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Introduction

Many physical models are described by evolution equations containing stiff and
non stiff term. Example: Prototype of hyperbolic system with relaxation

∂tu + ∂xv = 0,

∂tv + ∂xp(u) = −1
ε

(v − f (u)),

As ε → 0 we get, formally, the local equilibrium v = f (u) while u satisfies the
conservation equation

∂tu + ∂x f (u) = 0.

Chen, Levermore and Liu (CPAM, 1994) proved that U → E(u), u satisfying the
relaxed equation, provided a suitable subcharacteristic condition is satisfied.
The argument can be generalized to N × N system.
An Asymptotic Preserving scheme has to capture such a limiting behavior.
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Additive and partitioned form

Here we shall use (mainly) finite difference discretization in space for simplicity,
and concentrate on time discretization, so we can see the problem as a system
of ODES:

y ′ = f (y)︸︷︷︸
Explicit

+
1
ε
g(y)︸ ︷︷ ︸

Implicit

, (1)

The stiffness is associated to one of the terms on the RHS.
We say that in this case the stiffness is additive.

In other cases the stiffness can be associated to a variable, e.g.

u′ = F (u, v), εv ′ = G(u, v) (2)

We say that the system is partitioned.
With y = (u, v)T , f = (F , 0)T , g = (0,G)T ,
partitioned can be seen as a particular case of additive.
With y = u + v , you can write (1) in the form (2) with F (u, v) = f (y) and
G(u, v) = g(y), however the number of variables is doubled.
A natural choice for all such cases is offered by IMEX methods.
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General formulation

[Boscarino, Filbet, GR, J. Sci. Comput., submitted]
In many cases the separation of scales is not additive nor partitioned.
We may have a situation of the form

du

dt
(t) = Hε(t, u(t), u(t)), ∀ t ≥ t0,

u(t0) = u0,

(3)

with H: R× Rm × Rm → Rm sufficiently regular.
Dependence on the second argument of H is non stiff.
Dependence on the third argument is stiff.
This includes partitioned and additive as particular cases.
Strong relation with partitions systems: by setting y = z/ε, system (3) implies

dy

dt
(t) = H(t, y(t), z(t)/ε),

ε
dz

dt
(t) = H(t, y(t), z(t)/ε),
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Doubled system?
By doubling the variables, the systems takes a partitioned form.
Partitioned methods: apply two different R-K methods, i.e.

ĉ Â

b̂T

c A

bT
(4)

treat y with the method on the left, and z with the one on the right.
Then one has, for the stage fluxes:

ki = H (tn + ĉi∆t,Yi ,Zi ) , `i = H (tn + ci∆t,Yi ,Zi ) , 1 ≤ i ≤ s,

with

Yi = yn + ∆t
i−1∑
j=1

âi,j kj , Zi = yn + ∆t
i∑

j=1

aij `j , 1 ≤ i ≤ s,

and the numerical solutions at the next time step are

yn+1 = yn + ∆t
s∑

i=1

b̂i ki , zn+1 = yn + ∆t
s∑

i=1

bi `i .
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Avoid doubling

Remarks

if ĉ = c then k = ` ⇒ H has to be computed only once per stage.

furthermore if b̂ = b ⇒ yn+1 = zn+1,
if b̂ 6= b and yn = zn ⇒ yn+1 6= zn+1,
however if both schemes are consistent to order p one can choose any one
of the two, say the one to compute yn+1, and then set n← n + 1, and
zn = yn

finally, if ĉ = c and the two schemes have different orders, then the
difference yn+1 − zn+1 can be used to estimate the local error
⇒ time step control.

In all such cases, no duplication of variables is needed!

Several numerical tests are presented (see talk by Francis Filbet)
Skip applications
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Reaction diffusion problem

ω = (ω1, ω2) : R+ × (0, 2π)2 7→ R2


∂ω1

∂t
= ∆ω1 − α1(t)ω2

1 +
9
2
ω1 + ω2 + f (t),

∂ω2

∂t
= ∆ω2 +

7
2
ω2 , t ≥ 0,

with α(t) = 2 et/2 and f (t) = −2e−t/2. Initial conditions compatible with exact
solution 

ω1(t, x , y) = exp(−0.5t) (1 + cos(x)),

ω2(t, x , y) = exp(−0.5t) cos(2 x).

