Reverse Hardy-Littlewood-Sobolev inequalities

Franca Hoffmann

Department of Computing and Mathematical Sciences
California Institute of Technology
October 22, 2018

Young Researchers Workshop

Kinetic descriptions in theory and applications
University of Maryland, College Park
Joint work with
J. A. Carrillo, M. G. Delgadino, J. Dolbeault and R. Frank

Outline

- Functional inequalities
\triangleright The HLS inequality
\triangleright The reverse HLS inequality
- Free Energy
\triangleright A toy model
\triangleright Equivalence with reverse HLS inequalities
- Reverse HLS inequality
\triangleright The inequality and the conformally invariant case
\triangleright A proof based on Carlson's inequality
\triangleright The case $\lambda=2$
\triangleright Concentration and a relaxed inequality
- Existence of minimizers and relaxation
\triangleright Existence minimizers if $q>2 N /(2 N+\lambda)$
\triangleright Relaxation and measure valued minimizers
- Regions of no concentration and regularity of measure valued minimizers
\triangleright No concentration results
\triangleright Regularity issues

Functional Inequalities

The HLS inequality

Theorem ((Lieb 1983))
For any $-N<\lambda<0$, there exists a constant $\mathcal{C}_{H L S}=\mathcal{C}_{H L S}(N, \lambda, q)>0$ such that any $f \in \mathrm{~L}^{p}\left(\mathbb{R}^{N}\right)$ and $g \in \mathrm{~L}^{q}\left(\mathbb{R}^{N}\right)$ satisfy

$$
\begin{gathered}
\iint_{\mathbb{R}^{N} \times \mathbb{R}^{N}}|x-y|^{\lambda} f(x) g(y) d x d y \leq \mathcal{C}_{H L s}\|f\|_{p}\|g\|_{q} \\
\frac{1}{p}+\frac{1}{q}=2+\frac{\lambda}{N}, \quad p, q>1
\end{gathered}
$$

Sharp inequality: Let $f=g=\rho \geq 0$ and $p=q=\frac{2 N}{2 N+\lambda}$, then

$$
\iint_{\mathbb{R}^{N} \times \mathbb{R}^{N}}|x-y|^{\lambda} \rho(x) \rho(y) d x d y \leq \mathcal{C}_{H L S}\left(\int_{\mathbb{R}^{N}} \rho^{q} d x\right)^{2 / q}
$$

The reverse HLS inequality

Theorem ((Dou, Zhu 2015)(Ngô, Nguyen 2017))
For any $\lambda>0$, there exists a constant $\mathcal{C}_{R H L S}=\mathcal{C}_{R H L S}(N, \lambda, q)>0$ such that any non-negative $f \in \mathrm{~L}^{p}\left(\mathbb{R}^{N}\right)$ and $g \in \mathrm{~L}^{q}\left(\mathbb{R}^{N}\right)$ satisfy

$$
\begin{gathered}
\iint_{\mathbb{R}^{N} \times \mathbb{R}^{N}}|x-y|^{\lambda} f(x) g(y) d x d y \geq \mathcal{C}_{R H L S}\|f\|_{p}\|g\|_{q} \\
\frac{1}{p}+\frac{1}{q}=2+\frac{\lambda}{N}, \quad p, q \in(0,1)
\end{gathered}
$$

Convention: $\rho \in \mathrm{L}^{p}\left(\mathbb{R}^{N}\right)$ if $\int_{\mathbb{R}^{N}}|\rho(x)|^{p} d x<\infty$ for any $p>0$.
Sharp inequality: Let $f=g=\rho \geq 0$ and $p=q=\frac{2 N}{2 N+\lambda}$, then

$$
\iint_{\mathbb{R}^{N} \times \mathbb{R}^{N}}|x-y|^{\lambda} \rho(x) \rho(y) d x d y \geq \mathcal{C}_{R H L S}\left(\int_{\mathbb{R}^{N}} \rho^{q} d x\right)^{2 / q}
$$

