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END GOAL
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mn
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and V is a logarithmically singular potential, we want to:
I Investigate inelastic collisions
I Look at hydrodynamic limits
I Simulate system

And apply the above to:
I Solving the Keller-Segel system and other PDEs pre- and

post-blow-up



OVERVIEW

I Motivation
I Keller-Segel model and blow-up
I Particle systems and inelastic collisions
I Simulation of particle systems
I Particle method for solving regularized PDEs
I Multispecies K-S as a limit of nonuniform particles
I Blow-up in multispecies K-S



Motivation...

& General Overview



AGGREGATION OF THE SOCIAL AMOEBA

(Vijay Ramani, Laboratory for the Physics of Life , Department of Physics, Princeton University.)

I 3 ! 18 hours post-starvation
I 1947: John Bonner discovers above emergent behavior

when there are enough cells
I Each amoeba leaves a chemical attractant trail
I Cells drift in the direction of most chemoattractant

https://www.youtube.com/watch?v=tpdIvlSochk






The Keller-Segel Model



KELLER-SEGEL MODEL

I 1970: Evelyn Keller and Lee Segel introduce K-S system1

[5] for modeling aggregation in R2:
(
@t⇢(x, t) = r · (µr⇢� �⇢rc)
@tc(x, t) = �c � k2c + ⇢

(2)

I c(x, t)—chemoattractant concentration
I ⇢(x, t)—cell density, with

Z
⇢(x, t)dx = M < 1—constant total mass (3)

I µ—mobility of particles, �—chemosensitivity

1Independently introduced by Patlak in 1952 with applications to
long-chain polymers [7].
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KELLER-SEGEL MODEL (ELLIPTIC)

I 1970: Evelyn Keller and Lee Segel introduce K-S system3

[5] for modeling aggregation in R2:
(
@t⇢(x, t) = r · (µr⇢� �⇢rc)
�c = �⇢

(6)

I c(x, t)—chemoattractant concentration
I ⇢(x, t)—cell density, with

Z
⇢(x, t)dx = M < 1—constant total mass (7)

I µ—mobility of particles, �—chemosensitivity

3Independently introduced by Patlak in 1952 with applications to
long-chain polymers [7].



THE SECOND MOMENT

Systems can be classified as “contracting” or “expanding”
using the second moment:

d
dt

Z
⇢(x, t)|x|2dx = M

✓
4µ� �M

2⇡

◆
. (8)

I Rate of change is constant, independent of initial mass
distribution

I Moment can disappear in finite time, if mass is too large!



FINITE TIME SINGULARITY FORMATION
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Figure: Long time snapshot of c(x, t) for M < Mc (left) and M > Mc
(right).

System (appropriately—that’s the appeal!) forms a singularity
in finite time if and only if it is contracting, i.e.

M > Mc =
8⇡µ
�

. (9)



FORMATION AND INTERACTION OF SINGULARITIES

For M > Mc, after the formation of the first singularity [2, 8, 9]:

⇢(x, t) = ⇢reg(x, t) +
NtX

i=1

mi(t)�
⇣

x � x(i)t

⌘
. (10)

I Regular component ⇡ regions of “normal” density
I Singular component ⇡ Kt moving regions of very high

density
I Mass is transferred from regular to singular component
I Kt increases and decreases: singularities form and merge



Kt = 0



Kt = 2



Kt = 2



Kt = 2



Kt = 1



Coalescing

)

particle system



ASSOCIATED PARTICLE SYSTEM

I Keller-Segel:
(
@t⇢ = r · (µr⇢� �⇢rc)
�c = �⇢

(11)

I If c is predetermined, the first equation is a Fokker-Plank
equation for

dXt = �rc(Xt, t)dt +
p

2µdWt, (12)

and so
PN0(x, t) =

M
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t

⌘
! ⇢. (13)



I As c is unknown, we approximate it by the field generated
by the N0 particles themselves:

(
dX(n)

t = �rcN0dt +
p

2µdW(n)
t

�cN0 = �PN0(x, t)
(14)

I Since V(x) = 1
2⇡ ln(|x|) satisfies �V = �, we get

cN = �V ⇤ PN0

I Continuous field replaced with pairwise interactions:
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I Particle system approximates K-S:

dX(n)
t = � �

2⇡

NX

1=j6=n

M
N

X(n)
t � X(j)

t���X(n)
t � X(j)

t

���
2 dt +

p
2µdW(n)

t . (16)

