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Introduction
Main motivations of multi-scale numerical schemes

Concerned problems

» P¢ is a stiff problem having an asymptotic P° when & — 0. Solving it
directly would require the adaptation of the numerical parameters
h = O(e”). Impossible in practice for small €.

» ¢ may depend on space (or on time). Decomposition domain methods face
the delicate problem of handling the interfaces.
Desired properties
» Uniform accuracy with respect to ¢, without increasing computational cost

sup ||fy — 5| < Ch™.

£€[0,1]
m is the order in time of the numerical method.
» Weaker property, Asymptotic preserving property:
o For fixed £ > 0, ||f¢ — f¢|| — 0 when h — 0.
o For fixed h, £ff — £ when € — 0, with ||f — £°|| — 0 when h — 0.

» Reduce the numerical cost when ¢ — 0.



Introduction
hy uniformly accurate AP schemes may be needed

» A usual argument (see Golse-Jin-Levermore) says that
Unif. convergence when ¢ — 0 = Unif. convergence of when At — 0.
For most of the AP schemes, the uniform (in €) numerical order is smaller
than the pointwise (fixed €) numerical order.

» This is due to a possible slow convergence in ¢ to the asymptotic model:

o Continuous level:
e — O ~&” with small ~
This is the case for anomalous diffusion asymptotics.
o Discrete level:
sup Hfh — 2| ~ e’ with § <.
helo,

» The consistency error of a (non UA) has the generic form

hm
1 = £50 =~ =

» The resulting error is at least

[y = £°]| = min (h—q - hm,e“) = hota ™.
5



Anomalous diffusion scalings
Diffusion scaling

Diffusion description occurs when the particles interact (collisions for instance
with some media) with a small mean free path.

Oef + Sv - Vi = ~LF.
3 e

» L is a linear collision operator with a one dimensional kernel

KerL = Span{M(v)}, (M)=1, (vM)=0, (v®vM) < co.
» the simplest example:
Lf(v) = p(t,x)M(v) — f, p(t,x):/ f(t, x,v)dv.
rd

M(v) = ﬁ exp(—Iv[?/2).



Anomalous diffusion scalings
Diffusion limit

If ¢ = 0, then * — pM with
0ep = Vi - (DVxp), D= (ve L '(vM)).

with suitable space boundary conditions. See: Degond-Goudon-Poupaud
(2000).

Asymptotic Preserving (AP) numerical schemes:

Well developed now in collisional kinetic theory, plasmas physics, radiative
transfer:

Gabetta-Pareschi-Toscani 97, Klar 99, Jin-Pareschi-Toscani 00, Pareschi-Russo 00’,
Crispel-Degond-Vignal 07, Carillo-Goudon-Lafitte, L-Mieussens 08, Filbet-Jin 10,
Dimarco-Pareschi 11, Degond-Lozinski-Narski-Negulescu 12, L-Crouseilles
12,L-Méhats 12, Buet-Després-Franck 12 ...



Anomalous diffusion scalings

Anomalous diffusion scaling - heavy tail equilibrium

» The diffusion scaling does not capture a non trivial macroscopic dynamics
when the equilibrium M(v) has a heavy tail:

M(v) veRY d<pB<d+2

_ m
AN

Astrophysical plasmas, granular and porous media, Levy process (random
walk with heavy-tail distribution) and fractional Brownian motion,
economy and social sciences (Pareto distributions), ...

» Reason:
(M)y=1, (vM)=0, (v®VvM)=cc.

» The suitable scaling is
Of + 17 - Vf = “LF, a=p—-de(0,2).

The asymptotics € — 0 is called: the anomalous diffusion limit.



Anomalous diffusion scalings

Anomalous diffusion scaling - Singular collision frequency

» Anomalous diffusion may also happen when the collision frequency v(v)
degenerates at v = 0:

LF(v) = v(v) (prM(v) — f), {r(F(v))

where M is taken constant near v = 0 and

V@ v .
<l/(V) M(V)>7 ‘

The effect of small velocities.

» Example:

d+2+p3

v(v) = volv| , nearv=20, 8 >0.

» The suitable scaling is

2d+2+48

-« _
Ocf + e “v-Vif =¢ “Lf, ~di 118

€(1,2)



Anomalous diffusion scalings

Anomalous diffusion: some references

» Kleiber and Cost: Statistical size distributions in economic and actuarial
sciences (2003).

» Mathematics literature: Bensoussan-Lions-Papanicolaou (1979), Phd of De
Moor (Rennes, limites diffusives des équations cinétiques stochastiques)
Mellet (2009), Mellet-Mischler-Mouhot (2011), Ben Abdallah-Mellet-Puel
(2011,2012)

A unified framework

< Vv

v(v)
either because of large velocities (heavy-tail equilibrium) or because of small
velocities (singular frequency).

M(v)) = oo,



Formal derivation
Using space Fourier variable

8t? el Yk vf = e “v(pM — ?)

