Defeating the curse of dimensionality to compute a vibrational spectrum

Gustavo Avila, Arnaud Leclerc, and Tucker Carrington

Chemistry Department Queen's University

27 mars 2014

Compute a vibrational spectrum by solving the vibrational Schroedinger equation

$$\hat{H}\psi_{k}=E_{k}\psi_{k}$$

$$\hat{H} = \hat{K} + \hat{V}$$
 .

Represent wavefunctions with basis functions

$$\psi_k(\mathbf{q}) = \sum_n c_n^k f_n(\mathbf{q})$$

General potentials

If the potential, \hat{V} , is general, i.e.,

- not as a sum-of-products
- not a sum of terms with one, two, etc coordinates

We have developed two methods :

- one with a Smolyak quadrature
- one based a Smolyak-inspired collocation

both these methods require storing vectors with as many components as basis functions.

If the potential is a sum of products one can exploit its structure to avoid storing vectors with as many components as basis functions.

We have developed a reduced rank power method scheme.

• represent wavefunctions with basis functions

$$\psi_k(\mathbf{q}) = \sum_n c_n^k f_n(\mathbf{q})$$

- multiply on the left with f_m(q), integrate to obtain a matrix eigenvalue problem
- compute eigenvalues and eigenvectors of the Hamiltonian matrix

Often one uses product basis functions :

$$f_{k_1,k_2,\cdots} = \phi_{k_1}(r_1)\phi_{k_2}(r_2)\cdots\phi_{k_N}(\theta_1)\cdots$$

Between 10 and 100 1-D functions required for each coordinate.

If *n* basis functions are required for each coordinate and there are D coordinates then the size of the basis is n^{D} .

To compute vibrational levels $> 10^{3N-6}$ multi-d basis functions are required.

Does this poor scaling matter?

 $n_{1d} \approx 10$

 H_2O Size of matrix 10^3

 CH_2O Size of matrix 10^6

 C_2H_4 Size of matrix 10^{12}

The curse of dimensionality

- coordinates and (orthogonal) basis functions are chosen so that matrix elements of the kinetic energy operator (KEO) can be calculated exactly (analytically)
- a quadrature is chosen that is exact for all overlap matrix elements
- one solves **HU** = **UE**
 - there are no efficient iterative eigensolvers for $\label{eq:HU} \textbf{HU} = \textbf{SUE}$

To make an effective variational method one must reduce the size of the basis and the quadrature grid

It is common to use product basis functions that are eigenfunctions of a zeroth-order Hamiltonian,

$$H = H_0 + \Delta$$

 H_0 is a sum of 1d Hamiltonians (separable).

One can remove basis functions with large zeroth-order energies. If all the 1d Hamiltonians are identical one simply removes basis functions for which

$$\sum_{c} n_{c} > b$$

Pruned basis for the 2d problem

If 3N - 6 = 15 and 15 basis functions are used for each coordinate then the size of the direct product basis is 4×10^{17} .

By discarding all functions for which $\sum_c n_c > b = 15$ the size of the basis is reduced to 7.7×10^7 .

Basis vector : 3×10^9 GB $\rightarrow 0.6$ GB

- For a 12D problem, a direct product quadrature has $\sim 15^{12}$ points. Storing one vector requires about $10^6~{\rm GB}.$
- We must find a smaller grid with enough structure that we can efficiently evaluate matrix-vector products

The Smolyak quadrature equation for integrating a function $g(x_1, x_2, \dots, x_D)$ can be written as a sum of D-dimensional product quadrature grids,

$$S(D,H) = \sum_{i_1+i_2+\cdots\leq H} C_{i_1,\ldots,i_D}[Q^{i_1}(x_1)\otimes\cdots\otimes Q^{i_D}(x_D)],$$

Using these ideas calculations for molecules with 6 atoms are possible.

