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END GOAL

For N particles in R? with

ax\" =

M xNdt + ,/def’” 1)
My

and V is a logarithmically singular potential, we want to:

t
z;én

» Investigate inelastic collisions
» Look at hydrodynamic limits
» Simulate system

And apply the above to:

» Solving the Keller-Segel system and other PDEs pre- and
post-blow-up



OVERVIEW

» Motivation

» Keller-Segel model and blow-up

» Particle systems and inelastic collisions

» Simulation of particle systems

» Particle method for solving regularized PDEs

» Multispecies K-S as a limit of nonuniform particles

» Blow-up in multispecies K-S



Motivation...




AGGREGATION OF THE SOCIAL AMOEBA

(Vijay Ramani, Laboratory for the Physics of Life , Department of Physics, Princeton University.)
3 — 18 hours post-starvation

1947: John Bonner discovers above emergent behavior
when there are enough cells

Each amoeba leaves a chemical attractant trail

Cells drift in the direction of most chemoattractant
=] =g

v

v

v

v


https://www.youtube.com/watch?v=tpdIvlSochk

Contiuum model




Contiuum model Particle model

R



The Keller-Segel Model



KELLER-SEGEL MODEL

» 1970: Evelyn Keller and Lee Segel introduce K-S system!
[5] for modeling aggregation in R?:

)

dp(x,t) =V - (uVp—xpVc)
Orc(x,t) = Ac—kc+p

» ¢(x, t)—chemoattractant concentration
» p(x,t)—cell density, with

/ p(x,t)dx = M < oo—constant total mass (3)

» ;—mobility of particles, y—chemosensitivity

!Independently introduced by Patlak in 1952 with applications to
long-chain polymers [7].
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KELLER-SEGEL MODEL (ELLIPTIC)

» 1970: Evelyn Keller and Lee Segel introduce K-S system®
[5] for modeling aggregation in R?:

{@p(x, t) =V (uVp—xpVc) ©)

Ac =—p

» c(x,t)—chemoattractant concentration

> p(x,t)—cell density, with
/ p(x, t)dx = M < oo—constant total mass (7)

» —mobility of particles, y—chemosensitivity

*Independently introduced by Patlak in 1952 with applications to
long-chain polymers [7].



THE SECOND MOMENT

Systems can be classified as “contracting” or “expanding”
using the second moment:

d
i [ otk = (3= 30 ®)

» Rate of change is constant, independent of initial mass
distribution

» Moment can disappear in finite time, if mass is too large!



FINITE TIME SINGULARITY FORMATION
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Figure: Long time snapshot of c(x, t) for M < M, (left) and M > M.
(right).

System (appropriately—that’s the appeal!) forms a singularity
in finite time if and only if it is contracting, i.e.

M>MC:87;<M. ©9)




FORMATION AND INTERACTION OF SINGULARITIES

For M > M., after the formation of the first singularity [2, 8, 9]:

N; .
Pl 1) = pregl,t) + Y mi(1)0 (¥ = 5" ) (10)

i=1

v

Regular component ~ regions of “normal” density

v

Singular component ~ K; moving regions of very high
density

v

Mass is transferred from regular to singular component

v

K} increases and decreases: singularities form and merge
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Coalescing
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particle system

F = E £ DA



ASSOCIATED PARTICLE SYSTEM

» Keller-Segel:

(11)

dp =V - (uVp—xpVc)
Ac =—p

» If c is predetermined, the first equation is a Fokker-Plank
equation for

dXt = XVC(Xt, t)dt + 4/ Z/det, (12)

and so M
Pa(x, 1) = 3 (x - Xf”)) . (13)
n



» As cis unknown, we approximate it by the field generated
by the Ny particles themselves:

dx™" = \Vendt + /2ud W 10
ACNO = _PNO (x, t)
» Since V(x) = % In(|x|) satisfies AV = 4, we get
CN = -V =P No
» Continuous field replaced with pairwise interactions:
N (n) ()
dx(" = Z Mudt—i—\/ dW . (15)

™ 1S ’X(” Xff)‘



» Particle system approximates K-S:

N (n) ()
ax\" = —21 %—X X gt /2dW™. (16)
T 1 S#n ’Xf") (’)‘

» When K-S forms a Dirac singularity, particle system is also
undefined

» This “physically” corresponds to inelastic collisions:

N (n) ()
I umm(m”)dwt(”) (17)
1 =j#n ‘X(n X(j ‘



DIFFUSION COEFFICIENT

Inelastic collision:

(mmei)e)@ (M',ZT).

