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Collective motion

Figure: Collective motion. No external signal or leadership.

(a) Fish school. (b) Herds of caribou.

Applications: cell motion, fish farming, pedestrian flow, ...
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Modelling

The descriptions in three scales:
Microscopic: Individual-Based Models (IBM).

I. Aoki, H. Chaté, F. Ginelli, A. Czirok, T. Vicsek, ...
Mesoscopic: Kinetic Models.

N. Bellomo, J. Soler, E. Bertin, J. A. Carrillo, ...
Macroscopic: Fluid Models.

A. L. Bertozzi, J. Toner, Y. Tu, P. Degond, J.-G. Liu, ...

I The size of system is larger than the interaction range between
individuals by several order of magnitude.

I The large-scale structures are of great interest.

I Hydrodynamic limit.
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The Vicsek Individual-Based Model

For a system of N particles in the space Rn, each of them is
described by its position X
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Ref.: T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet
(1995).
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Repulsion force

µ is the repulsion frequency for the volumn exclusion and �(x) is the
repulsion potential, defined by
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where r > 0 is the interaction range for the repulsion force between
particles and " is in the same order as 1

⌫ . Note that �(x) approaches
1 as x ! X

i

. We consider an experimental choice of �(|z|) for
z 2 R2:

�(|z|) =
⇢

(|z|� 1)2, if |z|  1;
0, elsewhere .
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Boundary conditions

Two commen choices are:

Periodic boundary condition.

Reflection at the boundary.
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Periodic boundary condition

Leading to alignment associated with uniform density distribution.
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(c) Random data at t = 0
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(d) t = 30

Figure: Periodic boundary condition.
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Reflection at the boundary

Wall

α β

(a)

Wall

α = β = π/2

(b)

Figure: Symmetric reflection with respect to the normal direction at the
boundary. ↵: incoming angle. �: outgoing angle.

Remark: The particles travelling along the boundary will maintain the
orientation parallel to the wall.
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The experiments are performed by Plouraboué, et al., Institut de
Mécanique des Fluides de Toulouse.
The annular domain in 2D: {x 2 R2 : R1  |x |  R2}.

Figure: The annular ring.
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Boundary interaction

The particles display a rotational collective motion in time.

One can observe high concentration near the boundary.

The particles nearby the boundary linger awhile and slowly drift
away.
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Interpretation of the boundary interaction

Besides the repulsion enforced by the wall, the particle also
interact with its neighbors.

Particularly, the particles in the front of a swarming body
experience the alignment to the average orientation due to the
particles following behind.

The particles have the tendency moving away from the boundary.

Remark: It is close to reality to consider asymmetric reflection, or
soft reflection.
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Soft reflection at the boundary

Wall

α β

(a)

Wall

α = π/2 β < π/2

(b)

Figure: Soft reflection with respect to the normal direction at the boundary.
↵: incoming angle. �: outgoing angle.
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The implementation of soft reflection

For the particles interaction with the boundary, we apply the soft
reflection in the following way.

1 The new location is reflected to the inside w.r.t. the boundary.

2 The new orientation is the result of the symmetric reflection and
the alignment to the average orientation.

d!
k

= P!?
k

(�!̄
k

dt +
p

2D

b

dB

t

).

� and D

b

are the alignment frequency and the noise due to the
Brownian motion, respectively.
They can be different from ⌫ and D inside of the domain. One
experimental choise is that � >= ⌫ and D

b

⇡ D due to the
compactness nearby the boundary.
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Discrete in time

Consider the discrete setting in time for
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is taken at the previous time step, say t

n. Then this equation gives
the outgoing orientation !n+1.

However, due to the presence of the Brownian motion in the
individual-based model, particles will move away from the boundary.

So there is no significant difference by applying symmetric and soft
reflection.
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IBM
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Figure: Periodic in x and symmetric reflection in y . The particles move to
the left and bounce up and down in the verticle direction.
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New reflection law

For the deterministic hydrodynamci model, different boundary
behavior will be induced by the soft reflection.

We extract the new reflection law using the particle model.
1 Start with a self-orgazied swarming body in a confined square

such that sufficient boundary interactions happen.
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New reflection law

For the determined hydrodynamci model, one will expect different
behavior induced by the soft reflection.

We extract the new reflection law using the particle model.
1 Start with a self-orgazied swarming body in a confined square

such that sufficient boundary interactions happen.

2 Record all the incoming and outgoing angles for each particle
hitting the boundary.

3 The parameter fitting shows a quadratic law between the
incoming and outgoing angles.
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Quadratic law for 0  t  20

(a) � = 100. (b) � = 300.

(c) � = 400. (d) � = 600.
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The SOHR model

The Self-Organized Hydrodynamic model is given below:
8
><

>:
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2
, � = k0(d + c2)

v

2
0
⌫
.

Compared to the isothermal compressible Navier-Stokes equation,
c1 6= c2 due to the lack of Galilean invariance;
Instead of momentum conservation, there is the geometric
constraint on ⌦.

Ref.: Generalized Collision Invariants (GCIs) by P. Degond and S.
Motsch (2008).
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SOHR model in a square

We start with a biased random initial velocity field such that the
self-organzation will move to the left.
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SOHR model in a square

After the global alignment is formed, instead of horizontal contours
for the density distribution, small perturbation at the upper and lower
boundaries occurs.
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SOHR model in a channel

We start with a biased random initial velocity field such that the
self-organzation will move to the right.
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SOHR model in a channel

After the global alignment is established, the velocity field wave
between the upper and lower boundaries.
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Ongoing work

The alignment frequency � and the noise D

b

at the boundary.

The average density and the optimal speed of the
self-organization.

The application to the annular ring.

...
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