Smolyak Quadrature: 2D Level4 17x1 component

Smolyak Quadrature: 2D Level4 9x3 component

Smolyak Quadrature: 2D Level4 5x5 component

Smolyak Quadrature: 2D Level4 3x9 component

Smolyak Quadrature: 2D Level4 1x17 component

Grid size $\sim 5.7 \times 10^{13} \rightarrow 8.5 \times 10^{6}$

memory cost 500 TB \rightarrow 0.07 GB

Collocation obviates

- integrals
- the need for basis functions with which matrix elements of the KEO are exact
- the need for orthogonal basis functions

What is collocation?

Apply
$$\hat{H} - E_k$$
 to

$$\psi_k(\mathbf{q}) = \sum_n u_n^k f_n(\mathbf{q})$$

and determine the u_n^k by demanding that the Schroedinger equation be satisfied at a set of points, i.e. solve

$$(T + VB)U = BUE ,$$

Two drawbacks of established collocation methods

● B ≠ I

and it is necessary to solve a generalized eigenvalue problem

 $\bullet~$ The H and B matrices of the collocation eigenvalue problem, HU=BUE

are not symmetric

 $\mathbf{B} \neq \mathbf{I}$ makes collocation almost unusable (when the number of basis functions is larger than about 50'000).

There are good tools for computing eigenvalues and eigenvectors of a nonsymmetric eigenvalue problem, if $\mathbf{B} = \mathbf{I}$

In this talk I present a new collocation method that obviates the need to solve a generalized eigenvalue problem

• A new tool for solving the Schroedinger equation.

In 1-D this is easily accomplished by using as basis functions Lagrange-like basis functions that are one at one of the collocation points and zero at all the others.

$$(\mathbf{B} = \mathbf{I} \text{ because } f_b(x_a) = \delta_{ab})$$

Functions that spans the same space as the first m harmonic oscillator functions,

$$a_j(x) = \exp\left(\frac{-x^2+x_j^2}{2}\right) \prod_{\substack{i=1\\i \neq j}}^m \left(\frac{x-x_i}{x_j-x_i}\right),$$

Functions that spans the same space as the first m 1-D wavefunctions, $\phi_{\it q},$

$$a_k^m(x) = \sum_q \phi_q(x) c_q^k \; ,$$

where $\sum_{q=1}^{m-1} M_{k'q} c_q^k = \delta_{k,k'}$ with $M_{k'q} = \phi_q(x_{k'})$.

In D dimensions a generalized eigenvalue problem can be avoided by using a direct product Lagrange-like basis.

The usefulness of a direct-product basis is limited by the curse of dimensionality.

If 10 basis functions per coordinate are necessary, the size of a direct product basis is 10^{3N-6} . This makes calculations costly, even when the Hamiltonian matrix is not computed, stored, and diagonalized.

How can one **both** avoid the curse and avoid a generalized eigenvalue problem ?

The key idea is not to apply $\hat{H} - E_n$ to a basis representation of a wavefunction, but to a Smolyak or sparse-grid interpolant.

$$I(D, H)\Phi_n(x_1, x_2, \cdots, x_D) = \sum_{\substack{g(i_1, i_2, \cdots, i_D) \le H \\ g(i_1, i_2, \cdots, i_D) \le H }} C_{i_1, i_2, \cdots, i_D}$$

$$\times \sum_{k_1=1}^{m_{i_1}} \sum_{k_2=1}^{m_{i_2}} \cdots \sum_{k_D=1}^{m_{i_D}} \Phi_n(x_{k_1}^{i_1}, x_{k_2}^{i_2}, \cdots, x_{k_D}^{i_D}) a_{k_1}^{i_1}(x_1) a_{k_2}^{i_2}(x_2) \cdots a_{k_D}^{i_D}(x_D).$$

 C_{i_1,i_2,\cdots,i_D} coefficients are the same as those used with Smolyak quadrature and ($\mathbf{B} = \mathbf{I}$).

We use

$$g(i_1,i_2,\cdots,i_D)=i_1+i_2+\cdots+i_D,$$

but better choices exist.

Smolyak interpolation is usually used with piecewise-linear basis functions. Instead, we use Lagrange-like functions that span the same space as a set 1-D eigenfunctions.

