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Non-linear Di�usion & Non-local Interaction

Particle density ρ(t, ·) ∈ L1(RN) ∩ Lm(RN), m > 0, satis�es

∂ρ

∂t
=

1

N
∆ρm + 2χ∇ · (ρ∇ (Wk ∗ ρ)) , t > 0 , x ∈ RN ,

ρ ≥ 0,

∫
ρ(x) dx = 1,

∫
xρ(x) dx = 0.

Interaction kernel:

Wk(x) =


|x |k

k
, if k ∈ (−N,N) \ {0}

log |x | , if k = 0

.
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Free Energy

The energy functional corresponding to this reaction-di�usion equation is
given by

Fm,k [ρ] = Um[ρ] + χWk [ρ] ,

where

Um[ρ] =


1

N(m − 1)

∫
RN ρ

m(x) dx , if m 6= 1

1

N

∫
RN ρ log ρ dx , if m = 1

Wk [ρ] =

∫∫
RN×RN

Wk(x − y)ρ(x)ρ(y) dxdy .



Gradient �ow structure

We can write our reaction-di�usion equation as the formal gradient �ow of
our free energy, when P is endowed with the Wasserstein-2 distance W:

∂tρ(t) = −∇WFm,k [ρ(t)] = −∇ ·
(
ρ∇

δFm,k
δρ

[ρ]

)
Entropy dissipation:

d

dt
Fm,k [ρ(t)] = −

∫
RN
ρ

∣∣∣∣∇( m

N(m − 1)
ρm−1 + 2χWk ∗ ρ

)∣∣∣∣2 dx

Questions: Existence of equilibria? Are they unique? Do we converge to
them? If yes, do we have an explicit rate? Otherwise, what is the
asymptotic behaviour of solutions?



Dilations

Given ρ, we look at its dilations

ρλ(x) = λNρ(λx), x ∈ RN , λ > 0.

Each of the two contributions to the free energy is homogeneous:

Fm,k [ρλ(t)] = λN(m−1)Um[ρ(t)] + λ−kχWk [ρ(t)]

Three regimes:

N(m− 1) = −k: Fair-competition regime
−→ critical mass and KS-like dichotomy for cases

k = 2− N, m = 2− 2/N, N ≥ 3 [Blanchet, Carrillo, Laurençot 2009],
k = 0, m = 1, N = 2 [Blanchet, Campos, Calvez, Carlen, Carrillo, Dolbeault,

Egaña, Figalli, Masmoudi, Mischler, Perthame, ...]



Attraction vs Repulsion

N(m− 1) > −k: Di�usion-dominated regime
−→ Solutions exist globally in time and are bounded uniformly in time

[Calvez, Carrillo 2006], [Sugiyama 2007]
−→ Stationary states are radially symmetric if 2− N ≤ k < 0

[Carrillo, Hittmeir, Volzone, Yao 2016]
−→ Existence and uniqueness of minimisers k = 0, m > 1, N ≥ 2

[Carrillo, Castorina, Volzone 2015]
−→ Asymptotic behaviour is given by stationary solutions k = 0, m > 1, N = 2

[Carrillo, Hittmeir, Volzone, Yao 2016]
−→ Little knowledge about asymptotic behaviour and minimisers in general

N(m− 1) < −k: Attraction-dominated regime
−→ For any χ > 0, blow-up can occur, but there also exist global in time regular

solutions under some smallness assumptions
−→ classi�cation blow-up/global existence and long-time behaviour of radial

solutions depending on initial data and m for cases
k = 2− N, m = 2N/(N + 2), N ≥ 3 [Chen, Liu, Wang 2012] and
k = 2− N, 0 < m < 2− 2/N, N ≥ 3 [Bian, Liu 2013]
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Fair-Competition Regime

This means:

N(m − 1) + k = 0, k ∈ (−N,N), m ∈ (0, 2).

Fk [ρλ] = λ−kFk [ρ].

Goal: Understand relation

stationary states ↔ global minimisers

Logarithmic case (k = 0, m = 1):
→ modi�ed Keller-Segel model (1D), classical Keller-Segel model (2D)

0 < χ < 1: No stationary states. Solutions converge to a unique self-similar pro�le.

χ = 1: Existence of in�nitely many stationary states.

χ > 1: Finite-time blow-up.