I When K-S forms a Dirac singularity, particle system is also
undefined

I This “physically” corresponds to inelastic collisions:
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DIFFUSION COEFFICIENT
Inelastic collision:

As ✏ ! 0, the drift experienced by x should coincide:
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⌧�✏

⌘
! ��M0@V
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(18)



Assume a general diffusion coefficient:
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Center of mass “ghost particle” evolves similarly:
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dZt = (· · · ) dt + �(M0)dWt (21)

By the independence of the noise, x2 (�(x))2 is linear:
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COALESCING PARTICLE SYSTEM

For N particles in R2:
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t = � �
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Reduce number of particles + combine mass after inelastic
collisions; heavier particles become more “deterministic”

I No longer only related to K-S, because we didn’t fix µ̃

I Can we say anything about these collisions?



THE SECOND MOMENT

I We define the second moment process:

Yt =
1

2(M)2

NX

i,j=1

mimj

���X(i)
t � X(j)

t

���
2

(24)

I Characteristic squared distance between a pair of particles
I Collision , Yt = 0
I Spreading out , Yt increasing



https://www.youtube.com/watch?v=wKv7nKXU-zM
https://www.youtube.com/watch?v=G0fKSTq0cRo


COLLISION OF FULL SYSTEM

Some algebra gives:
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CLASSIFICATION OF THE ORIGIN

After rescaling:

dYt = 2(⌫ + 1)dt + 2
p

YtdWt (27)

⌫ = N
✓

1 � 3
2N

◆
� �(M)2

8⇡µ̃

0

@1 �
X

j

⇣mj

M

⌘2
1

A (28)

This is the squared Bessel process with index ⌫. We have:
1. For ⌫ � 0, the origin is an entrance boundary (Yt > 0 a.s.

for all t > 0)
2. For �1 < ⌫ < 0, the origin is a regular boundary (choose

behavior: absorbing, reflecting) (inelastic collision!)
3. For ⌫  �1, the origin is an absorbing boundary, which is

hit in finite time (inelastic collision!)



COLLISION OF A SUBSYSTEM

I Model situation: two close particles, one far one
I Ỹt is subsystem’s second moment
I Ignore interactions with outside particles; then dỸt ⇡ dQt

I With first order correction:

dỸt ⇡ dQt �
�m3

⇡

Ỹt���X(cm)
t � X(3)

t

���
2 cos 2✓, (29)

I Suggests a localized + separated subsystem becomes
decoupled relative to its center of mass
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An adaptive time step is used to simulate a three-particle system with � = 10, µ̃ = 1 and particle masses
m1 = m2 = 10, m3 = 40. The first two particles are initialized at (0,±0.1), the third at (0, 0.4). The y-coordinates

of the first two particles, the second moment of the subsystem, and approximations for the second moment are
plotted.



RECAP

I Particles carrying mass, interacting pairwise through a
singular kernel

I Due to this singularity, clusters of particles may aggregate
at a point

I We coalesce each aggregate into a single particle—other
particles do not feel this substitution

I Particles which are about to coalesce are decoupled from
the rest of the system





To simulate the system, we want:
1. To avoid pairwise computations
2. To be able to detect very localized clusters which we

should coalesce
Our idea:

1. Replace pairwise computations with a continuous field
2. Form an adaptive mesh at every time step to find critical,

separated aggregates—then coalesce them if their second
moment is predicted to vanish



PARTICLE DYNAMICS

I Recall:

dX(n)
t = ��

@

@X(n)
t
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t )dt +
r
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I Since �V = �,
8
<

:
dX(n)

t = �rc(X(n)
t , t)dt +

q
2µ̃
mn

dW(n)
t

�c(x, t) = �
P

mi�
⇣

x � X(i)
t

⌘ (31)

I General idea:
1. Form a grid (maybe nonlinear)
2. Interpolate mass densities Pij onto the grid points (avoids

self-interaction, sticking to grid points)
3. Solve for Cij, approximate CX and CY
4. Approximate rc(x, t) by interpolating CX and CY at x



interpolate

monopole
approximation



ADAPTIVE TIMESTEPPING

To avoid oscillations, choose �⌧ (i) such that particle can only
jump into adjacent cell �t = �⌧ (1) + · · ·+�⌧ (k)



