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Hyperbolic conservation laws

• We consider nonlinear hyperbolic systems of conservation laws

∂t u +∇ · f (u) = 0

u(x , 0) = u0(x).
(1)

for u = u(x , t) : Rd × R+ → RN .

• Hyperbolic conservation laws model quantities which are conserved over time: mass,
momentum, energy, number of particles, magnetic fields, etc.

• Hyperbolic conservation laws are used in modeling:
• Flow in porous media (the Buckley Leverett equation)
• Tsunamis, storm surges, tidal waves (the shallow water equations)
• Gas dynamics (the Euler equations)
• Flow of plasmas, solar physics (the magnetohydrodynamic equations)
• +++
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Weak solutions

∂t u +∇ · f (u) = 0 (1)

If f (u) is nonlinear then the wave speed f ′(u) depends on the solution itself:

(a) Linear (∂t u + ∂x u = 0) (b) Nonlinear (∂t u +
(

u2/2
)

x
= 0)

Discontinuities (shocks) appear, and (1) cannot be interpreted in the classical sense.
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Weak solutions

∂t u +∇ · f (u) = 0 (1)

The solutions of (1) are in general discontinuous, so we must interpret (1) in the sense of
distributions:

Definition

A function u ∈ L∞(Rd × R+) is a weak solution of (1) if∫
Rd

∫
R+

uϕt + f (u) · ∇ϕ dxdt +

∫
Rd

u(x , 0)ϕ(x , 0) dx = 0

for all ϕ ∈ C 1
c (Rd × R+).
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Entropy conditions

∂t u +∇ · f (u) = 0 (1)

• After the formation of shocks there are infinitely many weak solutions.

• Motivated from physics, entropy conditions are imposed to single out a unique “physical”
solution.

Definition

An entropy pair is a convex function η(u), together with a function q(u) such that
q′(u) = η′(u) · f ′(u).

• Entropy should be dissipated at shocks:

Definition

A weak solution u is an entropy solution of (1) if

η(u)t +∇ · q(u) 6 0

for all entropy pairs (η, q) (in the sense of distributions).
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Section 1

Stability of the initial-value problem
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Eq. (1) as a dynamical system – a cartoon

Figure : Cartoon of solution space

• Each point • represents an initial data function u0.

• Each u0 is evolved in time to u(T ) = ST u0.

• The spread RT of u(T ) depends on the spread R0 of u0.

• The system is stable (with respect to initial data) if RT → 0 when R0 → 0.
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Well-posedness: scalar equations

∂t u +∇ · f (u) = 0

u(x , 0) = u0(x)
(1)

Theorem (Kruzkov 1970)

For scalar conservation laws in any number of dimensions d > 1, there exists a unique entropy
solution of (1). The solutions are stable with respect to initial data:∫

Rd
|u(x , t)− ũ(x , t)| dx 6

∫
Rd
|u0(x)− ũ0(x)| dx for all t > 0

for entropy solutions u and ũ with initial data u0 and ũ0.

There is a wealth of stable, convergent numerical methods for scalar conservation laws (Lax &
Friedrichs, Crandall & Majda, Tadmor, Osher, Roe, Johnson & Szepessy, +++)
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Well-posedness: systems of equations

∂t u +∇ · f (u) = 0

u(x , 0) = u0(x)
(1)

For systems of equations (N > 1), much less is known.

Theorem (Lax 1957, Glimm 1965, Bressan et al. 2000)

For systems of equations in one dimension d = 1, there exists a unique entropy solution of (1)
whenever the initial data is sufficiently small (i.e., sufficiently close to a constant solution).

De Lellis et al.

Two-dimensional isentropic Euler is ill-posed in the sense of entropy solutions.

There is no general convergence theory of numerical methods for multidimensional systems of
conservation laws.
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Summary

To summarize:

• Scalar, multidimensional conservation laws are well-posed: there is existence, uniqueness and
stability of solutions.

• For scalar conservation laws, there are efficient, high-order accurate numerical schemes which
are stable and convergent.