Separate explicit variable u = (u1, u2) from implicit v = (v1, v2), according to:

H(t, u, v) =


∆v1 − α(t)u1 v1 +

9u1

2
+ v2 + f (t)

∆v2 +
7 v2

2

 .
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R-D equation: results

Fourth order accurate space discretization (error is mainly in time dis-
cretization).
Hyperbolic CFL condition ∆t = ∆x/2.
Schemes SSP2 and SSP3.
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Nonlinear convection-diffusion equation


∂ω

∂t
+ [V + µ∇ log(ω)] · ∇ω − µ∆ω = 0 , (t, x) ∈ R+ × R2,

ω0(t = 0) = e−‖x‖
2/2,

where V = (1, 1)T , µ = 0.5 . The exact solution is given by

ω(t, x) =
1√

4µ t + 1
exp

(
−‖x − V t‖2

8µ t + 2

)
, t ≥ 0, x ∈ R2.

H(t, u, v) = − (V + µ∇ log(u)) · ∇v + µ∆v .
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Nonlinear c.-d. equation: results

x ∈ (−10, 10)2. Final time T = 0.5.
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Hele-Shaw flow

∂ω

∂t
+

∂

∂x

(
ω
∂3ω

∂x3

)
= 0, x ∈ R, t ≥ 0, (5)

with ω(x , t = 0) = ω0(x) ≥ 0.
Numerical results are compared with two solutions:

ω(t, x) =
1

120(t + τ)1/5

[
r2 − x2

(t + τ)2/5

]2

+

,

where [·]+ denotes the positive part.
We have chosen r = 2, τ = 4−5 and x ∈ (−2, 2).
and a smooth exact solution obtained by adding a suitable source term.
Equation preserves positivity. We found no high order discretization that
preserves positivity.
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Hele-Shaw flow

H(t, u, v) = − ∂

∂x

(
u
∂3v

∂x3

)
+ f (t, x).

Concerning the space discretization, we apply a second order centred finite
difference scheme for the space discretization

H∆(t, ui , vi ) = −
Fi+1/2 −Fi−1/2

∆x
+ f (t + 1, xi ),

with
Fi+1/2 = ui+1/2

vi+2 − 3vi + 3vi−1 − vi−2

∆x3 ,

Hyperbolic CFL condition is used on the time step.
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Hele-Shaw flow: results
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A.K. test case

Consider
y ′ = 1− k |y |y , y(0) = 0

with a change of variables y → y/
√
k and t → t/

√
k the k disappears

(equivalent to k = 1).
The exact solution to this problem is

y(t) = tanh(t)

The stationary solution as t →∞ is ȳ = 1.
Now we consider different IMEX schemes applied to this problem, in the
fashion illustrated before.
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Two kinds of Implicit-Explicit Euler

Two tableaux are possible for IMEX Euler.
Simple splitting:

0 0
1

0 1
1

The application of the method gives

y1 = y0 + ∆t(1− |y0|y1)

which can be solved to
y1 =

y0 + ∆t

1 + ∆t|y0|
Stationary solution ȳ :

ȳ = ȳ + ∆t(1− |ȳ |ȳ)

which can be uniquely solved giving ȳ = 1 ⇒ Equilibria are maintained.
If y0 = 0 then y1 = ∆t. If ∆t > 1 the profile is not monotone.



