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Functional Inequalities

The HLS inequality

Theorem ((Lieb 1983))
For any −N < λ < 0, there exists a constant CHLS = CHLS(N, λ, q) > 0 such that
any f ∈ Lp(RN) and g ∈ Lq(RN) satisfy∫∫

RN×RN
|x − y |λ f (x) g(y) dx dy ≤ CHLS‖f ‖p‖g‖q

1
p + 1

q = 2 + λ

N , p, q > 1

Sharp inequality: Let f = g = ρ ≥ 0 and p = q = 2N
2N+λ , then∫∫

RN×RN
|x − y |λ ρ(x) ρ(y) dx dy ≤ CHLS

(∫
RN
ρq dx

)2/q
.
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Functional Inequalities

The reverse HLS inequality

Theorem ((Dou, Zhu 2015)(Ngô, Nguyen 2017))
For any λ > 0, there exists a constant CRHLS = CRHLS(N, λ, q) > 0 such that any
non-negative f ∈ Lp(RN) and g ∈ Lq(RN) satisfy∫∫

RN×RN
|x − y |λ f (x) g(y) dx dy ≥ CRHLS‖f ‖p‖g‖q

1
p + 1

q = 2 + λ

N , p, q ∈ (0, 1)

Convention: ρ ∈ Lp(RN ) if
∫
RN |ρ(x)|p dx <∞ for any p > 0.

Sharp inequality: Let f = g = ρ ≥ 0 and p = q = 2N
2N+λ , then∫∫

RN×RN
|x − y |λ ρ(x) ρ(y) dx dy ≥ CRHLS

(∫
RN
ρq dx

)2/q
.
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Functional Inequalities

The reverse HLS inequality
For any λ > 0 and any measurable function ρ ≥ 0 on RN , let

Iλ[ρ] :=
∫∫

RN×RN
|x − y |λ ρ(x) ρ(y) dx dy

N ≥ 1 , 0 < q < 1 , α := 2N − q (2N + λ)
N (1− q)

Define

CN,λ,q := inf
{

Iλ[ρ](∫
RN ρ(x) dx

)α (∫
RN ρ(x)q dx

)(2−α)/q

}
,

where the inf is taken over ρ such that 0 ≤ ρ ∈ L1 ∩ Lq(RN) , ρ 6≡ 0.

−→ Recover sharp reversed HLS inequality for α = 0.

Questions:
Is CN,λ,q = 0 or positive?
Do ρ exist that achieve the inf?
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Functional Inequalities

The reverse HLS inequality
For any λ > 0 and any measurable function ρ ≥ 0 on RN , let

Iλ[ρ] :=
∫∫

RN×RN
|x − y |λ ρ(x) ρ(y) dx dy

N ≥ 1 , 0 < q < 1 , α := 2N − q (2N + λ)
N (1− q)

Theorem

Let λ > 0. The inequality
Iλ[ρ] ≥ CN,λ,q

(∫
RN
ρ dx

)α(∫
RN
ρq dx

)(2−α)/q
(1)

holds for any ρ ∈ L1
+ ∩ Lq(RN) with CN,λ,q > 0 if and only if q > N/(N + λ).

If either N = 1, 2 or if N ≥ 3 and q ≥ min
{
1− 2/N , 2N/(2N + λ)

}
, then there

is a radial nonnegative optimizer ρ ∈ L1 ∩ Lq(RN).
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Functional Inequalities
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N = 4, region of the parameters (λ, q) for which CN,λ,q > 0
Optimal functions exist in the light grey area
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Free energy point of view

A toy model

Assume that u solves the fast diffusion with external drift V given by

∂u
∂t = ∆uq + ∇ ·

(
u∇V

)
To fix ideas: V (x) = 1 + 1

2 |x |
2 + 1

λ |x |
λ. Free energy functional

F[u] :=
∫
RN

V u dx − 1
1− q

∫
RN

uq dx

Under the mass constraint M =
∫
RN u dx , smooth minimizers are

uµ(x) =
(
µ+ V (x)

)− 1
1−q

The equation can be seen as a gradient flow

d
dt F[u(t, ·)] = −

∫
RN

u
∣∣∣ q
1−q∇u

q−1 −∇V
∣∣∣2 dx
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Free energy point of view

A toy model (continued)

If λ = 2, the so-called Barenblatt profile uµ has finite mass if and only if

q > qc := N − 2
N

For λ > 2, the integrability condition is 1− 2/N > q > 1− λ/N but q = qc
is a threshold for the regularity: the mass of uµ = (µ+ V )1/(1−q) is

M(µ) :=
∫
RN

uµ dx ≤ M? =
∫
RN

( 1
2 |x |

2 + 1
λ |x |

λ
)− 1

1−q dx

If one tries to minimize the free energy under the mass contraint∫
RN u dx = M for an arbitrary M > M?, the limit of a minimizing sequence is
the measure (

M −M?

