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Non-linear Diffusion & Non-local Interaction

Particle density p(t,-) € L*(RY) N L™(RN), m > 0, satisfies
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Free Energy

The energy functional corresponding to this reaction-diffusion equation is
given by
Fmklpl = Umlp] + xWilpl,
where
1

fprm(x)dx, if m#1
tnlp) = 4 "D

NfR,\,plogpdx7 if m=1

Wilp] = / /R - Wi(x = y)p(x)p(y) dxdy .



Gradient flow structure

We can write our reaction-diffusion equation as the formal gradient flow of
our free energy, when P is endowed with the Wasserstein-2 distance W:

Beplt) =~V Fonslp(t)] = —V - ( v i, 1)

Entropy dissipation:

d — m m—1
aFmloO == [ 0|9 (g™ + 2 )

Questions: Existence of equilibria? Are they unique? Do we converge to
them? If yes, do we have an explicit rate? Otherwise, what is the
asymptotic behaviour of solutions?
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dx




Dilations

Given p, we look at its dilations

pa(x) = AV p(Xx), xeRN A>o0.

Each of the two contributions to the free energy is homogeneous:

Fniloa(£)] = AU Dhn[p(£)] + AKX Wi o( )]
Three regimes:

@ N(m — 1) = —k: Fair-competition regime
— critical mass and KS-like dichotomy for cases
k=2—-N, m=2-2/N, N > 3 [Blanchet, Carrillo, Laurencot 2009],
k=0, m=1, N =2 [Blanchet, Campos, Calvez, Carlen, Carrillo, Dolbeault,
Egaiia, Figalli, Masmoudi, Mischler, Perthame, ...]



Attraction vs Repulsion

@ N(m —1) > —k: Diffusion-dominated regime

— Solutions exist globally in time and are bounded uniformly in time
[Calvez, Carrillo 2006], [Sugiyama 2007]

— Stationary states are radially symmetricif 2 — N < k <0
[Carrillo, Hittmeir, Volzone, Yao 2016]

— Existence and uniqueness of minimisers k =0, m>1, N > 2
[Carrillo, Castorina, Volzone 2015]

— Asymptotic behaviour is given by stationary solutions k =0, m > 1, N =2
[Carrillo, Hittmeir, Volzone, Yao 2016]

— Little knowledge about asymptotic behaviour and minimisers in general

@ N(m —1) < —k: Attraction-dominated regime
— For any x > 0, blow-up can occur, but there also exist global in time regular
solutions under some smallness assumptions
— classification blow-up/global existence and long-time behaviour of radial
solutions depending on initial data and m for cases
k=2—-N, m=2N/(N+2), N > 3 [Chen, Liu, Wang 2012] and
k=2-N,0<m<2-2/N, N>3 [Bian, Liu 2013]
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Fair-Competition Regime

This means:
@ N(m—1)+ k=0, ke (—N,N), me (0,2).
© Filpr] = A Fulpl.

Goal: Understand relation
stationary states <> global minimisers

Logarithmic case (k =0, m =1):

— modified Keller-Segel model (1D), classical Keller-Segel model (2D)
@ 0 < x < 1: No stationary states. Solutions converge to a unique self-similar profile.
@ x = 1: Existence of infinitely many stationary states.

@ x > 1: Finite-time blow-up.



Fair-Competition Regime

-N 0 N

Goal: Understand the bigger picture

Porous medium case: k <0, m € (1,2)
Fast diffusion case: k >0, m € (0,1)



N
Porous Medium Case k < 0

® Fi[poc] = 0 for any stationary state poo with |x|?pos € L* (RV)
@ By variant of HLS with best constant C.: for any x > 0,

1_XC*

Filpl = m“ﬂ“zy

@ Define critical interaction strength x. := 1/C..

@ In the critical case x = xc: Fi[p] >0
— (stationary states with bounded 2nd moment = global minimisers)

@ In the sub-critical case 0 < x < xc: no stationary states exist.