Motivations Semi-implicit Applications Kurganov’s test case Degenerate Convection Diffusion All Mach number flow Conclusions

Another form of Implicit-Explicit Euler [ARS(1,1,1)]:

0 0 0
1 1 0

1 0

0 0 0
1 0 1

0 1

By applying this scheme to the problem one gets:

y1 =
y0 + ∆t

1 + ∆t(y0 + ∆t(1− |y0|y0))

If y0 = 0 then

y1 =
∆t

1 + ∆t2
< 1

therefore no overshoots are possible (at the first step).
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Asymptotic behavior as t →∞:

ȳ =
ȳ + ∆t

1 + ∆tȳ + ∆t2 −∆t2|ȳ |ȳ

Look for positive ȳ ⇒ |ȳ | = ȳ . Simplifying:

(∆tȳ − 1)(ȳ2 − 1) = 0

which gives two positive solutions:

ȳ1 = 1, ȳ2 = 1/∆t

⇒ for ∆t > 1 the asymptoric solution is wrong!
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Comparison of various IMEX schemes

Start with N = 100, so ∆t = 1/10.
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Comparison of various IMEX schemes

Start with N = 20, so ∆t = 1/2.
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Comparison of various IMEX schemes

Start with N = 10, so ∆t = 1.
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Comparison of various IMEX schemes

Start with N = 5, so ∆t = 2.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t

y
Kurganov test, N = 5

 

 
IE−Euler
ARS(1,1,1)
SSP(2,2,2)
SSP2(3,3,2)
GSA1
GSA2
Exact



Motivations Semi-implicit Applications Kurganov’s test case Degenerate Convection Diffusion All Mach number flow Conclusions

Some S-IMEX schemes appear to preserve both monotonicity of the solu-
tion and stationary solution. A deeper analysis is required.



Motivations Semi-implicit Applications Kurganov’s test case Degenerate Convection Diffusion All Mach number flow Conclusions

Multispecies kinematic flow problems

[S. Boscarino, R. Bürger, P. Mulet, G. R., L. M. Villada, SISC (2015).]
We shall consider problems of the form

∂tΦ + ∂x f (Φ) = ∂x
(
B(Φ)∂xΦ

)
, (6)

where Φ(x , t) = (φ1, . . . , φN)T is the unknown vector function,
f (Φ) = (f1(Φ), . . . , fN(Φ))T is vector of flux density,
B(Φ) is a given N × N matrix function expressing a diffusive correction.
B(Φ) = 0 on a set of nonzero measure, ⇒ strongly degenerate problem.
Boundary conditions: either periodic or zero flux.
Two concrete applications: model of polydisperse sedimentation
(diffusive correction describes sediment compressibility)[Burger et al, 2003],
and multiclass Lighthill-Whitham-Richards (MCLWR) traffic model
[Benzoni and Colombo 2003, Lighthill and Whitham 1955, Richards 1956, . . .]
the diffusive correction describes effects of reaction times and anticipation lengths.
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Space discretization

Method of lines approach. Space is divided into M uniform cells. Set of
ODEs:

dΦ
dt

= − 1
∆x

(∆−f )(Φ) +
1

∆x2B(Φ)Φ, (7)

where Φ = (Φ1(t), . . . ,ΦM(t))T ∈ RNM : unknown solution,
Φj(t) ≈ Φ(xj , t), j = 1, . . . ,M,
(∆−f )(Φ) ∈ RNM : numerical flux differences [discretization of ∂x f (Φ)],
B(Φ) ∈ R(NM)×(NM): block tridiagonal matrix [discretization of ∂x(B(Φ)∂xΦ))].
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Model 1: Poydisperse sedimentation

φi : volume fraction of specie i .
Initial-boundary value problem in a (vertical) interval [0, L].
BC: zero flux at both ends, i.e.

f (Φ)− B(Φ)∂xΦ = 0 forx = 0 and x = L,

Flux density functions:

fi (Φ) = µ%̄sφiV (φ)(1− φ)(δi − δTΦ), i = 1, . . . ,N, (8)

µ > 0: viscosity constant, %̄s > 0: solid mass density minus fluid density,
δi := d2

i /d
2
1 , δ := (δ1 = 1, δ2, . . . , δN)T.