)
δ + u−1
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Free energy point of view

The nonlinear model: heuristics

V = ρ ∗Wλ , Wλ(x) := 1
λ |x |

λ

is motivated by the study of the nonnegative solutions of the evolution
equation

∂ρ

∂t = ∆ρq + ∇ · (ρ∇Wλ ∗ ρ)

Optimal functions for (RHLS) are energy minimizers for the free energy
functional

F[ρ] : = 1
2

∫
RN
ρ (Wλ ∗ ρ) dx − 1

1− q

∫
RN
ρq dx

= 1
2λ Iλ[ρ]− 1

1− q

∫
RN
ρq dx

under a mass constraint M =
∫
RN ρ dx while smooth solutions obey to

d
dt F[ρ(t, ·)] = −

∫
RN
ρ
∣∣∣ q
1−q∇ρ

q−1 −∇Wλ ∗ ρ
∣∣∣2 dx
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Free energy point of view Free energy

Minimization: free energy vs quotient

F[ρ] = − 1
1− q

∫
RN
ρq dx + 1

2λ Iλ[ρ]

Qq,λ[ρ] := Iλ[ρ](∫
RN ρ(x) dx

)α (∫
RN ρ(x)q dx

)(2−α)/q

CN,λ,q := inf
{
Qq,λ[ρ] : 0 ≤ ρ ∈ L1 ∩ Lq(RN) , ρ 6≡ 0

}
,

If N/(N + λ) < q < 1, ρ`(x) := `−N ρ(x/`)/‖ρ‖1
F[ρ`] = − `(1−q) N A + `λ B

has a minimum at ` = `? and

F[ρ] ≥ F[ρ`? ] = −κ? (Qq,λ[ρ])−
N (1−q)

λ−N (1−q)

Proposition

F is bounded from below if and only if CN,λ,q > 0
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Reverse Hardy-Littlewood-Sobolev inequality

The reverse HLS inequality
For any λ > 0 and any measurable function ρ ≥ 0 on RN , let

Iλ[ρ] :=
∫∫

RN×RN
|x − y |λ ρ(x) ρ(y) dx dy

N ≥ 1 , 0 < q < 1 , α := 2N − q (2N + λ)
N (1− q)

Theorem

Let λ > 0. The inequality
Iλ[ρ] ≥ CN,λ,q

(∫
RN
ρ dx

)α(∫
RN
ρq dx

)(2−α)/q
(2)

holds for any ρ ∈ L1
+ ∩ Lq(RN) with CN,λ,q > 0 if and only if q > N/(N + λ).

If either N = 1, 2 or if N ≥ 3 and q ≥ min
{
1− 2/N , 2N/(2N + λ)

}
, then there

is a radial nonnegative optimizer ρ ∈ L1 ∩ Lq(RN).
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Reverse Hardy-Littlewood-Sobolev inequality

The conformally invariant case q = 2N/(2N + λ)

Iλ[ρ] =
∫∫

RN×RN
|x − y |λ ρ(x) ρ(y) dx dy ≥ CN,λ,q

(∫
RN
ρq dx

)2/q

q = 2N/(2N + λ) ⇐⇒ α = 0

(Dou, Zhu 2015) (Ngô, Nguyen 2017)

The optimizers are given, up to translations, dilations and multiplications by
constants, by

ρ(x) =
(
1 + |x |2

)−N/q ∀ x ∈ RN

and the value of the optimal constant is

CN,λ,q(λ) = 1
π
λ
2

Γ
(N
2 + λ

2
)

Γ
(
N + λ

2
) ( Γ(N)

Γ
(N
2
))1+λ

N
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N = 4, region of the parameters (λ, q) for which CN,λ,q > 0
The plain, red curve is the conformally invariant case α = 0
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Reverse Hardy-Littlewood-Sobolev inequality

∫∫
RN×RN

|x − y |λ ρ(x) ρ(y) dx dy ≥ CN,λ,q

(∫
RN
ρ dx

)α(∫
RN
ρq dx

)(2−α)/q
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α < 0

0 < α < 1

α > 1
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Reverse Hardy-Littlewood-Sobolev inequality A proof based on Carlson’s inequality

