based a Smolyak-inspired collocation

both these methods require storing vectors with as many
components as basis functions.
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Sum-of-products potentials

If the potential is a sum of products one can exploit its structure to
avoid storing vectors with as many components as basis functions.

We have developed a reduced rank power method scheme.
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The variational (Galerkin) method is common in chemistry

represent wavefunctions with basis functions

ψk(q) =
∑
n

ckn fn(q)

multiply on the left with fm(q), integrate to obtain a matrix
eigenvalue problem

compute eigenvalues and eigenvectors of the Hamiltonian
matrix
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Basis sets and quadrature grids are huge

Often one uses product basis functions :

fk1,k2,··· = φk1(r1)φk2(r2) · · ·φkN (θ1) · · ·

Between 10 and 100 1-D functions required for each coordinate.

If n basis functions are required for each coordinate and there are
D coordinates then the size of the basis is nD .

To compute vibrational levels > 103N−6 multi-d basis functions are
required.
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Does this poor scaling matter ?

n1d ≈ 10

H2O
Size of matrix 103

CH2O
Size of matrix 106

C2H4

Size of matrix 1012

The curse of dimensionality
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The variational method limits one’s choices

coordinates and (orthogonal) basis functions are chosen so
that matrix elements of the kinetic energy operator (KEO)
can be calculated exactly (analytically)

a quadrature is chosen that is exact for all overlap matrix
elements

one solves HU = UE

there are no efficient iterative eigensolvers for
HU = SUE
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To make an effective variational method one must reduce
the size of the basis and the quadrature grid

It is common to use product basis functions that are eigenfunctions
of a zeroth-order Hamiltonian,

H = H0 + ∆

H0 is a sum of 1d Hamiltonians (separable).

One can remove basis functions with large zeroth-order energies.

If all the 1d Hamiltonians are identical one simply removes basis
functions for which ∑

c

nc > b
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Full basis for a 2d problem
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Pruned basis for the 2d problem
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If 3N − 6 = 15 and 15 basis functions are used for each coordinate
then the size of the direct product basis is 4× 1017.

By discarding all functions for which
∑

c nc > b = 15 the size of
the basis is reduced to 7.7× 107.

Basis vector : 3× 109 GB → 0.6 GB

12 / 57



It is also possible to reduce the size of the quadrature grid

For a 12D problem, a direct product quadrature has ∼ 1512

points. Storing one vector requires about 106 GB.

We must find a smaller grid with enough structure that we
can efficiently evaluate matrix-vector products
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Smolyak grids

The Smolyak quadrature equation for integrating a function
g(x1, x2, · · · , xD) can be written as a sum of D-dimensional
product quadrature grids,

S(D,H) =
∑

i1+i2+···≤H
Ci1,...,iD [Q i1(x1)⊗ · · · ⊗ Q iD (xD)],

Using these ideas calculations for molecules with 6 atoms are
possible.
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Smolyak Quadrature: 2D Level4 17x1 component

Burkardt A Low Level Introduction to High Dimensional Sparse Grids

15 / 57



Smolyak Quadrature: 2D Level4 9x3 component

Burkardt A Low Level Introduction to High Dimensional Sparse Grids
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Smolyak Quadrature: 2D Level4 5x5 component

Burkardt A Low Level Introduction to High Dimensional Sparse Grids
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Smolyak Quadrature: 2D Level4 3x9 component

Burkardt A Low Level Introduction to High Dimensional Sparse Grids
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Smolyak Quadrature: 2D Level4 1x17 component

Burkardt A Low Level Introduction to High Dimensional Sparse Grids
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Smolyak quadratures adapted to our bases work well

Grid size ∼ 5.7× 1013 → 8.5× 106

memory cost 500 TB → 0.07 GB
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Why bother with collocation ?

Collocation obviates

integrals

the need for basis functions with which matrix elements of the
KEO are exact

the need for orthogonal basis functions
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What is collocation ?