The expression for V (φ) is given by

V (φ) =

{
(1− φ)nRZ−2 for 0 ≤ φ ≤ φmax,
0 otherwise,

(9)
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The diffusion matrix is given by

B(Φ) := (αij)1≤i,j≤N ,

with

αij =
µV (φ)

gφ

{
(1− φ)φi (δi − δTΦ)σ′e(φ)

−
[
δiδij − δjφi −

φi
φ

(δi − δTΦ)

]
σe(φ)

}
, i , j = 1, . . . ,N,
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Model 2: Diffusively corrected MCLWR model

Describes a population of vehicles.
vmax
i : preferred velocity of vehicle class i , where
vmax
1 > vmax

2 > · · · > vmax
N > 0.

This preferential velocity is multiplied by a limitation function V = V (φ),
describes drivers’ attitude to reduce velocity in presence of other cars.
Diffusion matrix:

B(Φ) := (αij)1≤i,j≤N ,

with

αij(Φ) = −V ′(φ)
[
Li + τi

(
V ′(φ)(vmax)TΦ +

(
vmax
j − vmax

i

)
V (φ)

)]
φiv

max
i
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Time discretization

IMEX schemes The convection term is explicit, and the degenerate diffu-
sion term is fully implicit. The simplest prototype scheme IMEX-Euler

Φn+1 = Φn − ∆t

∆x
(∆−f )(Φn) +

∆t

∆x2B(Φn+1)Φn+1, (10)

Higher order schemes are obtained by higher order IMEX. The implemen-
tation requires some sort of Newton’s iteration.
S-IMEX schemes Semi-IMplict-EXplicit schemes.
When we write the problem in the form

dΦ∗

dt
= C(Φ∗) +D(Φ∗,Φ)

where we denote by a ∗ the variables that will be treated explicitly, and
with no star the implicit variables.
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Numerical results for model 1

Typical profile obtained with N = 4
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Enlargement of previous figure. Comparison among various (S)IMEX schemes.
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Accuracy and cost comparison
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Linearly implicit schemes are generally less accurate but more cost effective
than their non-linear counterparts.
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Numerical results for model 2

Several schemes have been compared on a typical test for model 2. Error
vs M (left) and error vs CPU (right) are reported.
Linearly implicit schemes are those with continuous line.
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Summarizing the comparison between the two approaches

IMEX approach:
provides sharper and less oscillatory profiles for the same space and
time discretization.
requires iterative solution of non-linear equation

S-IMEX approach:
slightly degraded solition, with small spurious oscillations
no iterative solver ⇒ it is in general more cost effective than IMEX-I.

Error of S-IMEX over IMEX is mainly concentrated near discontinuities
⇒ hybrid scheme is desirable:
IMEX near discontinuities, S-IMEX elsewhere
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All Mach number flow

When Mach number is very small, acoustic waves are much faster than
material waves.
In many cases such acoustic waves possess very small energy, and one is
not interested in resolving them.
Consider Euler equations of gas dynamics.
If explicit schemes are adopted, then the time CFL time restriction is dic-
tated by the sound speed:

∆t < ∆x/cmax

where
cmax = max

Ω
(|u|+ cs)

with cs = (∂p/∂ρ)s is the sound speed.
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Incompressible vs compressible flow

For incompressible flow, in which the acoustic wave carry no energy and
propagate at infinite speed, the pressure plays the role of a Lagrange mul-
tiplier, necessary to impose the incompressibility of the flow.
Incompressible Euler equations may be written in the form

∂u

∂t
= −Pu · ∇u

where the operator P denotes the divergence-free projector.
The CFL time restriction of “explicit” schemes is therefore

∆t < ∆x/umax(tn)

where umax(tn) = maxΩ |u(x , tn)|
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High Mach number:
compressible flow: hyperbolic systems of conservation laws
shock discontinuities are generic
conservation schemes are necessary (at least near discontinuity) in
order to guarantee consistency for weak solutions
CFL restriction is physiological since one is in general interested in
acoustic waves

Small mach number:
quasi-incompressible flow
often one is not interested in resolving acoustic waves
material shocks do not form from smooth initial data and acoustic
shocks have negligible amplitude
classical CFL restriction is pathological: it is due to the stiffness of
the problem and should be avoided.
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Success and insuccess of semi-implicit