• There is no general existence, uniqueness and stability theory for multidimensional systems of
conservation laws.

• No numerical scheme is known to converge for “large” initial data.
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The Euler equations

• As an example we consider the two-dimensional Euler equations for compressible, polytropic
ideal gases,

∂

∂t


ρ
ρvx

ρvy

E

+
∂

∂x


ρvx

ρv2
x + p
ρvx vy

(E + p)vx

+
∂

∂y


ρvy

ρvx vy

ρv2
y + p

(E + p)vy

 = 0.

The density ρ, velocity field (vx , vy ), pressure p and total energy E are related by the
equation of state

E =
p

γ − 1
+
ρ(v2

x + v2
y )

2
.

• To approximate this system we use a standard finite volume method.
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Instability of hyperbolic systems

• Consider initial data

(
ρ vx vy p

)
=


(

1 0.5 0 2.5
)

if y 6 0.25 or y > 0.75(
2 −0.5 0 2.5

)
if 0.25 < y < 0.75.

(periodically in x , y ∈ [0, 1]). This is a steady state.

• We add a small perturbation of order 10−2 to the initial data.

Figure : Movie of density

U. S. Fjordholm (Norwegian University of Science and Technology)MV solutions of conservation laws 12 / 57



Stability of the IVP MV solutions Stability Computing MV solutions Statistical solutions Summary and outlook

Four different perturbations. Density at t = 0
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Four different perturbations. Density at t = 0.5
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Four different perturbations. Density at t = 1
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Four different perturbations. Density at t = 1.5
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Four different perturbations. Density at t = 2
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Nonconvergence as ∆x → 0

Figure : Mass density at t = 2, computed on meshes of 642, 2562 and 10242 gridpoints.

• Computed solutions displays details at the scale of numerical viscosity ∼ O(∆x).

• Mesh refinement ∆x → 0 induces finer and finer scales in the flow.

• There is no convergence as ∆x → 0.
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Nonconvergence as ∆x → 0

• The non-convergence can be quantified:

128 256 512 1024

10
−0.5

10
−0.3

10
−0.1

Figure : “Cauchy rates”
∥∥u∆x (t) − u∆x/2(t)

∥∥
L1
(

[0,1]2
).

• Using different perturbation, or a different numerical scheme, or a different mesh, gives very
different solutions.
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Instability of the Cauchy problem

The Cauchy problem is unstable: decreasing initial uncertainty does not decrease uncertainty at
t = T .

Figure : Cartoon of solution space
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Instability of the Cauchy problem

Conclusions

Certain initial-value problems are unstable with respect to initial data:

‖u(t)− ũ(t)‖

can be large even if
‖u0 − ũ0‖

is small.

• We wish to quantify the spread/distribution of solutions u(T ) for a fixed initial data u0.

• Some available options:
• Statistical solutions (Foias, Temam, ...)
• Measure-valued solutions (DiPerna, Murat, Tartar)
• Multivalued semigroups (Ball, Melnik, Valero, ...)
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Section 2

Measure-valued solutions
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Statistical measures of M = 3 samples

Figure : Density ρ(x, t) at t = 2 for M = 3 different samples
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Figure : Mean and variance at t = 2
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Statistical measures of M = 5 samples

Figure : Density ρ(x, t) at t = 2 for M = 5 different samples
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Statistical measures of M = 10 samples

Figure : Density ρ(x, t) at t = 2 for M = 10 different samples
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Statistical measures of M = 20 samples

Figure : Density ρ(x, t) at t = 2 for M = 20 different samples
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Statistical measures of M = 40 samples

Figure : Density ρ(x, t) at t = 2 for M = 40 different samples
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Statistical interpretation of solutions

• Individual samples show chaotic, turbulent behavior.

• However, statistical properties like the mean and variance seem to converge as the number of
samples M increases.

• We reformulate the PDE in a probabilistic setting: measure-valued solutions.

U. S. Fjordholm (Norwegian University of Science and Technology)MV solutions of conservation laws 28 / 57



Stability of the IVP MV solutions Stability Computing MV solutions Statistical solutions Summary and outlook

Young measures

• Instead of assigning only one value u(x , t) ∈ RN to each point (x , t), we view the solution at
(x , t) as a probability measure on RN .