When D = 6 and K(= H - D + 1) = 11,

$$R_{SDP} = rac{N_{Smolyak}}{N_{direct\ product}} pprox 5 imes 10^{-3} \; .$$

The ratio decreases as D increases : for D = 10 and K = 11,

$$R_{SDP} = rac{2 imes 10^5}{11^{10}} pprox 7 imes 10^{-6}$$
 ;

for D = 15 and K = 11,

$$R_{SDP} = rac{3 imes 10^6}{11^{15}} pprox 8 imes 10^{-10} \; .$$

 $N_{Smolyak}$ does not scale exponentially with H or D.

Requiring that the Schroedinger equation be satisfied at a point on the Smolyak grid means imposing

$$\sum_{\substack{g(i_1,i_2,\cdots,i_D) \leq H \\ x_{i_1} = 1}} C_{i_1,i_2,\cdots,i_D} \\ \times \sum_{k_1=1}^{m_{i_1}} \sum_{k_2=1}^{m_{i_2}} \cdots \sum_{k_D=1}^{m_{i_D}} \hat{K} \Phi_n(x_{k_1}^{i_1}, x_{k_2}^{i_2}, \cdots, x_{k_D}^{i_D}) a_{k_1}^{i_1}(x_{k_1'}) a_{k_2}^{i_2}(x_{k_2'}) \cdots a_{k_D}^{i_D}(x_{k_D'}) \\ + V_{x_{k_1'}, x_{k_2'}, \cdots, x_{k_D'}} \Phi_n(x_{k_1'}, x_{k_2'}, \cdots, x_{k_D'}) = E_n \Phi_n(x_{k_1'}, x_{k_2'}, \cdots, x_{k_D'}) .$$

(T + V)U = UE

• We do not construct **T**.

٠

- Elements of the eigenvectors are values of wavefunctions at points.
- As *H* is increased, diagonal elements of **E** and columns of **U** converge to exact energies and wavefunction values at the Smolyak grid points.
- The number of points on the Smolyak grid is equal to the number of basis functions.

Potential matrix-vector products are trivial.

Matrix-vector products for the KEO are done term by term.

For each term, sums are evaluated sequentially, exploiting the structure of the Smolyak grid.

The KEO can always be written

$$\hat{K} = \sum_{i=1}^{D} W^{i}(x_{1}, \cdots, x_{D}) \frac{\partial}{\partial x_{i}} + \sum_{i=1}^{D} \sum_{j \leq i}^{D} W^{i,j}(x_{1}, \cdots, x_{D}) \frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{j}} ,$$

• Cost of computing the spectrum does not depend on the form or complexity of the functions W^i and $W^{i,j}$

- Normal coordinates
- Full Watson KEO
- Cut eigenfunctions for 1-D bases

Table: Energies computed with b = 20 and H = 26

sym	Assig	Exp	Luckhaus (<i>b</i>)	This work (<i>c</i>)	b-c
A_1	ground		5777.44	5777.446	-0.01
B_1	$ u_4$	1167.4	1171.09	1171.094	0.00
B_2	ν_6	1249.6	1252.89	1252.888	0.00
A_1	ν_3	1500.2	1508.60	1508.597	0.00
A_1	ν_2	1746.1	1749.66	1749.662	0.00
A_1	$2\nu_4$	2327.5	2332.71	2332.716	-0.01
A_2	$ u_{4} + u_{6} $	2422.4	2431.05	2431.051	0.00
A_1	$2\nu_6$	2496.1	2501.93	2501.928	0.00
B_1	$\nu_{3} + \nu_{4}$	2667.1	2679.48	2679.477	0.00
B_2	$\nu_{3} + \nu_{6}$	2718.6	2728.98	2728.978	0.00
A_1	ν_1	2782.2	2782.84	2782.834	0.01
B_2	ν_5	2843.0	2841.67	2841.661	0.01
B_1	$\nu_2 + \nu_4$	2906.0	2913.26	2913.259	0.00