The reverse HLS inequality

For any $\lambda>0$ and any measurable function $\rho \geq 0$ on \mathbb{R}^{N}, let

$$
\begin{gathered}
I_{\lambda}[\rho]:=\iint_{\mathbb{R}^{N} \times \mathbb{R}^{N}}|x-y|^{\lambda} \rho(x) \rho(y) d x d y \\
N \geq 1, \quad 0<q<1, \quad \alpha:=\frac{2 N-q(2 N+\lambda)}{N(1-q)}
\end{gathered}
$$

Define

$$
\mathcal{C}_{N, \lambda, q}:=\inf \left\{\frac{I_{\lambda}[\rho]}{\left(\int_{\mathbb{R}^{N}} \rho(x) d x\right)^{\alpha}\left(\int_{\mathbb{R}^{N}} \rho(x)^{q} d x\right)^{(2-\alpha) / q}}\right\}
$$

where the inf is taken over ρ such that $0 \leq \rho \in \mathrm{L}^{1} \cap \mathrm{~L}^{q}\left(\mathbb{R}^{N}\right), \rho \not \equiv 0$. \longrightarrow Recover sharp reversed HLS inequality for $\alpha=0$.

Questions:

- Is $\mathcal{C}_{N, \lambda, q}=0$ or positive?
- Do ρ exist that achieve the inf?

The reverse HLS inequality

For any $\lambda>0$ and any measurable function $\rho \geq 0$ on \mathbb{R}^{N}, let

$$
\begin{gathered}
I_{\lambda}[\rho]:=\iint_{\mathbb{R}^{N} \times \mathbb{R}^{N}}|x-y|^{\lambda} \rho(x) \rho(y) d x d y \\
N \geq 1, \quad 0<q<1, \quad \alpha:=\frac{2 N-q(2 N+\lambda)}{N(1-q)}
\end{gathered}
$$

Theorem

Let $\lambda>0$. The inequality

$$
\begin{equation*}
I_{\lambda}[\rho] \geq \mathcal{C}_{N, \lambda, q}\left(\int_{\mathbb{R}^{N}} \rho d x\right)^{\alpha}\left(\int_{\mathbb{R}^{N}} \rho^{q} d x\right)^{(2-\alpha) / q} \tag{1}
\end{equation*}
$$

holds for any $\rho \in \mathrm{L}_{+}^{1} \cap \mathrm{~L}^{q}\left(\mathbb{R}^{N}\right)$ with $\mathcal{C}_{N, \lambda, q}>0$ if and only if $q>N /(N+\lambda)$.
If either $N=1$, 2 or if $N \geq 3$ and $q \geq \min \{1-2 / N, 2 N /(2 N+\lambda)\}$, then there is a radial nonnegative optimizer $\rho \in \mathrm{L}^{1} \cap \mathrm{~L}^{q}\left(\mathbb{R}^{N}\right)$.

$N=4$, region of the parameters (λ, q) for which $\mathcal{C}_{N, \lambda, q}>0$ Optimal functions exist in the light grey area

Free energy point of view

A toy model

Assume that u solves the fast diffusion with external drift V given by

$$
\frac{\partial u}{\partial t}=\Delta u^{q}+\nabla \cdot(u \nabla V)
$$

To fix ideas: $V(x)=1+\frac{1}{2}|x|^{2}+\frac{1}{\lambda}|x|^{\lambda}$. Free energy functional

$$
\mathcal{F}[u]:=\int_{\mathbb{R}^{N}} V u d x-\frac{1}{1-q} \int_{\mathbb{R}^{N}} u^{q} d x
$$

Q Under the mass constraint $M=\int_{\mathbb{R}^{N}} u d x$, smooth minimizers are

$$
u_{\mu}(x)=(\mu+V(x))^{-\frac{1}{1-q}}
$$

a The equation can be seen as a gradient flow

$$
\frac{d}{d t} \mathcal{F}[u(t, \cdot)]=-\int_{\mathbb{R}^{N}} u\left|\frac{q}{1-q} \nabla u^{q-1}-\nabla V\right|^{2} d x
$$

A toy model (continued)