Definition

A Young measure is a function ν mapping

(x , t) 7→ νt
x ∈ Prob(RN ).

• Here, Prob(RN ) := {probability measures on RN}.

• Any function u : Rd × R+ → RN can be identified with the Young measure

νt
x := δu(x,t) (ν is atomic).

• For g ∈ C0(RN ) we evaluate “g(νt
x )” as

〈νt
x , g〉 :=

∫
RN

g(ξ) dνt
x (ξ) (expectation of g w.r.t. νt

x ).
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Measure-valued solutions

We replace the initial value problem

∂t u +∇ · f (u) = 0

u(x , 0) = u0(x)
(1)

with the measure-valued initial value problem

∂t〈ν, id〉+∇ · 〈ν, f 〉 = 0

ν(x,0) = δu0(x)

(2)

(where id(ξ) := ξ).
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Measure-valued solutions

∂t〈ν, id〉+∇ · 〈ν, f 〉 = 0

ν(x,0) = δu0(x).
(2)

Definition (DiPerna, 1985)

(i) A Young measure ν is a measure-valued (MV) solution of (2) if∫
R+

∫
R
〈ν, id〉ϕt + 〈ν, f 〉 · ∇ϕ dxdt +

∫
R

u0(x)ϕ(x , 0) dx = 0.

for all ϕ ∈ C 1
c (R× R+).

(ii) A Young measure ν is an entropy measure-valued solution of (2) if∫
R+

∫
R
〈ν, η〉ϕt + 〈ν, q〉 · ∇ϕ dxdt +

∫
R
η(u0(x))ϕ(x , 0) dx > 0

for all 0 6 ϕ ∈ C 1
c (R× R+) for an entropy pair (η, q).

Note: If ν is an atomic (entropy) measure-valued solution, ν = δu , then u is an (entropy) weak
solution, and vice versa.
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MV and kinetic solutions

• Consider a scalar conservation law

∂t u +∇ · f (u) = 0. (1)

• A kinetic solution χ = χ(x , t; v) : Rd × R+ × R→ R of (1) satisfies

∂tχ+ a(v) · ∇χ = ∂v m

for a(v) := f ′(v) and a measure m = m(x , t) > 0 on R.

Theorem (Lions, Perthame, Tadmor (1994))

u ∈ L∞(R× R+) is an entropy solution of (1) if and only if

χ(x , t; v) := H(v)− H(v − u(x , t))

is a kinetic solution. Here, H(v) :=

{
0 v < 0

1 v > 0
.

• If χ is a kinetic solution then
νx,t := ∂v H − ∂vχ(x , t)

is an MV solution.

• This framework only holds for scalar equations!
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{
0 v < 0

1 v > 0
.

• If χ is a kinetic solution then
νx,t := ∂v H − ∂vχ(x , t)

is an MV solution.

• This framework only holds for scalar equations!
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Section 3

Stability of measure-valued solutions
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Weak-strong stability

We would like to show that the measure-valued Cauchy problem

∂t〈ν, id〉+∇ · 〈ν, f 〉 = 0

ν(x,0) = δu0(x).
(2)

is stable in the following sense:

Definition

We say that (2) is MV stable if the following property holds:

For every u0 there exists an entropy MV solution ν of (2) such that if

‖u0 − ũ0‖ � 1

then
d (ν, ν̃)� 1

for all EMV solutions ν̃.
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The Lp Wasserstein distance

• To measure the distance between Young measures ν and ν̃, we use the metric

dp
(
νt , ν̃t

)
:=

(∫
Rd

Wp(νt
x , ν̃

t
x )p dx

)1/p

.

• Wp is the Wasserstein distance (a metric between probability measures).

• If ν and ν̃ are atomic (ν = δu and ν̃ = δũ), then

dp
(
νt , ν̃t

)
=
∥∥u(·, t)− ũ(·, t)

∥∥
Lp (Rd )

.
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MV stability for scalar conservation laws

Consider a scalar conservation law.