O(m,xT,e) O(m, xr)

As e — 0, the drift experienced by x should coincide:

N/
ov - v
XD mi (xT_e,XSZE) — M (x,,2,) = Z, = C.OM.
i=1

ox
cs e = (18)




Assume a general diffusion coefficient:
(n) (i)
X, =X
aX(" = =22 m = dt + o (m, )AW,”
T X - x|

Center of mass “ghost particle” evolves similarly:

1
Zt = M Z miXEZ)
i=1
dZ; = (---)dt + o(M")dW;

By the independence of the noise, x? (o(x))? is linear:

N/

o(M') = ]\% Zm%az(mi) = o(M') = /2a/M

i=1

(19)

(20)

(21)

(22)



COALESCING PARTICLE SYSTEM

For N particles in R%:

() _ %) -
ax = XNy KX g [P (o)
X - x? i

Reduce number of particles + combine mass after inelastic
collisions; heavier particles become more “deterministic”

» No longer only related to K-S, because we didn’t fix /i

» Can we say anything about these collisions?



THE SECOND MOMENT

» We define the second moment process:

N

1 . NV

Yi = 5 S mim, ‘ X0 _ Xf’)\ (24)
ij=1

» Characteristic squared distance between a pair of particles

» Collision< Y; =0

» Spreading out < Y; increasing
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https://www.youtube.com/watch?v=wKv7nKXU-zM
https://www.youtube.com/watch?v=G0fKSTq0cRo

COLLISION OF FULL SYSTEM

Some algebra gives

2(N-1) XM m; 20
dYt:(Z/J, ¥ ( Z( ) dt+2v/Y;\ | LW,
j
where

(25)
1
AW, M 3/2f2 m]\/ml(

=x) - aw?.
i,j=1

(26)



CLASSIFICATION OF THE ORIGIN
After rescaling:

dY; = 2(v + 1)dt + 23/ YdW; (27)
N 3\ xm)? M2
z/_N<1—2N>— = (1;(1\4)) (28)

This is the squared Bessel process with index v. We have:

1. For v > 0, the origin is an entrance boundary (Y; > 0 a.s.
for all t > 0)

2. For —1 < v < 0, the origin is a regular boundary (choose
behavior: absorbing, reflecting) (inelastic collision!)

3. For v < —1, the origin is an absorbing boundary, which is
hit in finite time (inelastic collision!)



COLLISION OF A SUBSYSTEM

v

Model situation: two close particles, one far one

Y} is subsystem’s second moment

v

Ignore interactions with outside particles; then dy; ~ dQy

v

With first order correction:

v

ms3 Yy

dY; ~ dQ; — X cos 26, (29)

2
s chm) . XES)

v

Suggests a localized + separated subsystem becomes
decoupled relative to its center of mass



Actual vs. predicted 2nd moment
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An adaptive time step is used to simulate a three-particle system with x = 10, i = 1 and particle masses
my = my = 10, m3 = 40. The first two particles are initialized at (0, £0.1), the third at (0, 0.4). The y-coordinates
of the first two particles, the second moment of the subsystem, and approximations for the second moment are
plotted.
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RECAP

» Particles carrying mass, interacting pairwise through a
singular kernel

» Due to this singularity, clusters of particles may aggregate
at a point

» We coalesce each aggregate into a single particle—other
particles do not feel this substitution

» Particles which are about to coalesce are decoupled from
the rest of the system



NUMERICAL




To simulate the system, we want:
1. To avoid pairwise computations

2. To be able to detect very localized clusters which we
should coalesce

Our idea:
1. Replace pairwise computations with a continuous field

2. Form an adaptive mesh at every time step to find critical,
separated aggregates—then coalesce them if their second
moment is predicted to vanish



PARTICLE DYNAMICS

» Recall:

) 27
dx" = X S mv(x, x)dt + ,/m—‘:dwf”) (30)

t k#n

» Since AV =9,

{dXt(”) — \Ve(X", Ot + |/ ZEaW ™ -

Ac(xt) =-Lm (x-x)

» General idea:

1.
2.

3.
4.