Fair-Competition Regime

0 N-N
k

χ

1

Goal: Understand the bigger picture

Porous medium case: k < 0, m ∈ (1, 2)

Fast di�usion case: k > 0, m ∈ (0, 1)



Porous Medium Case k < 0

Fk [ρ∞] = 0 for any stationary state ρ∞ with |x |2ρ∞ ∈ L1
(
RN
)

By variant of HLS with best constant C∗: for any χ > 0,

Fk [ρ] ≥ 1− χC∗
N(m − 1)

||ρ||mm ,

De�ne critical interaction strength χc := 1/C∗.

In the critical case χ = χc : Fk [ρ] ≥ 0
−→ (stationary states with bounded 2nd moment ⇒ global minimisers)

In the sub-critical case 0 < χ < χc : no stationary states exist.

Questions: Are global minimisers regular enough to be stationary states? If there are no

stationary states, do we have self-similar pro�les? Can we characterise the asymptotic

behaviour of solutions?



Critical Case χ = χc (k < 0)

Results:

There exist a global minimiser of Fk .
Global minimisers of Fk are stationary states.

Global minimisers of Fk are radially symmetric non-increasing, compactly
supported and uniformly bounded.

Theorem (Variant of HLS in 1D)

Let N = 1, k ∈ (−1, 0), m = 1− k.

∃ stationary state ρ∞ ⇒ Fk [ρ] ≥ 0 with equality i� ρ is a dilation of ρ∞.

Consequence: Uniqueness of stationary states up to dilations.

Proof for existence of global minimisers uses HLS inequality as key ingredient.

OK, so we have existence of in�nitely many, compactly supported stationary states.

What next?



Long-time Behaviour N = 1 (χ = χc , k < 0)

We have:
d

dt
W (ρ(t), ρ∞)2 ≤ (m − 1)F [ρ(t)] → no information!

We can write ρdx = ψ′#ρ∞dx for ψ the Brenier map, ψ′′ ≥ 0. For a, b ∈ R,
de�ne

〈ψ′′[a, b]〉 :=

∫ 1

0

ψ′′ ((1− s)a + sb) ds .

Then we can show that

〈ψ′′[a, b]〉 ∈
(
0, 1 +

1

m

)
∀a, b ∈ R , ∀t > 0 =⇒ d

dt
W (ρ(t), ρ∞)2 ≤ 0

with equality i� ρ = ρ∞.

→ no rate of convergence!



Subcritical Case 0 < χ < χc (k < 0)

No stationary states exist. Fk has no global minimisers.

Self-Similar Pro�les: Rescale u(t, x) := α(t)ρ (β(t), α(t)x), where

α(t) = et , β(t) =

{
1

2−k

(
e(2−k)t − 1

)
, if k 6= 2,

t, if k = 2.

We obtain the rescaled reaction-di�usion equation

∂tu =
1

N
∆um + 2χ∇ · (u∇ (Wk ∗ u)) +∇ · (xu)

and the rescaled energy

Fresc[u] =
1

N(m − 1)

∫
um(x) dx + χ

∫∫
Wk(x − y)u(x)u(y) dxdy +

1

2

∫
|x |2u(x) dx

−→ Stationary states of rescaled eqn = self-similar pro�les of original eqn.



Subcritical Case 0 < χ < χc (k < 0)

Results in rescaled variables:

All stationary states of the rescaled eqn are continuous and compactly supported.

There exist a global minimiser of Fresc.

Global minimisers of Fresc are stationary states of the rescaled eqn.

Global minimisers of Fresc are radially symmetric non-increasing and uniformly
bounded.

Theorem (Functional Inequality in 1D)

Let N = 1, k ∈ (−1, 0), m = 1− k.

∃ stationary state ρ∞ of rescaled eqn ⇒ Fresc[ρ] ≥ Fresc[ρ∞] with equality i� ρ = ρ∞.

−→ known inequality?
−→ stability estimates?

Consequence: Uniqueness of stationary states in rescaled variables.



Long-time Behaviour N = 1 (χ < χc , k < 0)

We can show for N = 1:

Proposition

Let N = 1, k ∈ (−1, 0), m = 1− k. If ρ∞ is a stationary state of the rescaled eqn, and

ψ the Brenier map, ρdx = ψ′#ρ∞dx, ψ′′ ≥ 0, then under the assumption that

〈ψ′′[a, b]〉 ∈
(
0, 1 +

1

m

)
∀a, b ∈ R, ∀t > 0

we have
d

dt
W (ρ(t), ρ∞)2 ≤ −2W (ρ(t), ρ∞)2

with equality i� ρ = ρ∞.