Here we consider a simple first order in time IMEX scheme appled to low
Mach number Euler equation of gas dynamics.
We consider separately the case of

isentropic gas dynamics
complete Euler equations

Furthermore, we consider both IMEX and S-IMEX approaches.
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IMEX scheme for isentropic gas dynamics on staggered grid

Consider the equations for isentropic gas dynamics. The equations are
rescaled so that the small Mach number ε explicitly appears in the equa-
tions:

ρt + mx = 0

mt +

(
m2

ρ
+

p

ε2

)
x

= 0

The system is closed by p = ργ .
Integrate the equation on a staggeerd grid, from time tn to tn+1
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ρ̄n+1
j+1/2 = ρ̄nj+1/2 −∆t

∆x
(mm+1

j+1 −mn+1
j )

m̄n+1
j+1/2 = m̄n

j+1/2 −∆t

∆x
(f nj+1 − f nj ) − ∆t

ε2∆x
(p̃j+1 − p̃j)

where f nj = (m̄n
j )2/ρ̄nj . Second order in space is obtained by standard

reconstruction adopted in Nessyahu-Tadmor scheme, es.

ρ̄j+1/2 =
ρ̄j+1 + ρ̄j

2
+

1
8

(ρ′j − ρ′j+1)∆x

with ρ′j a first order approximation of the first derivative on cell j (we use
minmod in most cases).
A similar equation can be written for mn+1

j . Using such equation, and
plugging it in the equation for ρ̄n+1

j+1/2 one obtains an equation of the form:
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ρ̄n+1
j+1/2 = ρ∗j+1/2 +

∆t2

ε2∆x2 (p̃j+3/2 − 2p̃j+1/2 + p̃j−1/2)

where by ρ∗j+1/2 we denote quantities that can be computed explicitly (in
a conservative way) and by p̃ we denote:

p̃ = (ρ̄n+1)γ in the IMEX case

p̃ = (ρ̄n)γ−1ρ̄n+1 in the S-IMEX case

Notice that:
in the IMEX case a non linear system has to be solved for each time
step
in practice it is simpler to use the pn+1 as unknown and consider
ρ = ρ(p), since in this case the nonlinearity is in the diagonal of the
system.
the S-IMEX scheme is only linearly implicit
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isentropic gas dynamics

Consider the 2× 2 system of Eueler equation, with
p(ρ) = ρ2

ρ(x , 0) = 1.0,m(x , 0) = 1− ε2

2 , x ∈ [0, 0.2]
⋃

[0.8, 1],
ρ(x , 0) = 1 + ε2,m(x , 0) = 1, x ∈ [0, 0.2],

ρ(x , 0) = 1,m(x , 0) = 1 + ε2

2 , x ∈ [0.3, 0.7],
ρ(x , 0) = 1− ε2,m(x , 0) = 1, x ∈ [0.7, 0.8],

(11)

This example consists of several Riemann problems, and has been used by
Degond and Tang, 2011.
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Numerical results for scheme S-IMEX

Here are the results for S-IMEX after one time step, for ε = 0.05
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Spurious oscillations appear immediately.
Needless to say, the method does not converge.
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Numerical results for scheme IMEX
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Numerical results at time T = 0.05 with ∆x = 1/200,∆t = 1/2000, for
the density (Left) and momentum (Right) for ε = 0.8. The solid line is
the reference solution calculated with ∆x = 1/500 and ∆t = 1/20000.
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Numerical results for scheme IMEX
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Same as before, with ε = 0.3.
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Numerical results for scheme IMEX-I
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Same as before, with ε = 0.05.
The results are very close to those obtained by Degond and Tang, except
that our scheme is only first order in time.
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Complete Euler equations

Consider the compressible Euler equations in 1D. We rescale the equa-
tions to emphasize the (possibly) small Mach number ε. For simplicity we
assume a polytropic gas with constant γ.