~

7o vM P O:f
7u+i5k-vp v+ick-v
e/ dkeveM\ 5
Oep + <1/+i5k-v>p_o(5)

One has to compute

i) ik-veM I\ o (k-v)>vM
D(k)_slino6 <u+iek-v>7 lim,¢ <u2+(5k-v)2

» Normal diffusion: « =2, C = (v® vM/v) < 4o0.

D(k) = C|k|.

» Anomalous diffusion: (v ® vM/v) = +o0.



Formal derivation
Large velocities effect

» Heavy-tail equilibrium, large velocities effect: v =1 and M is a
Maxwellain. Change of variables: w = ¢|k|v

m(u - w)? >

D(K) = Caulkl®,  Cau= <W ye st

» Degenrate collision frequency, small velocities effect: M = My and
v(v) = vo|v|?"?*?. Change of variable: w = Ey‘(k‘l;’

o Mol/ “ 1 (W~U)2
D(k):Cd7(x|k‘ s Cd,(x: d+1+ﬂ<‘w‘d+a1+(wu)2

» In the original (non Fourier) variables, it is a non local operator

D = Cyqo(—0)"2

a/2 px+y) — ply)
()72 = pv [ PSSP g,

‘y|a+d
If p is smooth then

(=AY p(x) = /d p(x+y) = py) =y - Vxp(x) dy.

|y‘a+d




Implicit schemes
Direct fully-implicit schemes are not AP

Assume we work on a bounded domain in space and velocity:

fn+l _fn +517QV'V fn+1 :Eialj( n+1M7 f-n+1)

At x p ’

A A VYRR 0
v+iedk v (Ap +( ) )

N = vAt/e®
T 14+ vAt/ee’
S A=Ay ficrk-v -t (1—')\)1/2 e\
v+iedk- v v+ iedk v
At fixed At, the limit e — 0 gives, for 1 < a < 2:

pn+1 — pn7 f-n+1 — pn+1 M

So the "limit € — 0 then At — 0" is not correct.



Implicit schemes

Large velocity effect: not captured

Figure: For At = 10~3 the result given by the implicit scheme computed for
€ = 10~ compared to the Euler scheme for the anomalous diffusion equation and the
initial data.



Implicit schemes
Modified fully implicit scheme

» Even time-resolved implicit schemes do not work! The "limit At — 0 then
€ — 0" is not correct any more.

» The effect of large or small velocities has not been taken into account.

» Perform a suitable change of variable before discretizing in velocity, on
the following formulation of the scheme

w1 [/ (A=A X2 (k - v)? ra=-02 L,
r _{<1/+i5/\k~vVM + 1/2+52)\2(k-v)2VM V+s)\k~vf ’
Take w = eAv/v(v) in the red bracket only.
an ot (1 7)\)1/2 f"
v+edk-v ’

ot = K&VM> + 7N Dok
Since 1 — X\ ~ &%/At, when ¢ goes to 0, the limiting scheme is

v+ iek v

n
n+1 P

P T 14 AtD.Jk*



Implicit schemes

Modified fully-implicit scheme: heavy-tail case

—— Initial condition
+_Anomalous diffusion limit
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Figure: For At = 10~3 the densities given by the modified implicit scheme for some &
and the anomalous diffusion limit. These densities converge to the anomalous
diffusion solution when e goes to zero.



Implicit schemes

Modified fully-implicit scheme: degenerate collision frequency

- - -Initial data -
—— Anomalous diffusion limit -

Figure: For At = 1073 the density profile converges to the anomalous diffusion
solution when ¢ goes to zero.



Implicit schemes

Modified fully-implicit for ¢ = 1, heavy-tail case: order 1 in time

107 10°
Dt

Figure: For e = 1 the difference between the modified implicit scheme computed for
At = 1075 and the same scheme computed for bigger At. It appears that the
modified implicit scheme is of order 1 in At for e = 1.



Implicit schemes

Modified fully-implicit scheme, heavy-tail case: behavior in

slope = 0.8

_.-~"slope =1

Error

slope = 1.5

Figure: For At = 10~3 and some values of «, the difference between the Euler
scheme for anomalous diffusion and the modified implicit scheme computed for a
range of €. The convergence to the anomalous diffusion solution arises with speed a.



Implicit schemes

Slow convergence in the case of degenerate collision frequency: £9/(¢+1+5)

d/(d+1+B) =0.47619

107

10

llpe,at=po,atl

1070 slope = 0.47

Figure: For At = 102, 8 = 0.1. The convergence to the anomalous diffusion

solution arises with speed £9/(d+1+5),



Implicit schemes

Non uniform accuracy

Error
°

0.08

Figure: The error between the densities computed with the modified implicit scheme
for At = ¢® and the density given by an implicit Euler scheme for the anomalous
diffusion equation. This error does not converge to 0 for small At, illustrating the lack
of uniformity of the implicit scheme.



schemes

Drawbacks of the fully-implicit scheme

» Inversion of transport operators may be expensive in case of non periodic
boundary conditions for instance.