−→ rate of convergence does not depend on χ!!



Fast di�usion case k > 0

HLS inequality is not valid

No radially symmetric non-increasing stationary states with kth moment bounded.
No radially symmetric non-increasing global minimisers of Fk .
−→ seek self-similar solutions

No critical χ !!!

In rescaled variables: ρ∞ radially symmetric non-increasing stationary state

• ρ∞ ∈ L1
(
RN
)
⇔ 0 < k < 2, that is (N − 2)/N < m < 1.

• |x |2ρ∞ ∈ L1
(
RN
)
⇔ 0 < k < 2N/(2 + N), that is N/(2 + N) < m < 1.

• |x |kρ∞ ∈ L1
(
RN
)
⇔ 0 < k < k∗(N) ∈ (1, 2).



Fast di�usion case k > 0

Theorem (Existence of stationary states)

Let χ > 0, k ∈ (0, 1] and let F be the set of continuous radially symmetric

non-increasing functions in L1+(RN) with unit mass, bounded kth moment, and decaying

at in�nity. Then there exists a stationary state ρ∞ ∈ F for the rescaled equation.

−→ Pf: rewrite Euler-Lagrange condition as �xed point of a compact operator,
and then use Schauder's �xed point theorem.

Theorem (Functional Inequality in 1D)

Let N = 1, k ∈ (0, 1), m = 1− k.

∃ stationary state ρ∞ of rescaled eqn ⇒ Fresc[ρ] ≥ Fresc[ρ∞] with equality i� ρ = ρ∞.

−→ same inequality as for porous medium case

Consequence: Uniqueness of stationary states in rescaled variables.



Long-time Behaviour N = 1 (k > 0)

−→ We have exponential convergence to equilibrium,
this time without stability condition!!!

Proposition

Let N = 1, k ∈ (0, 1), m = 1− k. If ρ∞ is a stationary state of the rescaled eqn, then

d

dt
W (ρ(t), ρ∞)2 ≤ −2W (ρ(t), ρ∞)2.

Rate of convergence independent of χ

This shows why there are no stationary states in original variables: the rescaled
density would converge to a dirac delta −→ contradiction!

The bigger picture: thoughts about uniqueness...

Property of strictly convex functions: ∃ =⇒ !

Question: What about the convexity properties of Fk and Fresc?
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Uniqueness Story

Theorem (McCann, 1997)

If Fk is strictly displacement convex, then it has at most one minimiser.

Problem: Our Fk is not necessarily displacement convex!

Previous Results: In 1D, we recover convexity property ∃ =⇒ !
−→ continuation of seminal paper [McCann, 1997]
−→ true for general k, N, m?

k < 0, χ = χc : in�nitely many global minimisers of Fk by homogeneity
→ uniqueness up to dilations? True for k = 2− N, N ≥ 2 [Yao, 2014].

k < 0, χ < χc : uniqueness of radially symmetric stationary states in rescaled
variables?



Uniqueness Story

Theorem (McCann, 1997)

If Fk is strictly displacement convex, then it has at most one minimiser.

Problem: Our Fk is not necessarily displacement convex!

In 1D, by McCann's condition:

Fm,k [ρ] = Um[ρ]︸ ︷︷ ︸
displ. convex

+χ Wk [ρ]︸ ︷︷ ︸
displ. concave

Previous Results: In 1D, we recover convexity property ∃ =⇒ !
−→ continuation of seminal paper [McCann, 1997]
−→ true for general k, N, m?

k < 0, χ = χc : in�nitely many global minimisers of Fk by homogeneity
→ uniqueness up to dilations? True for k = 2− N, N ≥ 2 [Yao, 2014].

k < 0, χ < χc : uniqueness of radially symmetric stationary states in rescaled
variables?



Uniqueness Story

Theorem (McCann, 1997)

If Fk is strictly displacement convex, then it has at most one minimiser.

Problem: Our Fk is not necessarily displacement convex!

For N > 1, k ∈ (−N, 1):

Fm,k [ρ] = Um[ρ]︸ ︷︷ ︸
displ. convex

+χWk [ρ]︸ ︷︷ ︸
???

Previous Results: In 1D, we recover convexity property ∃ =⇒ !
−→ continuation of seminal paper [McCann, 1997]
−→ true for general k, N, m?

k < 0, χ = χc : in�nitely many global minimisers of Fk by homogeneity
→ uniqueness up to dilations? True for k = 2− N, N ≥ 2 [Yao, 2014].

k < 0, χ < χc : uniqueness of radially symmetric stationary states in rescaled
variables?