Apply Ĥ − Ek to

ψk(q) =
∑
n

ukn fn(q)

and determine the ukn by demanding that the Schroedinger
equation be satisfied at a set of points, i.e. solve

(T + VB)U = BUE ,
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Two drawbacks of established collocation methods

B 6= I
and it is necessary to solve a generalized eigenvalue problem

The H and B matrices of the collocation eigenvalue problem,
HU = BUE
are not symmetric
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Overcoming the drawbacks

B 6= I makes collocation almost unusable (when the number of
basis functions is larger than about 50’000).
There are good tools for computing eigenvalues and eigenvectors
of a nonsymmetric eigenvalue problem, if B = I

In this talk I present a new collocation method that
obviates the need to solve a generalized eigenvalue
problem

A new tool for solving the Schroedinger equation.
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Avoiding a generalized eigenvalue problem

In 1-D this is easily accomplished by using as basis functions
Lagrange-like basis functions that are one at one of the collocation
points and zero at all the others.

( B = I because fb(xa) = δab)
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1-D Lagrange-like functions

Functions that spans the same space as the first m harmonic
oscillator functions,

aj(x) = exp

(
−x2 + x2j

2

)
m∏

i = 1
i 6= j

(
x − xi
xj − xi

)
,

Functions that spans the same space as the first m 1-D
wavefunctions, φq,

amk (x) =
∑
q

φq(x)ckq ,

where
∑m−1

q=1 Mk′qc
k
q = δk,k′ with Mk′q = φq(xk′).
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In D dimensions

In D dimensions a generalized eigenvalue problem can be avoided
by using a direct product Lagrange-like basis.

The usefulness of a direct-product basis is limited by the curse of
dimensionality.

If 10 basis functions per coordinate are necessary, the size of a
direct product basis is 103N−6. This makes calculations costly, even
when the Hamiltonian matrix is not computed, stored, and
diagonalized.

How can one both avoid the curse and avoid a
generalized eigenvalue problem ?
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Multidimensional collocation

The key idea is not to apply Ĥ − En to a basis representation of a
wavefunction, but to a Smolyak or sparse-grid interpolant.

I (D,H)Φn(x1, x2, · · · , xD) =
∑

g(i1,i2,··· ,iD)≤H

Ci1,i2,··· ,iD

×
mi1∑
k1=1

mi2∑
k2=1

· · ·
miD∑
kD=1

Φn(x i1k1 , x
i2
k2
, · · · , x iDkD )ai1k1(x1)ai2k2(x2) · · · aiDkD (xD).

Ci1,i2,··· ,iD coefficients are the same as those used with Smolyak
quadrature and ( B = I).
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Multidimensional collocation

We use

g(i1, i2, · · · , iD) = i1 + i2 + · · ·+ iD ,

but better choices exist.

Smolyak interpolation is usually used with piecewise-linear basis
functions. Instead, we use Lagrange-like functions that span the
same space as a set 1-D eigenfunctions.
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When D = 6 and K (= H − D + 1) = 11,

RSDP =
NSmolyak

Ndirect product
≈ 5× 10−3 .

The ratio decreases as D increases :
for D = 10 and K = 11,

RSDP =
2× 105

1110
≈ 7× 10−6 ;

for D = 15 and K = 11,

RSDP =
3× 106

1115
≈ 8× 10−10 .

NSmolyak does not scale exponentially with H or D.
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Requiring that the Schroedinger equation be satisfied at a point on
the Smolyak grid means imposing∑

g(i1,i2,··· ,iD)≤H

Ci1,i2,··· ,iD

×
mi1∑
k1=1

mi2∑
k2=1

· · ·
miD∑
kD=1

K̂Φn(x i1k1 , x
i2
k2
, · · · , x iDkD )ai1k1(xk′

1
)ai2k2(xk′

2
) · · · aiDkD (xk′

D
)

+Vxk′
1
,xk′

2
,··· ,xk′

D
Φn(xk′

1
, xk′

2
, · · · , xk′

D
) = EnΦn(xk′

1
, xk′

2
, · · · , xk′

D
) .
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The matrix eigenvalue problem

(T + V)U = UE,

We do not construct T.

Elements of the eigenvectors are values of wavefunctions at
points.

As H is increased, diagonal elements of E and columns of U
converge to exact energies and wavefunction values at the
Smolyak grid points.

The number of points on the Smolyak grid is equal to the
number of basis functions.
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Matrix-vector products

Potential matrix-vector products are trivial.

Matrix-vector products for the KEO are done term by term.