A Carlson type inequality

Lemma

Let λ > 0 and N/(N + λ) < q < 1

(∫
RN
ρ dx

)1− N (1−q)
λ q

(∫
RN
|x |λ ρ dx

) N (1−q)
λ q

≥ cN,λ,q

(∫
RN
ρq dx

) 1
q

cN,λ,q = 1
λ

(
(N+λ) q−N

q

) 1
q
(

N (1−q)
(N+λ) q−N

) N
λ

1−q
q
(

Γ( N
2 ) Γ( 1

1−q )
2π

N
2 Γ( 1

1−q−
N
λ ) Γ( N

λ )

) 1−q
q

Equality is achieved if and only if

ρ(x) =
(
1 + |x |λ

)− 1
1−q

up to translations, dilations and constant multiples

(Carlson 1934) (Levine 1948)
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Reverse Hardy-Littlewood-Sobolev inequality A proof based on Carlson’s inequality

Proposition

Let λ > 0. If N/(N + λ) < q < 1, then CN,λ,q > 0

By rearrangement inequalities: prove the reverse HLS inequality for
symmetric non-increasing ρ’s so that∫

RN
|x − y |λ ρ(y) dx ≥

∫
RN
|x |λ ρ dx for all x ∈ RN

implies
Iλ[ρ] ≥

∫
RN
|x |λ ρ dx

∫
RN
ρ dx

In the range N
N+λ < q < 1

Iλ[ρ](∫
RN ρ(x) dx

)α ≥ (∫
RN
ρ dx dx

)1−α∫
RN
|x |λ ρ dx ≥ c2−αN,λ,q

(∫
RN
ρq dx

) 2−α
q

and conclude with Carlson’s inequality.
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Reverse Hardy-Littlewood-Sobolev inequality The case λ = 2

The case λ = 2

Corollary

Let λ = 2 and N/(N + 2) < q < 1. Then the optimizers for (RHLS) are given by
translations, dilations and constant multiples of

ρ(x) =
(
1 + |x |2

)− 1
1−q

and the optimal constant is

CN,2,q = 1
2 c

2 q
N (1−q)

N,2,q

By rearrangement inequalities it is enough to prove (RHLS) for symmetric
non-increasing ρ’s, and so

∫
RN x ρ dx = 0. Therefore

I2[ρ] = 2
∫
RN
ρ dx

∫
RN
|x |2ρ dx

and the optimal function is optimal for Carlson’s inequality.
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Reverse Hardy-Littlewood-Sobolev inequality The case λ = 2
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N = 4, region of the parameters (λ, q) for which CN,λ,q > 0. The dashed, red
curve is the threshold case q = N/(N + λ)
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Reverse Hardy-Littlewood-Sobolev inequality Concentration and a relaxed inequality

The threshold case q = N/(N + λ) and below

Proposition

If 0 < q ≤ N/(N + λ), then CN,λ,q = 0.

Case 0 < q < N/(N + λ) shown in (Carrillo, Delgadino, Patacchini 2018).
Alternative proof that can be extended to the threshold case
q = N/(N + λ) (i.e. α = 1 )
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Reverse Hardy-Littlewood-Sobolev inequality Concentration and a relaxed inequality

The threshold case q = N/(N + λ) and below

Proposition

If 0 < q ≤ N/(N + λ), then CN,λ,q = 0.

Let ρ, σ ≥ 0 such that
∫
RN σ dx = 1, smooth (+ compact support)

ρε(x) := ρ(x) + M ε−N σ(x/ε)

Then
∫
RN ρε dx =

∫
RN ρ dx + M and, by simple estimates,∫

RN
ρq
ε dx →

∫
RN
ρq dx as ε→ 0+

and

Iλ[ρε]→ Iλ[ρ] + 2M
∫
RN
|x |λ ρ dx as ε→ 0+

If 0 < q < N/(N + λ), i.e., α > 1, take ρε as a trial function,

CN,λ,q ≤
Iλ[ρ] + 2M

∫
RN |x |λ ρ dx(∫

RN ρ dx + M
)α (∫

RN ρ
q dx
)(2−α)/q =: Q[ρ,M]

and let M → +∞.
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Reverse Hardy-Littlewood-Sobolev inequality Concentration and a relaxed inequality

A relaxed inequality

Iλ[ρ] + 2M
∫
RN
|x |λ ρ dx ≥ CN,λ,q

(∫
RN
ρ dx + M

)α(∫
RN
ρq dx

)(2−α)/q
(3)

Proposition
If q > N/(N + λ), the relaxed inequality (3) holds with the same optimal
constant CN,λ,q as (RHLS) and admits an optimizer (ρ,M).