ρt + mx = 0

mt + (ρu2 + p/ε2)x = 0
Et + ((E + p)u)x = 0

where u = m/ρ is the fluid velocity.
Closure relation p = (γ − 1)E − (γ − 1)ε2ρu2/2.
The idea is now that as ε � 1, the first equation becomes less and less
relevant, while the total energy is essentially proportional to the pressure.
Therefore we write an implicit system using the last two equations, and
then compute ρn+1 by post processing.
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Discretize equations on a staggered grid, with a first order IMEX-E method
in time, obtaining:

ρ̄n+1
j+1/2 = ρ̄nj+1/2 −∆t

∆x
(mn+1

j+1 −mn+1
j )

m̄n+1
j+1/2 = m̄n

j+1/2 −∆t

∆x

3− γ
2

(f nj+1 − f nj ) −∆t

∆x

γ − 1
ε2

(E n+1
j+1 − E n+1

j )

Ē n+1
j+1/2 = Ē n

j+1/2 −∆t

∆x
(gn

j+1 − gn
j ) −γ ∆t

∆x
(E n+1

j+1 un
j − E n+1

j un
j )

Here for short we denoted f = ρu2 and g = −(γ − 1)ρu3/2.
Just as in the case of isentropic gas dynamics, an equation for mn+1

j is adopted
and its expression is substituted in the equation for the energy obtaining:

E n+1
j+1/2 = E∗

j+1/2 + γ
∆t2

ε2∆x2 (un
j+3/2E

n+1
j+3/2 − 2un

j+1/2E
n+1
j+1/2 + un

j−1/2E
n+1
j−1/2)

where, as usual, by E∗j+1/2 denotes something that can be computed explicitly.
At variance with the case of the isentropic case, the milder nonlinearity allows
use of S-IMEX scheme, providing effective solution with no iterative solver.
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Two colliding acoustic pulses problem

We consider a weakly compressible test problem. The setup consists of
two colliding acoustic pulses in a weakly compressible regime. The domain
is −L 6 x 6 L = 2/ε and the initial data are given by

ρ(x , 0) = ρ0 + 1
2ερ1

(
1− cos

( 2πx
L

))
, ρ0 = 0.955, ρ1 = 2.0,

u(x , 0) = 1
2u0 sign(x)

(
1− cos

( 2πx
L

))
, u0 = 2

√
γ,

p(x , 0) = p0 + 1
2εp1

(
1− cos

( 2πx
L

))
, p0 = 1.0, p1 = 2γ,

(12)
We set ε = 1/11. Number of cells N = 440.
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Complete Euler: results

Second order in space, first order in time.
Number of cells N = 440. Time step set by (material) CFL:
∆t = CFL ∗∆x/umax Periodic BC.
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Left: same as before, at time T = 1.63.
Right: Effective CFL number CFL ∗ cmax/umax vs time.
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Conclusions and perspectives

IMEX in time & FD or FV in space provide very effective tools for
numerical solution of a vast class of evolutive systems containing
stiff and non stiff terms.
In a system one has to identify the stiff and non stiff dependence of
the variables (which is not necessarily "additive" or "partitioned" in
the classical sense).
In many cases the nature of the stiffness is linear, thus allowing a
very effective treatment by taking only linearly implicit schemes,
without affecting the accuracy (S-IMEX approach)
A very simple semi-implicit scheme for the Euler equations of gas
dynamics is proposed and tested on insentropic and full Euler
equations in 1 space dimension.
S-IMEX approach works for the full Euler equations, while isentropic
case (with non-linear p(ρ)) requires an IMEX approach.



Motivations Semi-implicit Applications Kurganov’s test case Degenerate Convection Diffusion All Mach number flow Conclusions

Conclusions and perspectives

IMEX in time & FD or FV in space provide very effective tools for
numerical solution of a vast class of evolutive systems containing
stiff and non stiff terms.

In a system one has to identify the stiff and non stiff dependence of
the variables (which is not necessarily "additive" or "partitioned" in
the classical sense).
In many cases the nature of the stiffness is linear, thus allowing a
very effective treatment by taking only linearly implicit schemes,
without affecting the accuracy (S-IMEX approach)
A very simple semi-implicit scheme for the Euler equations of gas
dynamics is proposed and tested on insentropic and full Euler
equations in 1 space dimension.
S-IMEX approach works for the full Euler equations, while isentropic
case (with non-linear p(ρ)) requires an IMEX approach.