For each term, sums are evaluated sequentially, exploiting the
structure of the Smolyak grid.
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KEO

The KEO can always be written

K̂ =
D∑
i=1

W i (x1, · · · , xD)
∂

∂xi
+

D∑
i=1

D∑
j≤i

W i ,j(x1, · · · , xD)
∂

∂xi

∂

∂xj
,

Cost of computing the spectrum does not depend on the form
or complexity of the functions W i and W i ,j
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Test calculation

Normal coordinates

Full Watson KEO

Cut eigenfunctions for 1-D bases
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Results

Table: Energies computed with b = 20 and H = 26

sym Assig Exp Luckhaus (b) This work (c) b − c

A1 ground 5777.44 5777.446 −0.01
B1 ν4 1167.4 1171.09 1171.094 0.00
B2 ν6 1249.6 1252.89 1252.888 0.00
A1 ν3 1500.2 1508.60 1508.597 0.00
A1 ν2 1746.1 1749.66 1749.662 0.00
A1 2ν4 2327.5 2332.71 2332.716 −0.01
A2 ν4 + ν6 2422.4 2431.05 2431.051 0.00
A1 2ν6 2496.1 2501.93 2501.928 0.00
B1 ν3 + ν4 2667.1 2679.48 2679.477 0.00
B2 ν3 + ν6 2718.6 2728.98 2728.978 0.00
A1 ν1 2782.2 2782.84 2782.834 0.01
B2 ν5 2843.0 2841.67 2841.661 0.01
B1 ν2 + ν4 2906.0 2913.26 2913.259 0.00
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Results

sym Assig Exp Luckhaus (b) This work (c) b − c

A1 2ν3 2998.1 3015.72 3015.718 0.00
B2 ν2 + ν6 3000.6 3006.73 3006.724 0.01
A1 ν2 + ν3 3239.0 3250.41 3250.402 0.01
A1 2ν2 3471.6 3479.87 3479.865 0.01
B1 3ν4 3480.7 3485.00 3485.003 0.00
B2 2ν4 + ν6 3586.6 3596.66 3596.665 -0.01
B1 ν4 + 2ν6 3673.5 3688.91 3688.910 0.00
B2 3ν6 3747.46 3747.460 0.00
A1 ν3 + 2ν4 3825.3 3840.19 3840.192 0.00
A2 ν3 + ν4

+ν6 3886.5 3902.61 3902.604 0.01
A1 ν3 + 2ν6 3937.4 3948.77 3948.759 0.01
B1 ν1 + ν4 3940.2 3946.77 3946.763 0.01
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Results

sym Assig Exp Luckhaus (b) This work (c) b − c

A2 ν4 + ν5 3995.8 4001.17 4001.157 0.01
B2 ν1 + ν6 4027.23 4027.211 0.02
A1 ν2 + 2ν4 4058.3 4066.64 4066.641 0.00
A1 ν5 + ν6 4083.1 4088.52 4088.499 0.02
A2 ν2 + ν4

+ν6 4163.9 4175.55 4175.540 0.01
B1 2ν3 + ν4 4186.18 4186.178 0.00
B2 2ν3 + ν6 4210.67 4210.645 0.03
A1 ν2 + 2ν6 4248.7 4257.93 4257.923 0.01
A1 ν1 + ν3 4253.8 4265.94 4265.906 0.03
B2 ν3 + ν5 4335.1 4345.10 4345.066 0.03
B1 ν2 + ν3

+ν4 4397.5 4413.60 4413.591 0.01
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Results

sym Assig Exp Luckhaus (b) This work (c) b − c

B2 ν2 + ν3
+ν6 4466.8 4479.98 4479.949 0.03

A1 3ν3 4520.35 4520.328 0.02
A1 ν1 + ν2 4529.4 4533.11 4533.063 0.05
B2 ν2 + ν5 4571.5 4573.60 4573.555 0.05
B1 2ν2 + ν4 4624.3 4635.90 4635.883 0.02
A1 4ν4 4629.0 4627.89 4627.888 0.00
A1 ν2 + 2ν3 4730.8 4749.30 4749.263 0.04
B2 2ν2 + ν6 4733.8 4744.14 4744.108 0.03
A2 3ν4 + ν6 4741.9 4751.76 4751.761 0.00
A1 2ν4 + 2ν6 4842.0 4858.07 4858.069 0.00
A2 ν4 + 3ν6 4945.24 4945.238 0.00
A1 2ν2 + ν3 4955.2 4972.31 4972.265 0.05
B1 ν3 + 3ν4 4977.1 4991.38 4991.380 0.00
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Results

sym Assig Exp Luckhaus (b) This work (c) b − c

A1 4ν6 4990.19 4990.178 0.01
B2 ν3 + 2ν4

+ν6 5043.7 5060.42 5060.409 0.01
A1 ν1 + 2ν4 5092.4 5100.25 5100.243 0.01
B1 ν3 + ν4