sym	Assig	Exp	Luckhaus (<i>b</i>)	This work (<i>c</i>)	b-c
A_1	$2\nu_3$	2998.1	3015.72	3015.718	0.00
B_2	$\nu_{2} + \nu_{6}$	3000.6	3006.73	3006.724	0.01
A_1	$\nu_2 + \nu_3$	3239.0	3250.41	3250.402	0.01
A_1	$2\nu_2$	3471.6	3479.87	3479.865	0.01
B_1	$3\nu_4$	3480.7	3485.00	3485.003	0.00
B_2	$2\nu_4 + \nu_6$	3586.6	3596.66	3596.665	-0.01
B_1	$ u_4 + 2 u_6 $	3673.5	3688.91	3688.910	0.00
B_2	$3\nu_6$		3747.46	3747.460	0.00
A_1	$\nu_{3} + 2\nu_{4}$	3825.3	3840.19	3840.192	0.00
A_2	$\nu_3 + \nu_4$				
	$+\nu_6$	3886.5	3902.61	3902.604	0.01
A_1	$\nu_{3} + 2\nu_{6}$	3937.4	3948.77	3948.759	0.01
B_1	$\nu_1 + \nu_4$	3940.2	3946.77	3946.763	0.01

sym	Assig	Exp	Luckhaus (<i>b</i>)	This work (<i>c</i>)	b-c
A_2	$ u_4 + u_5 $	3995.8	4001.17	4001.157	0.01
B_2	$ u_1 + \nu_6 $		4027.23	4027.211	0.02
A_1	$\nu_2 + 2\nu_4$	4058.3	4066.64	4066.641	0.00
A_1	$\nu_{5} + \nu_{6}$	4083.1	4088.52	4088.499	0.02
A_2	$_{2}$ $\nu_{2} + \nu_{4}$				
	$+\nu_6$	4163.9	4175.55	4175.540	0.01
B_1	$2\nu_3 + \nu_4$		4186.18	4186.178	0.00
B_2	$2\nu_3 + \nu_6$		4210.67	4210.645	0.03
A_1	$\nu_2 + 2\nu_6$	4248.7	4257.93	4257.923	0.01
A_1	$\nu_1 + \nu_3$	4253.8	4265.94	4265.906	0.03
B_2	$\nu_{3} + \nu_{5}$	4335.1	4345.10	4345.066	0.03
B_1	$\nu_2 + \nu_3$				
	$+\nu_4$	4397.5	4413.60	4413.591	0.01

sym	Assig	Exp	Luckhaus (<i>b</i>)	This work (<i>c</i>)	b-c
<i>B</i> ₂	$\nu_2 + \nu_3$				
	$+\nu_6$	4466.8	4479.98	4479.949	0.03
A_1	$3\nu_3$		4520.35	4520.328	0.02
A_1	$ u_1 + \nu_2 $	4529.4	4533.11	4533.063	0.05
B_2	$\nu_2 + \nu_5$	4571.5	4573.60	4573.555	0.05
B_1	$2\nu_2 + \nu_4$	4624.3	4635.90	4635.883	0.02
A_1	$4\nu_4$	4629.0	4627.89	4627.888	0.00
A_1	$\nu_2 + 2\nu_3$	4730.8	4749.30	4749.263	0.04
B_2	$2\nu_2 + \nu_6$	4733.8	4744.14	4744.108	0.03
A_2	$3\nu_4 + \nu_6$	4741.9	4751.76	4751.761	0.00
A_1	$2\nu_4 + 2\nu_6$	4842.0	4858.07	4858.069	0.00
A_2	$ u_4 + 3 u_6 $		4945.24	4945.238	0.00
A_1	$2\nu_2 + \nu_3$	4955.2	4972.31	4972.265	0.05
B_1	$\nu_{3} + 3\nu_{4}$	4977.1	4991.38	4991.380	0.00