Theorem (USF, Käppeli, Mishra, Tadmor 2014)

Let u be the entropy solution of the conservation law, and let ν̃ be an entropy MV solution with
initial data ν̃0. Then for all t > 0,

d1

(
ν̃t , δu(·,t)

)
6 d1

(
ν̃0, δu0

)
,

i.e., ∫
Rd

W1

(
ν̃t

x , δu(x,t)

)
dx 6

∫
Rd

W1

(
ν̃0

x , δu0(x)

)
dx .

Proof.

Follows from [Kruzkov 1970] and [DiPerna 1985, Theorem 4.1].

This theorem says that the MV Cauchy problem for scalar conservation laws is MV
stable (if σ is close to u0, then ν is close to u).
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MV stability of systems

Consider a general hyperbolic system of conservation laws.

Theorem (USF, Käppeli, Mishra, Tadmor 2014)

Let u be a classical solution of (1), and let ν̃ be an entropy MV solution with initial data ũ0.
Then for all t > 0,

d2

(
ν̃t , δu(·,t)

)
6 C‖ũ0 − u0‖L2 ,

i.e., ∫
Rd

W2

(
ν̃t

x , δu(x,t)

)2
dx 6 C

∫
Rd
|ũ0(x)− u0(x)|2 dx

for some C = C(t).

Proof.

Generalization of [Demoulini, Stuart, Tzavaras 2012, Theorem 2.2] (using the method of relative
entropies).

This theorem says that the MV Cauchy problem is MV stable whenever there is a
smooth solution (if ũ0 is close to u0, then ν̃ is close to u).
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Section 4

Computing approximate measure-valued solutions
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Computing MV solutions

We would like to compute numerical approximations to the MV Cauchy problem

∂t〈ν, id〉+∇ · 〈ν, f 〉 = 0

ν(x,0) = δu0(x).
(2)

Idea of algorithm (version 0)

• The solution ν should contain not only information about u0, but of all infinitesimally small
perturbation of u0.
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Computing MV solutions

We would like to compute numerical approximations to the MV Cauchy problem

∂t〈ν, id〉+∇ · 〈ν, f 〉 = 0

ν(x,0) = δu0(x).
(2)

Idea of algorithm (version 1)

For a small ε > 0, average over all solutions of (1) with perturbed initial data ũ0:

‖u0 − ũ0‖ < ε.
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Computing MV solutions

Idea of algorithm (version 2)

1 Pick perturbations ũ1
0 , . . . , ũ

M
0 with ‖u0 − ũk

0‖ < ε.

2 (Numerically) approximate

∂t uk +∇ · f (uk ) = 0

uk (x , 0) = ũk
0 (x).

3 Let

νM,t
x :=

1

M

M∑
k=1

δuk (x,t).
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Computing approximate MV solutions: Monte Carlo approximation

Algorithm

Let X 1(ω; x), . . . ,X M (ω; x) be i.i.d. random fields.

1. Add a small random perturbation to the initial data,

uk
0 (ω; x) = u0(x) + εX k (ω; x), k = 1, . . . ,M

2. For some fixed ω ∈ Ω, compute an approximate solution u∆x,k (x , t) of the Cauchy problem
with initial data uk

0 (ω; x).

3. Define ν∆x,M as

ν∆x,M,t
x :=

1

M

M∑
k=1

δu∆x,k (x,t),

the “law” of u∆x,1, . . . , u∆x,M .

Theorem (USF, Käppeli, Mishra, Tadmor 2014)

The above Monte Carlo method converges as M →∞.
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Numerical example: single samples

• We consider the unstable Kelvin-Helmholtz example.

