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Stochastic Navier-Stokes equations

Oru+ (u-V)u+Vp—vAu=0oW

NSE
divu =0, on T3 ( )

» v inverse of Reynolds number, v = %
» W white-in-time, colored-in-space Gaussian process

Zakek )dBk(t),

» {Bk(t)}« independent one-dimensional Brownian motions
» {ex}« orthonormal eigenfunctions of the Stokes operator on T3
» {0k}« fixed constants satisfying coloring condition
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Symmetries of Navier-Stokes equations (on R®)

If u(t,x) is a solution of (NSE), then

» Space translations: u(t,x + z) for z € R is a solution as well

» Time translations: u(t + 7,x), 7 € R solution

v

Galilean transformations: Up + u(t,x — Upt), Uy € R3 solution

v

Parity: —u(t, —x) solution

v

Rotations: Ru(t,R"x), R € SO(R?) solution

v

Scaling: A5u(A'=5t, Ax) solution for A € RT, s = —1.



Laminar Transition Turbulence
region region region

Figure: Homogeneous turbulence behind a grid (picture from Frisch
(1995))
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Figure: One second of a signal recorded by a hot-wire (sampled at 5kHz)
in wind tunnel (picture from Frisch (1995))
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Figure: One second of a signal recorded by a hot-wire (sampled at 5kHz)
in wind tunnel four seconds later (picture from Frisch (1995))
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Figure: Histogram for previous figure sampled 5000 times over time-span
of 150s (picture from Frisch (1995))
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Figure: Same histogram a few minutes later (picture from Frisch (1995))



Kolmogorov 1941 (K41)

» Probabilistic description of turbulence

» At high Reynolds numbers the symmetries of (NSE) are
restored in a statistical sense, flow is statistically stationary
and locally homogeneous and isotropic:

law

» Statistically stationary: u(t+7,-) = u(t,-), 7 >0
» Velocity increment d,u(x) = u(x + h) — u(x), h € R3
» Local homogeneity: dpu(x + y) ' Opu(x)
» Local isotropy: RgTpu(x) ' dpu(x), R € SO(3)
» Kolmogorov formulates hypotheses that should hold for such

flows based on experimental observations and derives
additional predicitions about these



K41

» First hypothesis of similarity: For locally homogeneous and
isotropic turbulence, the laws of §,u are uniquely determined
by the kinematic viscosity v and the mean energy dissipation
rate ¢ ~ v HVUHE

» Second hypothesis of similarity: Let A\x = 1/3/4c~ /4 the
Kolmogorov scale. If |h| is large in comparison to Ak, then
the laws of the velocity increments d,u are uniquely defined by
the mean energy dissipation rate € and do not depend on v.
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K41
Intermittency

» 2nd hypothesis is debated, it would lead to scale invariance:

There exists s € R such that dy,u(x) faw A*dpu(x) for all
A ER,, A > Ak

> For example this would imply,
E (6,u)? = Ce2/3|h)?/3,
where C is a universal constant
(Since units (6pu)? ~ [L]?/[T]?, € ~ [L]?/[T]® and by scale
invariance (6,u)? ~ €25 = only possible exponent is s = 1/3 )

» Physical experiments indicate scale invariance might not be
true/C is not universal = Intermittency corrections

» Theory of intermittency is largely based on empirical
considerations, no direct derivation from fluid dynamics
equations/mathematical theory, relates to higher
regularity /smoothness of solutions



Intermittency: Experimental observations
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FiGURE 14. Variation of exponent ¢, as a function of the order n. @, R, = 515 (duct); 07, 536,
X, 852. Symbols O, A, ¥, O are respectively the exponents given by Mestayer (1980); Vasilenko
etal.(1975); Van Atta & Park (1972); and Antonia et al. (19824). The solid curve is LN with 4 = 0.2,
the dotted curve the f-model and the chain-dotted line Kolmogorov’s (1941) model.
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Figure: From Anselmet, Gagne, Hopfinger, Antonio (1983)
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4/5 law

» For |h| € [¢p,¢)], (dissipation scale ¢p ~ e~1/413/4  integral

scale ¢)),
A\® 4
E <5hu . ‘h‘) ~ —g€|h|

where dpu(x) = u(x + h) — u(x).

» Balance of ‘dissipation’ due to nonlinear effects with energy
input

» 4/5 law should be independent of intermittency
corrections/higher order regularity of solutions!