+2ν6 5104.0 5129.87 5129.855 0.01
B2 2ν4 + ν5 5140.1 5150.73 5150.710 0.02
B2 ν3 + 3ν6 5151.0 5168.21 5168.174 0.04
A1 3ν2 5177.6 5191.42 5191.382 0.04
A2 ν1 + ν4

+ν6 5197.60 5197.575 0.02
B1 ν2 + 3ν4 5205.2 5211.64 5211.638 0.00
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Results

sym Assig Exp Luckhaus (b) This work (c) b − c

B1 ν4 + ν5
+ν6 5244.1 5258.99 5258.969 0.02

A1 ν1 + 2ν6 5265.19 5265.134 0.06
B2 ν5 + 2ν6 5312.2 5324.82 5324.788 0.03
A1 2ν3 + 2ν4 5321.3 5345.49 5345.469 0.02
B2 ν2 + 2ν4

+ν6 5325.6 5336.91 5336.893 0.02
A2 2ν3 + ν4

+ν6 5353.2 5382.63 5382.600 0.03
A1 2ν3 + 2ν6 5389.4 5404.04 5403.954 0.09
B1 ν1 + ν3

+ν4 5430.42 5430.388 0.03
B1 ν2 + ν4

+2ν6 5417.6 5434.25 5434.234 0.02
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Results

sym Assig Exp Luckhaus (b) This work (c) b − c

B2 ν1 + ν3
+ν6 5433.4 5442.37 5442.232 0.14

A1 2ν1 5462.7 5472.06 5471.900 0.16
B2 ν2 + 3ν6 5504.12 5504.070 0.05
A2 ν3 + ν4

+ν5 5489.0 5506.75 5506.717 0.03
B2 ν1 + ν5 5530.5 5542.45 5542.290 0.16
A1 ν2 + ν3

+2ν4 5546.5 5567.85 5567.824 0.03
A1 ν3 + ν5

+ν6 5551.3 5557.47 5557.357 0.11
A2 ν2 + ν3

+ν4 + ν6 5625.5 5644.84 5644.797 0.04
A1 2ν5 5651.0 5653.58 5653.395 0.18
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If the potential is a SOP it is possible to drastically reduce
the memory cost by using different ideas

n2D → nD → (D+n)!
D!n! → n

If D = 20 and n = 15

9× 1038GB → 3× 1015GB → 26GB → 1 GB
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Use SOP basis functions

A basis function,

Ψ(q1, . . . , qD) =

n1∑
i1=1

. . .

nD∑
iD=1

Fi1i2...iD

D∏
j=1

θjij (qj) .

is itself a SOP if

Fi1i2...iD =
R∑

`=1

D∏
j=1

f
(`,j)
ij

,

The memory cost scales as RnD

The canonical polyadic (CP) decomposition for tensors.
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How do we make the SOP basis functions ?

Start with
Fi1i2...iD =

∏D
j=1 f

(1,j)
ij

,

with some random f
(1,j)
ij

the Hamiltonian is

Ĥ(q1, . . . , qD) =
T∑

k=1

D∏
j=1

hkj(qj),

Make basis vectors by applying H to Fi1i2...iD
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Block Power Method

Make a basis by applying H̃ to a set of B start vectors.

H̃ = H − σI

Alternating successive applications of H̃ with a modified
Gram-Schmidt orthogonalization, we obtains a basis of SOP
vectors,
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Block Power Method

The key step is

(F′)i ′1i ′2···i ′D = (HF)i ′1...i ′D

(F′)i ′1i ′2···i ′D = (HF)i ′1...i ′D

=
∑

i1,i2,··· ,iD

T∑
k=1

D∏
j ′=1

(hkj ′)i ′
j′ ij′

R∑
`=1

D∏
j=1

f
(`,j)
ij

=
T∑

k=1

R∑
`=1

D∏
j=1

∑
ij

(hkj)i ′j ij f
(`,j)
ij

.