• We compute M = 400 different samples and assemble the approximate EMV solution νM :
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Numerical example: Time evolution

We compute the mean

u∆x := 〈ν∆x , id〉 =

∫
RN
ξ dν(ξ) =

∫
Ω

u∆x (ω) dP(ω).

over M = 400 samples on a grid of 10242 mesh points.
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(e) t = 2
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Numerical example: Statistical quantities converge

The mean u∆x converges:
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(d) nx = 1024

Figure : Density mean at t = 2 under mesh refinement.
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Numerical example: Statistical quantities converge

We compute the variance Var∆x := 〈ν∆x , id2〉 − 〈ν∆x , id〉2.
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Figure : Density variance at t = 2 under mesh refinement.
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Numerical example: Statistical quantities converge

We plot the “L1 Cauchy rates” ∥∥u∆x (t)− u∆x/2(t)
∥∥

L1([0,1]2)
.

128 256 512 1024

10
−1

Figure : Cauchy rates for mean of density at t = 2 for nx = 128, 256, 512, 1024.
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Numerical example: Statistical quantities converge

We plot the “L1 Cauchy rates” ∥∥Var∆x (t)−Var∆x/2(t)
∥∥

L1([0,1]2)

128 256 512 1024

10
−1.9

10
−1.6

10
−1.3

Figure : Cauchy rates for variance of density at t = 2 for nx = 128, 256, 512, 1024.
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Numerical example: Time evolution

The approximate PDF for mass density ρ at two points x on a grid of 10242 mesh points.
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Figure : Top row: mean ρ. Middle and bottom rows: PDF at x = (0.5, 0.7) and x = (0.5, 0.8).
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Numerical example: Convergence at isolated points

The approximate PDF for density ρ at two points x on a
series of meshes.
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Figure : Top row: x = (0.5, 0.7). Bottom row: x = (0.5, 0.8)
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Numerical example: Convergence in L1(W1)

We compute the “L1(W1)” distance

d1

(
ν∆x,t , ν∆x/2,t

)
:=

∫
R2

W1

(
ν∆x,t

x , ν
∆x/2,t
x

)
dx .

64 128 256 512

10
−1

Figure : L1(W1) error for ∆x = 1/64, . . . , 1/512.

(As ∆x → 0, the Monte Carlo error dominates, and the convergence flattens out.)
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Section 5

Statistical and measure-valued solutions

U. S. Fjordholm (Norwegian University of Science and Technology)MV solutions of conservation laws 51 / 57



Stability of the IVP MV solutions Stability Computing MV solutions Statistical solutions Summary and outlook

Statistical vs. MV solutions

∂t u +∇ · f (u) = 0, x ∈ Rd , t > 0

u(x , 0) = u0(x)
(1)

• A measure-valued solution of (1) allows uncertainty in the solution at every (x , t).

• A statistical solution (Foias, 1972) µt is a probability measure over solution space.
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MV and statistical solutions

∂t u +∇ · f (u) = 0, x ∈ Rd , t > 0

u(x , 0) = u0(x)
(1)

• A statistical solution µt of (1) is a probability measure over solution space:

µt ∈ Prob(F), F := Lp(Rd ,RN ).

satisfying (1) in a weak sense (Foias, 1972).
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MV solutions and correlations

• An MV solution gives statistics at fixed (x , t), but says nothing about the relation between
the solution at (x1, t) and (x2, t) (i.e., about correlations between different points).

• Additional information is given by correlation Young measures

νt
x1,...,xk

∈ Prob(RkN ),

describing the correlation of the solution at points x1, . . . , xk ∈ Rd .

• An infinite Young measure is a family of correlation Young measures

ν = (νx1 , νx1,x2 , . . . ).

Theorem (USF, S. Lanthaler 2014)

There is a one-to-one correspondence between infinite Young measures ν and probability
measures µ ∈ Prob(F).
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Section 6

Summary and outlook
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Open questions

Ongoing work:

• When can we say that a Cauchy problem is MV stable?

• What “entropy-type conditions” (e.g., maximal entropy decay) ensures stability uniqueness?

• Computationally efficient alternatives to the Monte Carlo method (multi-level Monte Carlo,
stochastic collocation, generalized polynomial chaos).

Regarding statistical solutions,

• When is there a unique statistical solution (or equivalently, infinite Young measure solution)?
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Thank you for your attention!
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