» Second hypothesis of similarity should not be needed for
derivation

> 4/5 law should be deducible directly from fluid mechanics
equations without further assumptions!
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Statistically stationary solutions

» Kolmogorov derived his laws of turbulence for this case

» Statistically stationary means: u(- + 7) has the same

distribution as u(-), i.e. u(-+ 1) law u(-) for every 7 >0

EF(u(-+ 7)) = EF(u(-)), F continuous function

» Energy balance:
vE||[Vulf =e,

_ 1§5~00 2
where e = 537 07 <00

14



Energy balance for statistically stationary solutions
Itd’s formula: Stochastic process u = (v, u® . ),

i = 00t + 3
K
f = f(t, u) satisfies

dt+z

+3 Z BN auo [w®, u9](2)

e 5 (i)
( 2Zau )ao au )dt+za<> 9B,

since

d[ﬁf? Bm](t) = 5€mdta

d[u®, u)(t) = % S VO,
k
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Energy balance for statistically stationary solutions
For f(t,u) = 3|ul?,

du=(—(u-V)u+vAu—Vp)dt+ Zokekdﬁk :
k
1d(|u|2)_ 1z:azle |2—1U'V|U|2+VA“'“_V Tu)dt
2 S\ 24T T ’
k

+ZUkek ~udpBy
k

Integrate over torus T3:

1 2 _ (1 2 2
Ed (/u| dx> = (2;@ /|Vu| dX) dt+;Jk/ek'udxd6k

Integrate in time, take expectation:

1 1 t
EE/|u|2(t)dx—§E/|u0\2dx:at—uE/ /|Vu|2dxds
0

Assume u is stationary

€= VE/ |Vul|?dx = VE HVU”%Z
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Martingale solutions

>

>

‘Stochastic equivalent’ of Leray-Hopf weak solutions

Stochastic basis (2, (Ft)teqo, 7], P, {Bx}«), progressively
measurable stochastic process u: [0, T] x Q — L3

sample paths of uin C(H) N L°L3, NLIHE , o <0
P-ass. w € Q u(w) is a weak solution of the stochastic
Navier-Stokes equations

du+ (u- V)udt + Vpdt = vAudt + dW,,

Energy inequality: a.e. to > t; > 0

1 2 1 2 © 2

SEllu(t)llia—sEllu(ta)l[+vE [ [IVu(s)lzz ds < e(t2—t1)
t1

energy input € = %Zk o2
Such solutions exist (Bensoussan, Temam (1973))
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Martingale solutions

» Stationary martingale solutions: Same as before but paths
u(- + 7) have same law as u(-) for each 7 > 0.

» Such solutions exist (Flandoli, Gatarek (1995))
» Stationary energy inequality
VE||Vullf; <<

» Homogeneous forcing = homogeneous stationary solution
exists
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Weak anomalous dissipation

>

Stochastic heat equation: d;v — vAv = ;W
Same energy balance for stationary solutions:

e = vE || Vv,

But no energy cascade!

Energy balance doens’t say anything about nonlinear effects
nor contains enough information to derive 4/5 law

Poincaré inequality (domain bounded)/Fourier transform:

vlulf < CrlVllE Se
Weak anomalous dissipation if
lim vE ||u” |2, = 0. (WAD)
v—0 x

Energy in low frequencies gets transferred to high frequencies
(WAD) holds for passive scalar 0;f + v - Vf —vAf = 0:W,
where v is weakly mixing (Bedrossian, Coti Zelati, Glatt-Holtz
(2016)) or solution of stochastic 2D (NSE) or hyperviscous
3D (NSE) (Bedrossian, Blumenthal, Punshon-Smith (2018))
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What we prove

» Velocity increment: 6pu(x) := u(x + h) — u(x), h € R3
» Averaged 3rd order longitudinal structure function:

SH / (Ogau - A) dde()
S2/713

Theorem (4/5 law)

Let {u”},~0 be a sequence of stationary martingale solutions
o (NSE), which satisfy (WAD), and let S, be the third order
structure function. Then, there exists {p = {p(v) with
lim,_,0¢p = 0 such that

S(¢
lim limsup sup ”é) + :E‘ =0. (1)

=0 v—0 reftp ]
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Remarks

Only assumption is weak anomalous dissipation:

VE ||u”|| . =90
LX

No smoothness/regularity of solutions required

» Rigorous derivation under assumption of
regularity/integrability that weak martingale solutions satisfy
(= stochastic equivalent of Leray-Hopf solutions)

No energy balance needed, inequality vE HVUH% < € is enough

Assuming symmetries (homogeneity, isotropy), same results
holds without averaging.

Proof ideas from Frisch (1995), Monin, Yaglom (1965), Eyink
(2003), Nie, Tanveer (1995), but mathematically rigorous and
with weaker assumptions (only (WAD))

Lagrangian version of 4/5 law: Drivas (2018)

21



4/3 law

» Velocity increment: Spu(x) := u(x + h) — u(x), h € R3
> Averaged 3rd order structure function:

1
So(é):E// |605u|?0g5u - A dxdS(A)
47T s2/73

Theorem (4/3 law)

Let {u”},~0 be a sequence of stationary martingale solutions
to (NSE), which satisfy (WAD), and let S| be the third order
structure function. Then, there exists {p = {p(v) with
lim,_0¢p = 0 such that

So (f) 4

lim limsup sup 7 35

620 v—0 reftp,]
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What we prove

» Velocity increment: 6pu(x) := u(x + h) — u(x), h € R3
» Averaged 3rd order longitudinal structure function:

SH / (Ogau - A) dde()
S2/713

Theorem (4/5 law)

Let {u”},~0 be a sequence of stationary martingale solutions
o (NSE), which satisfy (WAD), and let S, be the third order
structure function. Then, there exists {p = {p(v) with
lim,_,0¢p = 0 such that