COALESCENCE OF AGGREGATES

General idea:
I Clustering is usually very tough, but our clusters are much

simpler
I Use basic algorithm to find isolated clusters of particles,

and compute the clusters’ second moments
I Propagate particles through one timestep
I Use the same noise to drive the second moment process4,

and coalesce the aggregate if the moment hits zero

4For cluster-dependent ↵ and �,
dYt = ↵dt + 2

p
Yt�dWt, (32)

where
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AGGREGATE DETECTION

Main idea:
I Form an adaptive grid
I Refine cells to find aggregates which are

1. Separated (small ratio of second moment to cell area)
2. Likely to collide in the next time step (choose some

threshold probability)
I Cells which are not separated, or are unlikely to collide in

the next time step, are subdivided



Example



t = 0



t = 0



t = 0



t = 0



t = �t



DEFINITELY DOES SOMETHING

Note: Slightly different numerical coalescence procedure. Presented (in slides) method is more effective.

...how about something verifiable?

https://www.youtube.com/watch?v=J552nCr7B3I


Nonlinear F-P equations



KELLER-SEGEL MODEL (AGAIN)

I Aggregation is modeled by the K-S system [5] in R2

(
@t⇢(x, t) = r · (µr⇢� �⇢rc)
�c = �⇢

(34)

I Evolution of second moment after blow-up, with Kt point
masses and M̄ regular mass [2, 8, 9]:

d
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COMPARISON

I Keller-Segel:
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t = � �
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I Our system:
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I Small rescaling: mj =
M
N , µ ! µM

N



SOLVING K-S AND SIMILAR SYSTEMS

Basic idea:
I Fix large N and simulate

Some properties:
I Can simulate system post-blow-up
I Guaranteed positivity
I No spurious oscillation
I Singularities are naturally formed and evolved



CRITICAL DISC AND CLOUD



SIMULATED AND PREDICTED SECOND MOMENTS
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INTERACTING SINGULARITIES



MULTISPECIES KELLER-SEGEL

I If we send 2N0 ! 1 and the first N0 particles have mass
M1/N0 and the rest have mass M2/N0, we get a “two
species” Keller-Segel system:

8
><

>:

@t⇢1 = r · (µ1r⇢1 � �⇢1rc)
@t⇢2 = r · (µ2r⇢2 � �⇢2rc)
�c = �(⇢1 + ⇢1)

(38)

(with maybe more than 2 components)
I Have a similar blow-up criteria for above, in terms of

⇢ = ⇢1 + ⇢2:

d
dt

Z
⇢(x, t)|x|2dx =

X

↵

✓
4µ↵ � �M

2⇡

◆
M↵ < 0 (39)

I Is this basically just the K-S? Is the above optimal?



BLOW-UP IN THE MULTISPECIES SYSTEM

I Radial case: finite-time blow-up for an expanding system!
I Questions: Non-radial case? Which component blows up

first? How do second moments evolve?
I Possibly domain-dependent behavior—finite difference

can’t handle the plane!
I Relevant literature: [1, 3, 4, 6]
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Some observations:
I System’s second moment grows linearly
I Each individual component’s second moment grows of

decays linearly, too
I Rate appears to depend on initial distribution of mass



OTHER PDES

Can apply this particle-based method to other PDEs:
8
>>>><

>>>>:

@t⇢1 = r · (µ1r⇢1 � �⇢1rc),
...

@t⇢K = r · (µKr⇢K � �⇢Krc),
Lc = �(⇢1 + · · ·+ ⇢K).

(40)

where
Lc(x, t) = r · (G(x)rc(x, t)) + F(x, c) (41)



Conclusion



CONCLUSION

Recap:
I Investigated coalescing particle system
I Developed an efficient numerical method for the

simulation of the system
I Applied it to the numerical approximation and

regularization of nonlinear Fokker-Planck equations
Future work:

I Add memory:

@tc = �c � k2c +
X

i

mi�
⇣

x � X(i)
t

⌘
(42)

I Coarsening rates, etc. for non-hydrodynamic system?



Thank you for your time!
More info: https://arxiv.org/abs/1704.04873

This material is based upon work supported by the National Science
Foundation under the grant DMS-1056471.

https://arxiv.org/abs/1704.04873
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EFFECT OF SUBSYSTEM COLLISION ON FULL SYSTEM

I Index change formula when subsystem collides:

⌫f = ⌫i � ⌫ 0 � 1
2
, (43)

where ⌫i and ⌫f are the initial and final indices of the full
system, and ⌫ 0 is the index of a collided subsystem

I In the event of coalescence, restart the dynamics with less
particles

I Due to this restart, the overall second moment might
behave very differently (e.g. criticality index ⌫ of system
may flip signs)!