If $\lambda=2$, the so-called Barenblatt profile u_{μ} has finite mass if and only if

$$
q>q_{c}:=\frac{N-2}{N}
$$

e For $\lambda>2$, the integrability condition is $1-2 / N>q>1-\lambda / N$ but $q=q_{c}$ is a threshold for the regularity: the mass of $u_{\mu}=(\mu+V)^{1 /(1-q)}$ is

$$
M(\mu):=\int_{\mathbb{R}^{N}} u_{\mu} d x \leq M_{\star}=\int_{\mathbb{R}^{N}}\left(\frac{1}{2}|x|^{2}+\frac{1}{\lambda}|x|^{\lambda}\right)^{-\frac{1}{1-q}} d x
$$

Q If one tries to minimize the free energy under the mass contraint $\int_{\mathbb{R}^{N}} u d x=M$ for an arbitrary $M>M_{\star}$, the limit of a minimizing sequence is the measure

$$
\left(M-M_{\star}\right) \delta+u_{-1}
$$

The nonlinear model: heuristics

$$
V=\rho * W_{\lambda}, \quad W_{\lambda}(x):=\frac{1}{\lambda}|x|^{\lambda}
$$

is motivated by the study of the nonnegative solutions of the evolution equation

$$
\frac{\partial \rho}{\partial t}=\Delta \rho^{q}+\nabla \cdot\left(\rho \nabla W_{\lambda} * \rho\right)
$$

Optimal functions for (RHLS) are energy minimizers for the free energy functional

$$
\begin{aligned}
\mathcal{F}[\rho]: & =\frac{1}{2} \int_{\mathbb{R}^{N}} \rho\left(W_{\lambda} * \rho\right) d x-\frac{1}{1-q} \int_{\mathbb{R}^{N}} \rho^{q} d x \\
& =\frac{1}{2 \lambda} I_{\lambda}[\rho]-\frac{1}{1-q} \int_{\mathbb{R}^{N}} \rho^{q} d x
\end{aligned}
$$

under a mass constraint $M=\int_{\mathbb{R}^{N}} \rho d x$ while smooth solutions obey to

$$
\frac{d}{d t} \mathcal{F}[\rho(t, \cdot)]=-\int_{\mathbb{R}^{N}} \rho\left|\frac{q}{1-q} \nabla \rho^{q-1}-\nabla W_{\lambda} * \rho\right|^{2} d x
$$

Minimization: free energy vs quotient

$$
\begin{aligned}
& \mathcal{F}[\rho]=-\frac{1}{1-q} \int_{\mathbb{R}^{N}} \rho^{q} d x+\frac{1}{2 \lambda} I_{\lambda}[\rho] \\
& \mathrm{Q}_{q, \lambda}[\rho]:=\frac{I_{\lambda}[\rho]}{\left(\int_{\mathbb{R}^{N}} \rho(x) d x\right)^{\alpha}\left(\int_{\mathbb{R}^{N}} \rho(x)^{q} d x\right)^{(2-\alpha) / q}} \\
& \mathcal{C}_{N, \lambda, q}:=\inf \left\{\mathrm{Q}_{q, \lambda}[\rho]: 0 \leq \rho \in \mathrm{L}^{1} \cap \mathrm{~L}^{q}\left(\mathbb{R}^{N}\right), \rho \not \equiv 0\right\},
\end{aligned}
$$

If $N /(N+\lambda)<q<1, \rho_{\ell}(x):=\ell^{-N} \rho(x / \ell) /\|\rho\|_{1}$

$$
\mathcal{F}\left[\rho_{\ell}\right]=-\ell^{(1-q) N} \mathrm{~A}+\ell^{\lambda} \mathrm{B}
$$

has a minimum at $\ell=\ell_{\star}$ and

$$
\mathcal{F}[\rho] \geq \mathcal{F}\left[\rho_{\ell_{\star}}\right]=-\kappa_{\star}\left(Q_{q, \lambda}[\rho]\right)^{-\frac{N(1-q)}{\lambda-(1-q)}}
$$

Proposition
\mathcal{F} is bounded from below if and only if $\mathcal{C}_{N, \lambda, q}>0$

Reverse

Hardy-Littlewood-Sobolev inequality

The reverse HLS inequality

For any $\lambda>0$ and any measurable function $\rho \geq 0$ on \mathbb{R}^{N}, let

$$
\begin{gathered}
\lambda_{\lambda}[\rho]:=\iint_{\mathbb{R}^{N} \times \mathbb{R}^{N}}|x-y|^{\lambda} \rho(x) \rho(y) d x d y \\
N \geq 1, \quad 0<q<1, \quad \alpha:=\frac{2 N-q(2 N+\lambda)}{N(1-q)}
\end{gathered}
$$