Uniqueness Story

Theorem (McCann, 1997)

If Fk is strictly displacement convex, then it has at most one minimiser.

Problem: Our Fk is not necessarily displacement convex!

For N > 1, k ∈ (1,N):

Fm,k [ρ] = Um[ρ]︸ ︷︷ ︸
???

+χ Wk [ρ]︸ ︷︷ ︸
displ. convex

Previous Results: In 1D, we recover convexity property ∃ =⇒ !
−→ continuation of seminal paper [McCann, 1997]
−→ true for general k, N, m?

k < 0, χ = χc : in�nitely many global minimisers of Fk by homogeneity
→ uniqueness up to dilations? True for k = 2− N, N ≥ 2 [Yao, 2014].

k < 0, χ < χc : uniqueness of radially symmetric stationary states in rescaled
variables?



Uniqueness Story

Theorem (McCann, 1997)

If Fk is strictly displacement convex, then it has at most one minimiser.

Problem: Our Fk is not necessarily displacement convex!

In 1D, by McCann's condition:

Fm,k [ρ] = Um[ρ]︸ ︷︷ ︸
displ. convex

+χ Wk [ρ]︸ ︷︷ ︸
displ. concave

Previous Results: In 1D, we recover convexity property ∃ =⇒ !
−→ continuation of seminal paper [McCann, 1997]
−→ true for general k, N, m?

k < 0, χ = χc : in�nitely many global minimisers of Fk by homogeneity
→ uniqueness up to dilations? True for k = 2− N, N ≥ 2 [Yao, 2014].

k < 0, χ < χc : uniqueness of radially symmetric stationary states in rescaled
variables?



Uniqueness Story

Theorem (McCann, 1997)

If Fk is strictly displacement convex, then it has at most one minimiser.

Problem: Our Fk is not necessarily displacement convex!

In 1D, by McCann's condition:

Fm,k [ρ] = Um[ρ]︸ ︷︷ ︸
displ. convex

+χ Wk [ρ]︸ ︷︷ ︸
displ. concave

Previous Results: In 1D, we recover convexity property ∃ =⇒ !
−→ continuation of seminal paper [McCann, 1997]
−→ true for general k, N, m?

k < 0, χ = χc : in�nitely many global minimisers of Fk by homogeneity
→ uniqueness up to dilations? True for k = 2− N, N ≥ 2 [Yao, 2014].

k < 0, χ < χc : uniqueness of radially symmetric stationary states in rescaled
variables?



What's next...?

Work in progress:

Uniqueness of stationary states and self-similar pro�les in the porous medium

fair-competition regime k ∈ (−N, 0), m = 1− k/N (with V. Calvez): Uniqueness
of global minimisers of Fk (if χ = χc) modulo dilations and of Fresc (if χ < χc) in
radial variables? Asymptotic behaviour?

The porous medium di�usion-dominated regime k ∈ (−N, 2−N), m > 1− k/N,
N ≥ 3 (with J.A. Carrillo, E. Mainini and B. Volzone):
∃ global minimisers of Fk for any χ > 0. All stationary states are radially
symmetric. All global minimisers are stationary states. Uniqueness in 1D.

The smooth kernel di�usion-dominated regime k ∈ (0,N), m > 1− k/N (with J.
Dolbeault and R. Frank): For large enough k ∈ (0,N) it is possible that stationary
states exist. Reversed HLS type inequality? Existence of global minimisers of Fk?
Duality and stability estimates for related functional inequalities k < 0 (with E.
Carlen): more on Fresc[ρ] ≥ Fresc[ρ∞].

Aggregation-dominated regime?

...maaaaaaaaaaaaaaany open questions remain!



Numerics: Parameterspace N = 1

Numerical Method: [Blanchet, Calvez, Carrillo 2008]



Numerics: Stationary States

χ = 0.2, k = −0.5, resc = 0 χ = 0.2, k = −0.5, resc = 1



Numerics: Stationary States

χ = 0.8, k = 0.2, resc = 1 χ = 1.0, k = −0.5, resc = 0



Numerics: χ = 0.05, resc = 1

k varies from +0.95 to −0.95 in 0.05 steps.



Numerics: χ = 0.8, resc = 1

k varies from +0.95 to −0.95 in 0.05 steps.



Numerics: χ = 1.2, resc = 1

k varies from +0.95 to −0.95 in 0.05 steps.



Thank you for your attention!