Motivations Semi-implicit Applications Kurganov’s test case Degenerate Convection Diffusion All Mach number flow Conclusions

Conclusions and perspectives

IMEX in time & FD or FV in space provide very effective tools for
numerical solution of a vast class of evolutive systems containing
stiff and non stiff terms.
In a system one has to identify the stiff and non stiff dependence of
the variables (which is not necessarily "additive" or "partitioned" in
the classical sense).

In many cases the nature of the stiffness is linear, thus allowing a
very effective treatment by taking only linearly implicit schemes,
without affecting the accuracy (S-IMEX approach)
A very simple semi-implicit scheme for the Euler equations of gas
dynamics is proposed and tested on insentropic and full Euler
equations in 1 space dimension.
S-IMEX approach works for the full Euler equations, while isentropic
case (with non-linear p(ρ)) requires an IMEX approach.



Motivations Semi-implicit Applications Kurganov’s test case Degenerate Convection Diffusion All Mach number flow Conclusions

Conclusions and perspectives

IMEX in time & FD or FV in space provide very effective tools for
numerical solution of a vast class of evolutive systems containing
stiff and non stiff terms.
In a system one has to identify the stiff and non stiff dependence of
the variables (which is not necessarily "additive" or "partitioned" in
the classical sense).
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without affecting the accuracy (S-IMEX approach)

A very simple semi-implicit scheme for the Euler equations of gas
dynamics is proposed and tested on insentropic and full Euler
equations in 1 space dimension.
S-IMEX approach works for the full Euler equations, while isentropic
case (with non-linear p(ρ)) requires an IMEX approach.



Motivations Semi-implicit Applications Kurganov’s test case Degenerate Convection Diffusion All Mach number flow Conclusions

Conclusions and perspectives

IMEX in time & FD or FV in space provide very effective tools for
numerical solution of a vast class of evolutive systems containing
stiff and non stiff terms.
In a system one has to identify the stiff and non stiff dependence of
the variables (which is not necessarily "additive" or "partitioned" in
the classical sense).
In many cases the nature of the stiffness is linear, thus allowing a
very effective treatment by taking only linearly implicit schemes,
without affecting the accuracy (S-IMEX approach)
A very simple semi-implicit scheme for the Euler equations of gas
dynamics is proposed and tested on insentropic and full Euler
equations in 1 space dimension.

S-IMEX approach works for the full Euler equations, while isentropic
case (with non-linear p(ρ)) requires an IMEX approach.



Motivations Semi-implicit Applications Kurganov’s test case Degenerate Convection Diffusion All Mach number flow Conclusions

Conclusions and perspectives

IMEX in time & FD or FV in space provide very effective tools for
numerical solution of a vast class of evolutive systems containing
stiff and non stiff terms.
In a system one has to identify the stiff and non stiff dependence of
the variables (which is not necessarily "additive" or "partitioned" in
the classical sense).
In many cases the nature of the stiffness is linear, thus allowing a
very effective treatment by taking only linearly implicit schemes,
without affecting the accuracy (S-IMEX approach)
A very simple semi-implicit scheme for the Euler equations of gas
dynamics is proposed and tested on insentropic and full Euler
equations in 1 space dimension.
S-IMEX approach works for the full Euler equations, while isentropic
case (with non-linear p(ρ)) requires an IMEX approach.



Motivations Semi-implicit Applications Kurganov’s test case Degenerate Convection Diffusion All Mach number flow Conclusions

Work in progress

Although accuracy issues are effectively treated by IMEX schemes,
there is a lot to do in terms of stability, in order to understand when
linearly implicit discretization is sufficient and when it is necessary to
resort to some more non-linear scheme.

Smaller values of Mach number for the full Euler have not been
explored.
A general framework is under investigation for the construction of
high order all-Mach number schemes on staggered grids.

Thank you!
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