Form a grid (maybe nonlinear)

Interpolate mass densities P;; onto the grid points (avoids
self-interaction, sticking to grid points)

Solve for C;;, approximate CX and CY

Approximate Vc(x, t) by interpolating CX and CY at x
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ADAPTIVE TIMESTEPPING

To avoid oscillations, choose A7) such that particle can only
jump into adjacent cell At = A7) + ...+ Ar(®)



COALESCENCE OF AGGREGATES

General idea:

» Clustering is usually very tough, but our clusters are much
simpler

» Use basic algorithm to find isolated clusters of particles,
and compute the clusters’ second moments

» Propagate particles through one timestep

» Use the same noise to drive the second moment process4,

and coalesce the aggregate if the moment hits zero

4For cluster-dependent cv and 3,
dY; = adt + 2/Y,BdW;, (32)

where

() _ ylem) | o)
AW, = (M)3/2\F Z ]\ﬁ(x — X ) aw®. (33)



AGGREGATE DETECTION

Main idea:

» Form an adaptive grid
» Refine cells to find aggregates which are
1. Separated (small ratio of second moment to cell area)
2. Likely to collide in the next time step (choose some
threshold probability)
» Cells which are not separated, or are unlikely to collide in
the next time step, are subdivided



EXample















t= At




DEFINITELY DOES SOMETHING

= 0.020000

20

Note: Slightly different numerical coalescence procedure. Presented (in slides) method is more effective.

30
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...how about something verifiabl



https://www.youtube.com/watch?v=J552nCr7B3I

Nonlinear F-P equations



KELLER-SEGEL MODEL (AGAIN)

» Aggregation is modeled by the K-S system [5] in R?

{atp(x, t) =V-(uVp—xpVe) (34)

Ac =—p

» Evolution of second moment after blow-up, with K; point
masses and M regular mass [2, 8, 9]:

K;

% (1\14 / p(x, t)dx> = 4“%_% (1 — Z <M]</(If)>2> .

i—1
(35)




COMPARISON

» Keller-Segel:

N () 3
dx" = _21 %—Xt X a1 /2w ™. (36)
T 157 )Xt( X(])‘

» Our system:

() _ ()
ax™ = X miudt + 4 /2—“dw§”> (37)
27‘(‘ ‘Xlgn . ng) my

PO _ M M
» Small rescaling: m; = ¥, 1 — 5



SOLVING K-S AND SIMILAR SYSTEMS

Basic idea:
» Fix large N and simulate

Some properties:

v

Can simulate system post-blow-up

v

Guaranteed positivity

» No spurious oscillation

v

Singularities are naturally formed and evolved



CRITICAL DISC AND CLOUD
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SIMULATED AND PREDICTED SECOND MOMENTS
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INTERACTING SINGULARITIES
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MULTISPECIES KELLER-SEGEL

» If we send 2Ny — oo and the first Ny particles have mass
M; /Ny and the rest have mass M,/Ny, we get a “two
species” Keller-Segel system:

op1 =V - (1Vpr —xp1Vc)
Op2 =V - (2Vpr — xp2Ve) (38)
Ac = —(p1+p1)

(with maybe more than 2 components)
» Have a similar blow-up criteria for above, in terms of
p=p1+p2

T /p(x, B)|x|[“dx = Z <4Ma - 27r> M, <0 (39)

«

» Is this basically just the K-S? Is the above optimal?



BLOW-UP IN THE MULTISPECIES SYSTEM

M
/

% [ plz,t)|z|*dz > 0

87r;1,1/)(']wl

v

Radial case: finite-time blow-up for an expanding system!

v

Questions: Non-radial case? Which component blows up
tirst? How do second moments evolve?

v

Possibly domain-dependent behavior—finite difference
can’t handle the plane!

Relevant literature: [1, 3, 4, 6]

v
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Some observations:
» System’s second moment grows linearly

» Each individual component’s second moment grows of
decays linearly, too

» Rate appears to depend on initial distribution of mass



OTHER PDEs

Can apply this particle-based method to other PDEs:

dp =V (u1Vp1 —xmVe),

' (40)
dpx =V - (uxVpx — xpxVe),

Lo =—(pr+-+px)

where
Lec(x,t) =V - (G(x)Ve(x,t)) + F(x,c) (41)



Conclusion



CONCLUSION

Recap:
» Investigated coalescing particle system

» Developed an efficient numerical method for the
simulation of the system

» Applied it to the numerical approximation and
regularization of nonlinear Fokker-Planck equations

Future work:

» Add memory:

e = Ac—Ke+ > ms (x - xt(i)) (42)

» Coarsening rates, etc. for non-hydrodynamic system?



Thank you for your time!

More info: https://arxiv.org/abs/1704.04873

This material is based upon work supported by the National Science
Foundation under the grant DMS-1056471.
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EFFECT OF SUBSYSTEM COLLISION ON FULL SYSTEM

» Index change formula when subsystem collides:

1
=i . (43)
where v; and vy are the initial and final indices of the full

system, and ¢/ is the index of a collided subsystem
» In the event of coalescence, restart the dynamics with less
particles

» Due to this restart, the overall second moment might
behave very differently (e.g. criticality index v of system
may flip signs)!