Only 1-D matrix-vector products are required
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The rank increases

The rank of F′ is a factor of T larger than the rank of F.

Applying H to F, with R terms, yields a vector with RT terms.

The rank must therefore be reduced after each matrix-vector
product.
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Rank reduction

To reduce the rank, we use an alternating least squares algorithm
of Beylkin and Mohlenkamp to replace

F old
i1i2...iD

=

Rold∑
`=1

D∏
j=1

oldf
(`,j)
ij

=⇒ F new
i1i2...iD

=
Rnew∑
`=1

D∏
j=1

newf
(`,j)
ij

,

by choosing f
(`,j)
ij

to minimize ‖ Fnew − Fold ‖.

49 / 57



Results

H(q1, . . . , qD) =
D∑
j=1

ωj

2

(
p2j + q2j

)
+

D∑
i ,j=1
i>j

αijqiqj

ωj =
√

j/2, j = 1, . . . , 6.

αij = 0.1
D = 20
n = 10
Reduction rank = 20
Block size = 56
Max(Npow ) = 5000
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Memory cost

A single vector has 1020 components ; 8× 1011 GB.

With the rank reduction method, we require less
than 1 GB
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Table: Energy levels of the 20 coupled oscillator Hamiltonian. From left
to right : energy level number, exact energy level, RRBPM energy level,
relative error, normal mode assignment.

n En,th En,num
En,num−En,th

En,th
Assignment

0 21.719578 21.719587 4.2×10−7 -
1 22.398270 22.398294 1.1×10−6 ν1
2 22.691775 22.691826 2.2×10−6 ν2
3 22.917012 22.917129 5.1×10−6 ν3
4 23.076962 23.077014 2.3×10−6 2 ν1
5 23.106960 23.107006 2.0×10−6 ν4
6 23.274380 23.274502 5.3×10−6 ν5
7 23.370467 23.370629 6.9×10−6 ν1 + ν2
8 23.425814 23.425951 5.8×10−6 ν6
9 23.565153 23.565222 2.9×10−6 ν7
...

...
...

...
...
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n En,th En,num
En,num−En,th

En,th
Assignment

20 24.049160 24.049374 8.9×10−6 2 ν1 + ν2
21 24.079158 24.079914 3.1×10−5 ν3 + ν4
22 24.104506 24.104878 1.6×10−5 ν1 + ν6
23 24.114446 24.114570 5.2×10−6 2 ν3
...

...
...

...
...

30 24.342665 24.343080 1.7×10−5 ν1 + 2 ν2
31 24.346217 24.346365 6.1×10−6 ν14
32 24.373625 24.373996 1.5×10−5 ν1 + ν8
33 24.398012 24.398676 2.7×10−5 ν2 + ν6
...

...
...

...
...
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n En,th En,num
En,num−En,th

En,th
Assignment

40 24.532333 24.533376 4.3×10−5 ν16
41 24.537351 24.539130 7.3×10−5 ν2 + ν7
42 24.567902 24.570246 9.5×10−5 ν1 + ν2 + ν3
43 24.611100 24.613013 7.8×10−5 ν1 + ν10
...

...
...

...
...

50 24.709939 24.725314 6.2×10−4 ν18
51 24.721068 24.765667 1.8×10−3 ν1 + ν11
52 24.727852 24.786084 2.4×10−3 3 ν1 + ν2
53 24.757850 24.810515 2.1×10−3 ν1 + ν2 + ν4
54 24.762587 24.823982 2.5×10−3 ν3 + ν7
55 24.783198 24.863299 3.2×10−3 2 ν1 + ν6
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Conclusion

Smolyak ideas, whether used to do quadrature or with
collocation, significantly reduce the memory cost of
computing vibrational spectra

Polynomial basis functions are much better than piecewise
linear functions

With collocation one can use non-orthogonal basis functions
and obviate the need to solve a generalized eigenvalue
problem.

12-D calculations are possible.
Grid size ∼ 5.7× 1013 → 8.5× 106

Memory cost 500 GB → 0.07 GB

When the potential is simple, SOP basis functions, a shifted
power method, and rank reduction scheme make 20-D
calculations are possible with a memory cost of less than 1 GB.
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