Heuristically, this is the extension of (RHLS)

Iλ[ρ] ≥ CN,λ,q

(∫
RN
ρ dx

)α(∫
RN
ρq dx

)(2−α)/q

to measures of the form ρ+ M δ.
Recover original problem for M = 0.
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Existence of minimizers and
relaxation
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Existence of minimizers and relaxation Above the curve of the conformally invariant case

Existence of a minimizer: first case
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The α < 0 case: dark grey region

Proposition

If λ > 0 and 2N
2N+λ < q < 1, there is a minimizer ρ for CN,λ,q.

The limit case α = 0, q = 2N
2N+λ is the conformally invariant case: see (Dou,

Zhu 2015) and (Ngô, Nguyen 2017)
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Existence of minimizers and relaxation Above the curve of the conformally invariant case

A minimizing sequence ρj can be taken radially symmetric non-increasing by
rearrangement, and such that∫

RN
ρj(x) dx =

∫
RN
ρj(x)q dx = 1 for all j ∈ N

Since ρj(x) ≤ C min
{
|x |−N , |x |−N/q} by Helly’s selection theorem we may

assume that ρj → ρ a.e., so that

lim inf
j→∞

Iλ[ρj ] ≥ Iλ[ρ] and 1 ≥
∫
RN
ρ(x) dx

by Fatou’s lemma. Pick p ∈ (N/(N + λ), q) and apply (RHLS) with the
same λ and α = α(p):

Iλ[ρj ] ≥ CN,λ,p

(∫
RN
ρp

j dx
)(2−α(p))/p

Hence the ρj are uniformly bounded in Lp(RN): ρj(x) ≤ C ′ |x |−N/p,∫
RN
ρq

j dx →
∫
RN
ρq dx = 1

by dominated convergence.
Reverse Hardy-Littlewood-Sobolev inequalities



Existence of minimizers and relaxation Below the curve of the conformally invariant case

Existence of a minimizer: second case
If N/(N + λ) < q < 2N/(2N + λ) we consider the relaxed inequality

Iλ[ρ] + 2M
∫
RN |x |λ ρ dx ≥ CN,λ,q

(∫
RN ρ dx + M

)α (∫
RN ρ

q dx
)(2−α)/q

0 2 4 6 8 10 12

0.2

0.4

0.6

0.8

1.0

The 0 < α < 1 case: dark grey region

Proposition
If q > N/(N + λ), the relaxed inequality holds with the same optimal constant
CN,λ,q as (RHLS) and admits an optimizer (ρ,M).
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Existence of minimizers and relaxation Below the curve of the conformally invariant case

Sketch Proof

Let (ρj ,Mj) be a minimizing sequence with ρj radially symmetric
non-increasing by rearrangement, such that∫

RN
ρj dx + Mj =

∫
RN
ρq

j = 1

Local estimates + Helly’s selection theorem: ρj → ρ almost everywhere
and Mj → M := L + limj→∞Mj , so that

∫
RN ρ dx + M = 1, and∫

RN ρ(x)q dx = 1.
µj are tight: up to a subsequence, µj → µ weak * and dµ = ρ dx + L δ

lim inf
j→∞

Iλ[ρj ] ≥ Iλ[ρ] + 2M
∫
RN
|x |λ ρ dx ,

lim inf
j→∞

∫
RN
|x |λ ρj dx ≥

∫
RN
|x |λ ρ dx

Conclusion: lim inf j→∞ Q[ρj ,Mj ] ≥ Q[ρ,M].
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Existence of minimizers and relaxation Below the curve of the conformally invariant case

Optimizers are positive

Q[ρ,M] :=
Iλ[ρ] + 2M

∫
RN |x |λ ρ dx(∫

RN ρ dx + M
)α (∫

RN ρq dx
)(2−α)/q

Lemma

Let λ > 0 and N/(N + λ) < q < 1. If ρ ≥ 0 is an optimal function for some
M > 0, then ρ is radial (up to a translation), monotone non-increasing and
positive a.e. on RN

If ρ vanishes on a set E ⊂ RN of finite, positive measure, then

Q
[
ρ,M + ε1E

]
= Q[ρ,M]

(
1− 2− α

q
|E |∫

RN ρ(x)q dx
εq + o(εq)

)
as ε→ 0+, a contradiction if (ρ,M) is a minimizer of Q.
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Existence of minimizers and relaxation Below the curve of the conformally invariant case

Euler–Lagrange equation

Euler–Lagrange equation for a minimizer (ρ∗,M∗)

2
∫
RN |x − y |λ ρ∗(y) dy + M∗|x |λ

Iλ[ρ∗] + 2M∗
∫
RN |y |λ ρ∗ dy

− α∫
RN ρ∗ dy + M∗

− (2− α) ρ∗(x)−1+q∫
RN ρ∗(y)q dy

= 0

We can reformulate the question of the optimizers of (RHLS) as:

When is it true that M∗ = 0 ?