Questions: Are global minimisers regular enough to be stationary states? If there are no
stationary states, do we have self-similar profiles? Can we characterise the asymptotic
behaviour of solutions?



|
Critical Case x = x¢ (k < 0)

Results:
@ There exist a global minimiser of F.
@ Global minimisers of Fj are stationary states.

@ Global minimisers of Fy are radially symmetric non-increasing, compactly
supported and uniformly bounded.

Theorem (Variant of HLS in 1D)
Let N=1, k€ (=1,0), m=1— k.
3 stationary state poc = Fk[p] > 0 with equality iff p is a dilation of ps.

@ Consequence: Uniqueness of stationary states up to dilations.

@ Proof for existence of global minimisers uses HLS inequality as key ingredient.

OK, so we have existence of infinitely many, compactly supported stationary states.
What next?



|
Long-time Behaviour N =1 (x = x¢, k < 0)

@ We have: %W(p(t),po@)2 < (m—1)F[p(t)] — no information!

@ We can write pdx = ¢'#poodx for 1) the Brenier map, ¥/ > 0. For a, b € R,
define

(0" [a, b)) ::/0 W (1= s)a+ sb) ds.

Then we can show that
("[a, b]) € (0,1 + %) Va,beR,VE>0 —s %W(p(t),poo)z <0

with equality iff p = poo.-

— no rate of convergence!



|
Subcritical Case 0 < x < x. (k <0)

@ No stationary states exist. Fy has no global minimisers.

Self-Similar Profiles: Rescale u(t, x) := a(t)p (8(t), a(t)x), where

alt)=e', B(t) = {k (e 1), kA2,
t, ifk =2.
We obtain the rescaled reaction-diffusion equation
Dew = D™ + 2V - (¥ (Wi s ) + V- (x0)
and the rescaled energy

Fresc|u] = m / u™(x)dx + x/ Wi (x — y)u(x)u(y) dxdy + % / x> u(x) dx

— Stationary states of rescaled eqn = self-similar profiles of original eqn.



|
Subcritical Case 0 < x < x. (k <0)

Results in rescaled variables:
@ All stationary states of the rescaled eqn are continuous and compactly supported.
@ There exist a global minimiser of Fresc-
@ Global minimisers of Fresc are stationary states of the rescaled eqn.

@ Global minimisers of Fresc are radially symmetric non-increasing and uniformly
bounded.

Theorem (Functional Inequality in 1D)

Let N=1, ke (-1,0), m=1—k.
3 stationary state p. of rescaled eqn = Fresc[p] > Fresc[poo] with equality iff p = poo.

— known inequality?
— stability estimates?

@ Consequence: Uniqueness of stationary states in rescaled variables.



|
Long-time Behaviour N =1 (x < x¢, kK < 0)

We can show for N = 1:

Proposition

Let N=1, k€ (-1,0), m=1— k. If po is a stationary state of the rescaled eqn, and
1) the Brenier map, pdx = ' #pecdx, ¥” > 0, then under the assumption that

("[a, b]) € (0 1+ >Va beR,Vt>0

we have

dt W(p(t), poo)® < —2W(p(t), poo)?
with equality iff p = poo.

— rate of convergence does not depend on x!!




N
Fast diffusion case kK > 0

@ HLS inequality is not valid
@ No radially symmetric non-increasing stationary states with kth moment bounded.
No radially symmetric non-increasing global minimisers of Fy .
— seek self-similar solutions
@ No critical x !l
@ In rescaled variables: po radially symmetric non-increasing stationary state

® poo €L (RY) & 0< k<2 thatis (N—2)/N<m<1.
o |x|?pos € L* (RV) & 0 < k <2N/(2+ N), thatis N/(2+ N) < m < 1.
o [x[*peo € L' (RV) & 0 < k < k*(N) € (1,2).



N
Fast diffusion case kK > 0

Theorem (Existence of stationary states)

Let x >0, k € (0,1] and let F be the set of continuous radially symmetric
non-increasing functions in L% (R") with unit mass, bounded kth moment, and decaying
at infinity. Then there exists a stationary state p.o € F for the rescaled equation.