sym	Assig	Exp	Luckhaus (<i>b</i>)	This work (<i>c</i>)	b-c
A_1	$4\nu_6$		4990.19	4990.178	0.01
B_2	$\nu_{3} + 2\nu_{4}$				
	$+\nu_6$	5043.7	5060.42	5060.409	0.01
A_1	$ u_1 + 2 u_4 $	5092.4	5100.25	5100.243	0.01
B_1	$\nu_{3} + \nu_{4}$				
	$+2\nu_{6}$	5104.0	5129.87	5129.855	0.01
B_2	$2\nu_4 + \nu_5$	5140.1	5150.73	5150.710	0.02
B_2	$\nu_{3} + 3\nu_{6}$	5151.0	5168.21	5168.174	0.04
A_1	$3\nu_2$	5177.6	5191.42	5191.382	0.04
A_2	$\nu_1 + \nu_4$				
	$+\nu_6$		5197.60	5197.575	0.02
B_1	$\nu_2 + 3\nu_4$	5205.2	5211.64	5211.638	0.00

sym	Assig	Exp	Luckhaus (<i>b</i>)	This work (<i>c</i>)	b-c
B_1	$ u_4 + u_5 $				
	$+\nu_6$	5244.1	5258.99	5258.969	0.02
A_1	$ u_1 + 2 u_6 $		5265.19	5265.134	0.06
B_2	$\nu_{5} + 2\nu_{6}$	5312.2	5324.82	5324.788	0.03
A_1	$2\nu_3 + 2\nu_4$	5321.3	5345.49	5345.469	0.02
B_2	$\nu_2 + 2\nu_4$				
	$+\nu_6$	5325.6	5336.91	5336.893	0.02
A_2	$2\nu_3 + \nu_4$				
	$+\nu_6$	5353.2	5382.63	5382.600	0.03
A_1	$2\nu_3 + 2\nu_6$	5389.4	5404.04	5403.954	0.09
B_1	$\nu_1 + \nu_3$				
	$+\nu_4$		5430.42	5430.388	0.03
B_1	$\nu_2 + \nu_4$				
	$+2\nu_{6}$	5417.6	5434.25	5434.234	0.02

sym	Assig	Exp	Luckhaus (<i>b</i>)	This work (<i>c</i>)	b-c
<i>B</i> ₂	$\nu_1 + \nu_3$				
	$+\nu_6$	5433.4	5442.37	5442.232	0.14
A_1	$2\nu_1$	5462.7	5472.06	5471.900	0.16
B_2	$\nu_2 + 3\nu_6$		5504.12	5504.070	0.05
A_2	$\nu_{3} + \nu_{4}$				
	$+\nu_5$	5489.0	5506.75	5506.717	0.03
B_2	$\nu_1 + \nu_5$	5530.5	5542.45	5542.290	0.16
A_1	$\nu_2 + \nu_3$				
	$+2\nu_{4}$	5546.5	5567.85	5567.824	0.03
A_1	$\nu_{3} + \nu_{5}$				
	$+\nu_6$	5551.3	5557.47	5557.357	0.11
A_2	$\nu_2 + \nu_3$				
	$+\nu_{4} + \nu_{6}$	5625.5	5644.84	5644.797	0.04
A_1	$2\nu_5$	5651.0	5653.58	5653.395	0.18

If the potential is a SOP it is possible to drastically reduce the memory cost by using different ideas

$$n^{2D} \rightarrow n^D \rightarrow \frac{(D+n)!}{D!n!} \rightarrow n$$

If D = 20 and n = 15

$$9 \times 10^{38} GB \rightarrow 3 \times 10^{15} GB \rightarrow 26 GB \rightarrow 1 \text{ GB}$$

A basis function,

$$\Psi(q_1,\ldots,q_D) = \sum_{i_1=1}^{n_1} \ldots \sum_{i_D=1}^{n_D} F_{i_1 i_2 \ldots i_D} \prod_{j=1}^D \theta_{i_j}^j(q_j) \; .$$

is itself a SOP if

$$F_{i_1 i_2 \dots i_D} = \sum_{\ell=1}^R \prod_{j=1}^D f_{i_j}^{(\ell,j)} ,$$

The memory cost scales as RnD

The canonical polyadic (CP) decomposition for tensors.