We already know that M∗ = 0 if

2N
2N + λ

< q < 1
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Regions of no concentration and
regularity of measure valued

minimizers
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Regions of no concentration and regularity
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q = N−2
N

q=q̄(λ,N)

q = 2N
2N+λ

q = N
N+λ
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Regions of no concentration and regularity No concentration: first result

No concentration 1
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Proposition

Let N ≥ 1, λ > 0 and N
N + λ

< q < 2N
2N + λ

If N ≥ 3 and λ > 2N/(N − 2), assume further that q ≥ N − 2
N

If (ρ∗,M∗) is a minimizer, then M∗ = 0.
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Regions of no concentration and regularity Regularity and concentration

Regularity and concentration
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Proposition

If N ≥ 3, λ > 2N/(N − 2) and

N
N + λ

< q < min
{
N − 2
N ,

2N
2N + λ

}
,

and (ρ∗,M∗) ∈ LN (1−q)/2(RN)× [0,+∞) is a minimizer, then M∗ = 0
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Regions of no concentration and regularity Regularity and concentration

Regularity

Proposition

Let N ≥ 1, λ > 0 and N/(N + λ) < q < 2N/(2N + λ)
Let (ρ∗,M∗) be a minimizer

1 If
∫
RN ρ∗ dx > α

2
Iλ[ρ∗]∫

RN |x |λ ρ∗ dx
, then M∗ = 0 and ρ∗, bounded and

ρ∗(0) =
(

(2− α)Iλ[ρ∗]
∫
RN ρ∗ dx(∫

RN ρ
q
∗ dx

) (
2
∫
RN |x |λ ρ∗ dx

∫
RN ρ∗ dx − αIλ[ρ∗]

)) 1
1−q

2 If
∫
RN ρ∗ dx = α

2
Iλ[ρ∗]∫

RN |x |λ ρ∗ dx
, then M∗ = 0 and ρ∗ is unbounded

3 If
∫
RN ρ∗ dx < α

2
Iλ[ρ∗]∫

RN |x |λ ρ∗ dx
, then ρ∗ is unbounded and

M∗ =
αIλ[ρ∗]− 2

∫
RN |x |λ ρ∗ dx

∫
RN ρ∗ dx

2 (1− α)
∫
RN |x |λ ρ∗ dx

> 0
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Regions of no concentration and regularity Regularity and concentration

Ingredients of the proof

Vary Q[ρ∗,M] with respect to M and make use of:

Lemma

For constants A, B > 0 and 0 < α < 1, define

f (M) = A + M
(B + M)α for M ≥ 0

Then f attains its minimum on [0,∞) at M = 0 if αA ≤ B and at
M = (αA− B)/(1− α) > 0 if αA > B

Vary Q[ρ,M∗] with respect to ρ and make use of the Euler-Lagrange
condition to derive a condition for the boundedness of ρ∗.
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Regions of no concentration and regularity No concentration: further results

No concentration 2

For any λ ≥ 1 we deduce from

|x − y |λ ≤
(
|x |+ |y |

)λ ≤ 2λ−1
(
|x |λ + |y |λ

)
that

Iλ[ρ] < 2λ
∫
RN
|x |λ ρ dx

∫
RN
ρ(x) dx

For all α ≤ 2−λ+1, we infer that M∗ = 0 if

q ≥
2N
(
1− 2−λ

)
2N
(
1− 2−λ

)
+ λ
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Regions of no concentration and regularity No concentration: further results

No concentration 3

Layer cake representation (superlevel sets are balls)

Iλ[ρ] ≤ 2AN,λ

∫
RN
|x |λ ρ dx

∫
RN
ρ(x) dx

AN,λ := sup
0≤R,S<∞

∫∫
BR×BS

|x − y |λ dx dy
|BR |

∫
BS
|x |λ dx + |BS |

∫
BR
|y |λ dy
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Regions of no concentration and regularity No concentration: further results
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Thank you for your attention !
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