— Pf: rewrite Euler-Lagrange condition as fixed point of a compact operator,
and then use Schauder's fixed point theorem.

Theorem (Functional Inequality in 1D)

Let N=1, ke (0,1), m=1—k.
3 stationary state poo of rescaled eqn = Fresc[p] > Fresc[poo] with equality iff p = poc.

— same inequality as for porous medium case

@ Consequence: Uniqueness of stationary states in rescaled variables.



|
Long-time Behaviour N =1 (k > 0)

— We have exponential convergence to equilibrium,
this time without stability condition!!!

Proposition

Let N=1, k€ (0,1), m=1— k. If pc is a stationary state of the rescaled eqn, then

G W(p(t), poc ) < ~2W(p(t), poc )

@ Rate of convergence independent of x

@ This shows why there are no stationary states in original variables: the rescaled
density would converge to a dirac delta — contradiction!
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Long-time Behaviour N =1 (k > 0)

— We have exponential convergence to equilibrium,
this time without stability condition!!!

Proposition

Let N=1, k€ (0,1), m=1— k. If pc is a stationary state of the rescaled eqn, then

G W(p(t), poc ) < ~2W(p(t), poc )

@ Rate of convergence independent of x

@ This shows why there are no stationary states in original variables: the rescaled
density would converge to a dirac delta — contradiction!

The bigger picture: thoughts about uniqueness...
@ Property of strictly convex functions: 3 =

@ Question: What about the convexity properties of Fi and Fresc?



Uniqueness Story

Theorem (McCann, 1997)

If Fy is strictly displacement convex, then it has at most one minimiser.

@ Problem: Our Fi is not necessarily displacement convex!
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Uniqueness Story
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If Fi is strictly displacement convex, then it has at most one minimiser.

@ Problem: Qur Fi is not necessarily displacement convex!

In 1D, by McCann'’s condition:

Fmklp] = w +x Wilpl

displ. convex displ. concave

Previous Results: In 1D, we recover convexity property 3 = !

— continuation of seminal paper [McCann, 1997]
— true for general k, N, m?

@ k <0, x = xc infinitely many global minimisers of i by homogeneity
— uniqueness up to dilations? True for k =2 — N, N > 2 [Yao, 2014].

@ k <0, x < xe uniqueness of radially symmetric stationary states in rescaled
variables?



N
What's next...?

Work in progress:

@ Uniqueness of stationary states and self-similar profiles in the porous medium
fair-competition regime k € (—N,0), m =1 — k/N (with V. Calvez): Uniqueness
of global minimisers of Fi (if x = xc) modulo dilations and of Fresc (if X < X¢) in
radial variables? Asymptotic behaviour?

@ The porous medium diffusion-dominated regime k € (—N,2 — N), m > 1 — k/N,
N > 3 (with J.A. Carrillo, E. Mainini and B. Volzone):

3 global minimisers of Fi for any x > 0. All stationary states are radially
symmetric. All global minimisers are stationary states. Uniqueness in 1D.

@ The smooth kernel diffusion-dominated regime k € (0,N), m > 1 — k/N (with J.
Dolbeault and R. Frank): For large enough k € (0, V) it is possible that stationary
states exist. Reversed HLS type inequality? Existence of global minimisers of Fj7

@ Duality and stability estimates for related functional inequalities k < 0 (with E.
Carlen): more on Fresc[p] > Fresc|[poo]-

@ Aggregation-dominated regime?

...maaaaaaaaaaaaaaany open questions remain!



Numerics: Parameterspace N =1
o Numerical Method: [Blanchet, Calvez, Carrillo 2008]
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Numerics: Stationary States

x=0.2, k=-0.5, resc =0 x=0.2, k=-0.5,resc=1
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Numerics: Stationary States

x=0.8, k=02, resc=1 x =1.0, k=—-0.5, resc =0
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Numerics: x = 0.8, resc =1
@ k varies from +0.95 to —0.95 in 0.05 steps.
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Numerics: x = 1.2, resc =1
@ k varies from +0.95 to —0.95 in 0.05 steps.

10




Thank you for your attention!