• Start with

$$F_{i_1i_2...i_D} = \prod_{j=1}^D f_{i_j}^{(1,j)}$$
,
with some random $f_{i_j}^{(1,j)}$

• the Hamiltonian is

$$\hat{H}(q_1,\ldots,q_D)=\sum_{k=1}^T\prod_{j=1}^Dh_{kj}(q_j),$$

• Make basis vectors by applying **H** to $F_{i_1i_2...i_D}$

Make a basis by applying $\widetilde{\mathbf{H}}$ to a set of B start vectors.

$$\widetilde{H} = H - \sigma I$$

Alternating successive applications of $\widetilde{\mathbf{H}}$ with a modified Gram-Schmidt orthogonalization, we obtains a basis of SOP vectors,

Block Power Method

The key step is

$$(\mathbf{F}')_{i'_1i'_2\cdots i'_D} = (\mathbf{HF})_{i'_1\cdots i'_D}$$

$$(\mathbf{F}')_{i'_{1}i'_{2}\cdots i'_{D}} = (\mathbf{H}\mathbf{F})_{i'_{1}\cdots i'_{D}}$$

= $\sum_{i_{1},i_{2},\cdots,i_{D}} \sum_{k=1}^{T} \prod_{j'=1}^{D} (\mathbf{h}_{kj'})_{i'_{j'}i_{j'}} \sum_{\ell=1}^{R} \prod_{j=1}^{D} f_{i_{j}}^{(\ell,j)}$
= $\sum_{k=1}^{T} \sum_{\ell=1}^{R} \prod_{j=1}^{D} \sum_{i_{j}} (\mathbf{h}_{kj})_{i'_{j}i_{j}} f_{i_{j}}^{(\ell,j)}.$

Only 1-D matrix-vector products are required

The rank of \mathbf{F}' is a factor of T larger than the rank of \mathbf{F} .

Applying **H** to **F**, with R terms, yields a vector with RT terms.

The rank must therefore be reduced after each matrix-vector product.

To reduce the rank, we use an alternating least squares algorithm of Beylkin and Mohlenkamp to replace

$$\begin{aligned} F_{i_1 i_2 \dots i_D}^{\mathsf{old}} &= \sum_{\ell=1}^{R_{\mathsf{old}}} \prod_{j=1}^{D} {}^{\mathsf{old}} f_{i_j}^{(\ell,j)} \\ \implies F_{i_1 i_2 \dots i_D}^{\mathsf{new}} = \sum_{\ell=1}^{R_{\mathsf{new}}} \prod_{j=1}^{D} {}^{\mathsf{new}} f_{i_j}^{(\ell,j)} , \end{aligned}$$

by choosing $f_{i_i}^{(\ell,j)}$ to minimize $\| \mathbf{F}^{\text{new}} - \mathbf{F}^{\text{old}} \|$.

$$H(q_1,\ldots,q_D) = \sum_{j=1}^D \frac{\omega_j}{2} \left(p_j^2 + q_j^2 \right) + \sum_{\substack{i,j=1\\i>j}}^D \alpha_{ij} q_i q_j$$
$$\omega_i = \sqrt{j/2}, \ j = 1,\ldots,6.$$

 $\begin{array}{l} \alpha_{ij}=0.1\\ D=20\\ n=10\\ \text{Reduction rank}=20\\ \text{Block size}=56\\ \text{Max}(N_{pow})=5000 \end{array}$

A single vector has 10^{20} components; 8×10^{11} GB.