S(¢
lim limsup sup ”é) + :E‘ =0. (1)

=0 v—0 reftp ]

23



Karman-Howarth-Monin relation
Define

r(t,h) = E/T3u(t,x) ® u(t,x + h)dx,

D*(t, h) = E/(éhu ® 0pu)0put®) dx,

Zak/ x) @ ex(x + h)dx,

Let n(h) smooth, isotropic, compactly supported test function of
the form

n(h) = o(|h)I + o(|h)h ek, h= T
@(¢) and ¢(¢) smooth and compactly supported on (0,00). Then,
/ n(k) - (T, h) dh — / J(h) - T(0, h) dh — 2T/ n(h) : a(h)dh
R3

R3
- = / / okn(h) : D*(t, h) dhdt + 2v / / An(h) : T(t, h) dhdt.
R3 R3
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Karman-Howarth-Monin relation
If u is stationary,

1

.
- / dkn(h) : D*(t, h) dhdt
2 0 R3

- 2T/R (h) - a(h)dh + 20 /O ! [ () (e, ) .

where
M(t, h) = E/ u(t, x) @ u(t, x + h)dsx,
T3
D*(h) = E/((Shu @ 0pu)0pute) dx,
T3

a(h) = %Zai /T3 er(x) ® ex(x + h)dx,
k

h

(k) = S(1A) +e(Dhe b h=
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Proof idea

» Mollify equations for u(t,x) and u(t,x + h)
fo = (F)x =y * .
For each x € T3
du,.(t, x) + divy(u @ u)k(t, x)dt + Vpe(t, x)dt
= vAu(t,x)dt + dW,(t, x),

» Compute evolution of u,(t,x) ® u(t,x + h) using stochastic
product rule

» Integrate against isotropic test function n(h), estimate all
terms and pass kK — O.

» Pressure term vanishes because of isotropic test function

26



4/3 law

» Choose n(h) = ¢(|h|)! in KHM-relation and average I and a
over sphere

() = % /S 1 T(ER)dS(A), 3(0) = % /S tr(a(eA))dS(A)

» Flux term
Z/ (D*(h) : NOkp(h dh_/ /|5,,u| Spu-Vo(h) dx dh,
T3 T3

» KHM-relation becomes
1 _ 2_
| S0P (0)de= | Zpr) <yr” + v+ 5(z)> d¢
4 R+ R+ g

» That's an ODE (in the sense of distributions):

2 _ 2_
o) (435;> = (? (sg) + 550) = 4 <ur” + yzr' + 5) .
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v

v

v

v

Integrate ODE

Y4
*0_ 2 /0 2 <4yr"(r) FalT() 4 45(T)> dr

Estimate terms
4 [t 4 [t
/ T2§(€)d7' = -3(0) + / 72 (a(r) — a(0)) dr
3/, 23/,

Continuity of 2 = 2nd term is oy_,0(1)

Integrate by parts once more

l r/
%3 (72T (1) + 2rT'(7)] d7 = r f)
0
We obtain
So(¢ aul' (¢
o) __ 4 A )—*3+Oe—>0(1)

14 14
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Remains to estimate

14

v, oV 5, \1/2 ) 1/2<(5u)1/2 5 \1/2
ST <Y (BIVall) “(Elalk:) T < (Ellul;)

Weak anomalous dissipation condition = can choose {p(v) — 0

1/2
such that (I/E HUH%Q = o(¢p):

U=
lim sup |-T'(£)]=0
”HOZE(ZD,E/)’K ())

Hence

So(¢)

4
lim limsup sup + 56 =0.

=0 v—0 re[ep )

29



Remarks

v

£; depends only of continuity of a.

v

{p needs to satisfy £p > e'/201/2(E ||u||3)'/2.

1/2

v

Taylor micro scale: Ar(v) ~ e~ 1/2uY/2(E ||u]|?)

v

Kolmogorov dissipation scale: Ax(v) ~ e~ 1/413/4,

v

Different test function 1 and a few more terms: Obtain 4/5
law under same assumptions
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Necessary conditions |

Theorem |

{u},~0 sequence of stationary martingale solutions to the
Navier-Stokes equations satisfying

» Energy balance: For v sufficiently small
VE | Vul?, =,
> Regularity: There exists C > 0 and s > 1 such that

sup VvE|||V|ul|2 < C,
v€(0,1) x

. < 5||(5)‘
im sup — |+
£—0 ve(0,1) /

then

)
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Necessary conditions |l

Corollary

Let {u},~0 be a sequence of stationary martingale solutions to
(NSE) such that for some ¢ # 0 and some {p(v) with IimOED =0
v—

there holds
So(¥)
V4

lim lim sup
£;—0v—0 0€[0p,)]

4F c‘ =0.
Then, for all s > 5/4,

liminf Ev |||V[° ul|?, = .
v—0 &

If inf, Ev HVUH%)% > 0, then (WAD) implies that

liminf Ev[||V[ u]?, = 00, Vs> 1.
v—0 x
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