» Goal: construct AP schemes with completely explicit schemes. Tool:
combine the above approach with suitable micro/macro scheme as done in

[ML, CRAS 2010].



Explicit schemes
Usual micr/macro approach

» the usual micro/macro approach is based on the decomposition :
f=pM+g,(g)=0.

Dep+e(v-Veg) =0,
8tg+€17av-VXpM+€7 (v- Vg —{v-Vyg) M(v)) =

(s e

n+1 n
P —p 11—« n+1
Arto¢© (v-Vig") =0
gn+1 7gn
Ar + TNV p"M(v) + €Y (v Vg — (v- Vig") M(v))

_ 7iy v n+l <1/(v)g”+1> v
- e ( )(g <Z/(V)M(V)> M( )) ’



Explicit schemes
A suitable micro/macro scheme

» The strategy: keep the second equation explicit and replace the first by

—n+1 _ —n

P P 11—« . Tn+ly
Ar +e v V") =0
F = (Wl + eAvVa) T wp™ M) + (1 — M) (vf™ — eAvVLf").

» The resulting scheme

—n+1

% + 7 (v Vi (Ul + eAvVy) T AM) p" )
H+e' (1 = Ny - V(" —edv - Vi f")) = 0.

» The change of variable in the first integral: w = cAv.

—n+1 —n

14 —p e a/2 n+l € n\ __

Ay S C YN V") =o0.
ar A AT +<€0‘+1/Atv Vg>

gn+1 N

g -|—51_QV-VXPHM(V)+61_Q (V-ngn—<V'ngn> M(V))
v(v)g"tt
- <g"“ - <()g>M(v)> :

At

e (p(V)M(v))



Densities with the micro/macro scheme for different values of ¢

—e=1
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Figure: For At = 1072 the densities given by the modified micro-macro scheme for
different values of £ and the anomalous diffusion limit.



Convergence in € when £ — 0.

Slope = 0.8

- stope=1

Figure: For At = 10~3 the difference between the Euler scheme for anomalous
diffusion and the modified micro-macro scheme computed for a range of ¢.



Explicit schemes

Remarks on micro/macro scheme

» The scheme is able to capture the right dynamics for e ~ 1 and ¢ << 1.

» No inversion is needed for the transport operator. Transport terms are
completely explicit.

» The scheme is of order one in time.

» The accuracy is not uniform.



Uniform Accuracy (UA)

Duhamel formulation and Anomalous diffusion

Goal: construct a scheme with a uniform accuracy: order 1 in time uniformly in
€.
We discretize in time: t, = nAt, n=0,..., N, and write

Ptni1, k) = <exp (fg(l + ick - v)) F(tn, k, v)> +
A

e e,s<efigsk~v M(V)ﬁ)\(thrl — 5(15, k)dS
0

Then we use a suitable quadrature to approximate the integral

Pltnis —£5) ~ a(s)(ta) + (1= a(s)B(tarn),  a(s) = oy 0 < a(s) < 1.

This quadrature of order 2. Local error in At3.

The scheme is of order 2 for fixed € > 0.



Uniform Accuracy (UA)
AP property of the Duhamel scheme

" = exp (7?) A(?n) b 4t

@

At
=% g% —s/ _—iesk-v
= -— M ds,

— = o é —s/ _—iesk-v
c= /0 (1 At) e (e M(v))ds.

At
= g% _,

s
—iesk-v =T eSS g
Arc ((e 1)/\/I(v)>ds+/O Acc ds

and perform the change of variable w = ev on the first part before discretizing
it in velocity.

We write

b=
0

» The scheme is of order 2 for any fixed € > 0.

» The scheme is AP. The limiting scheme is of order 1 but can be modified
to be of order 2 in the limit.

» The scheme is of order 1 uniformly in €.




Uniform Accuracy )

Heavy-tail case: AP property
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Figure: For At = 1073 the densities given by Duhamel based scheme for a decreasing
range of € and the anomalous diffusion limit. We observe that these densities converge
to the anomalous diffusion solution when e goes to zero.



Uniform Accuracy (UA)

convergence to the limit model when ¢ — 0

slope = 0.8

_-"slope =1

slope =15

Figure: For At = 10~3 and different cases of «, the difference between the Euler
scheme for anomalous diffusion and the Duhamel formulation based scheme computed

for a range of £. We observe that the convergence to the anomalous diffusion solution
arise with a speed « in €.



Uniform Accuracy (UA)

Duhamel method is of order 2 for fixed e: S =1

slope =2

[Ip1,at-P 1, At Refl|




Uniform Accuracy (UA)

Duhamel method is of order 1 uniformly in e: 3 = 1 and degenerate collision frequency

10
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Uniform Accuracy (UA)

Uniform order is at least 1 : 8 =0.1

1/p=0.5 d/(d+1+B) =0.47619

P =p o, atll
3
T

slope = 0.63
P
Q107 B
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10° E
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10
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Uniform Accuracy (UA)

Uniform order is at least 1 : 8 =0.1

1/p=0.33333 d/(d+1+B) =0.47619
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