With the rank reduction method, we require less than 1 $\ensuremath{\mathsf{GB}}$

Table: Energy levels of the 20 coupled oscillator Hamiltonian. From left to right : energy level number, exact energy level, RRBPM energy level, relative error, normal mode assignment.

n	$E_{n,th}$	E _{n,num}	$\frac{E_{n,\text{num}}-E_{n,\text{th}}}{E_{n,\text{th}}}$	Assignment
0	21.719578	21.719587	4.2×10^{-7}	-
1	22.398270	22.398294	$1.1{ imes}10^{-6}$	$ u_1 $
2	22.691775	22.691826	2.2×10^{-6}	ν_2
3	22.917012	22.917129	5.1×10^{-6}	$ u_3$
4	23.076962	23.077014	2.3×10^{-6}	$2 \nu_1$
5	23.106960	23.107006	2.0×10^{-6}	$ u_4$
6	23.274380	23.274502	5.3×10^{-6}	$ u_5$
7	23.370467	23.370629	6.9×10^{-6}	$ u_1 + \nu_2 $
8	23.425814	23.425951	5.8×10^{-6}	$ u_6$
9	23.565153	23.565222	2.9×10^{-6}	$ u_7$
÷	÷	:	÷	:

n	$E_{n,\mathrm{th}}$	E _{n,num}	$\frac{E_{n,\text{num}}-E_{n,\text{th}}}{E_{n,\text{th}}}$	Assignment
20	24.049160	24.049374	8.9×10^{-6}	$2\nu_1 + \nu_2$
21	24.079158	24.079914	3.1×10^{-5}	$\nu_{3} + \nu_{4}$
22	24.104506	24.104878	$1.6 imes 10^{-5}$	$ u_1 + u_6 $
23	24.114446	24.114570	5.2×10^{-6}	$2 \nu_3$
÷	:	÷	÷	:
30	24.342665	24.343080	$1.7 { imes} 10^{-5}$	$ u_1 + 2 u_2 $
31	24.346217	24.346365	6.1×10^{-6}	$ u_{14}$
32	24.373625	24.373996	$1.5 { imes} 10^{-5}$	$ u_1 + \nu_8 $
33	24.398012	24.398676	2.7×10^{-5}	$\nu_{2} + \nu_{6}$
÷	÷	÷	:	÷

n	$E_{n,\mathrm{th}}$	E _{n,num}	$\frac{E_{n,\text{num}}-E_{n,\text{th}}}{E_{n,\text{th}}}$	Assignment
40	24.532333	24.533376	4.3×10^{-5}	$ u_{16}$
41	24.537351	24.539130	7.3×10^{-5}	$\nu_2 + \nu_7$
42	24.567902	24.570246	$9.5 imes 10^{-5}$	$\nu_1 + \nu_2 + \nu_3$
43	24.611100	24.613013	$7.8 imes 10^{-5}$	$ u_1 + u_{10} $
÷	÷	÷	÷	÷
50	24.709939	24.725314	6.2×10^{-4}	$ u_{18}$
51	24.721068	24.765667	1.8×10^{-3}	$ u_1 + u_{11} $
52	24.727852	24.786084	2.4×10^{-3}	$3 \nu_1 + \nu_2$
53	24.757850	24.810515	2.1×10^{-3}	$ u_1 + \nu_2 + \nu_4 $
54	24.762587	24.823982	2.5×10^{-3}	$\nu_{3} + \nu_{7}$
55	24.783198	24.863299	3.2×10^{-3}	$2\nu_1 + \nu_6$

Conclusion

- Smolyak ideas, whether used to do quadrature or with collocation, significantly reduce the memory cost of computing vibrational spectra
- Polynomial basis functions are much better than piecewise linear functions
- With collocation one can use non-orthogonal basis functions and obviate the need to solve a generalized eigenvalue problem.
- 12-D calculations are possible. Grid size $\sim 5.7 \times 10^{13} \rightarrow 8.5 \times 10^{6}$ Memory cost 500 GB $\rightarrow 0.07$ GB
- When the potential is simple, SOP basis functions, a shifted power method, and rank reduction scheme make 20-D calculations are possible with a memory cost of less than 1 GB.

This work has been supported by the Natural Sciences and Engineering Research Council of Canada, the Réseau québécois de calcul de haute performance, and the Canada Research Chairs programme.