Theorem

Let $\lambda>0$. The inequality

$$
\begin{equation*}
I_{\lambda}[\rho] \geq \mathcal{C}_{N, \lambda, q}\left(\int_{\mathbb{R}^{N}} \rho d x\right)^{\alpha}\left(\int_{\mathbb{R}^{N}} \rho^{q} d x\right)^{(2-\alpha) / q} \tag{2}
\end{equation*}
$$

holds for any $\rho \in \mathrm{L}_{+}^{1} \cap \mathrm{~L}^{q}\left(\mathbb{R}^{N}\right)$ with $\mathcal{C}_{N, \lambda, q}>0$ if and only if $q>N /(N+\lambda)$.
If either $N=1,2$ or if $N \geq 3$ and $q \geq \min \{1-2 / N, 2 N /(2 N+\lambda)\}$, then there is a radial nonnegative optimizer $\rho \in \mathrm{L}^{1} \cap \mathrm{~L}^{q}\left(\mathbb{R}^{N}\right)$.

The conformally invariant case $q=2 N /(2 N+\lambda)$

$$
\begin{gathered}
I_{\lambda}[\rho]=\iint_{\mathbb{R}^{N} \times \mathbb{R}^{N}}|x-y|^{\lambda} \rho(x) \rho(y) d x d y \geq \mathcal{C}_{N, \lambda, q}\left(\int_{\mathbb{R}^{N}} \rho^{q} d x\right)^{2 / q} \\
q=2 N /(2 N+\lambda) \quad \Longleftrightarrow \quad \alpha=0
\end{gathered}
$$

(Dou, Zhu 2015) (Ngô, Nguyen 2017)
The optimizers are given, up to translations, dilations and multiplications by constants, by

$$
\rho(x)=\left(1+|x|^{2}\right)^{-N / q} \quad \forall x \in \mathbb{R}^{N}
$$

and the value of the optimal constant is

$$
\mathcal{C}_{N, \lambda, q(\lambda)}=\frac{1}{\pi^{\frac{\lambda}{2}}} \frac{\Gamma\left(\frac{N}{2}+\frac{\lambda}{2}\right)}{\Gamma\left(N+\frac{\lambda}{2}\right)}\left(\frac{\Gamma(N)}{\Gamma\left(\frac{N}{2}\right)}\right)^{1+\frac{\lambda}{N}}
$$

$N=4$, region of the parameters (λ, q) for which $\mathcal{C}_{N, \lambda, q}>0$ The plain, red curve is the conformally invariant case $\alpha=0$

$$
\iint_{\mathbb{R}^{N} \times \mathbb{R}^{N}}|x-y|^{\lambda} \rho(x) \rho(y) d x d y \geq \mathcal{C}_{N, \lambda, q}\left(\int_{\mathbb{R}^{N}} \rho d x\right)^{\alpha}\left(\int_{\mathbb{R}^{N}} \rho^{q} d x\right)^{(2-\alpha) / q}
$$

A Carlson type inequality

Lemma
Let $\lambda>0$ and $N /(N+\lambda)<q<1$

$$
\begin{gathered}
\left(\int_{\mathbb{R}^{N}} \rho d x\right)^{1-\frac{N(1-q)}{\lambda q}}\left(\int_{\mathbb{R}^{N}}|x|^{\lambda} \rho d x\right)^{\frac{N(1-q)}{\lambda q}} \geq c_{N, \lambda, q}\left(\int_{\mathbb{R}^{N}} \rho^{q} d x\right)^{\frac{1}{q}} \\
c_{N, \lambda, q}=\frac{1}{\lambda}\left(\frac{(N+\lambda) q-N}{q}\right)^{\frac{1}{q}}\left(\frac{N(1-q)}{(N+\lambda) q-N}\right)^{\frac{N}{\lambda} \frac{1-q}{q}}\left(\frac{\Gamma\left(\frac{N}{2}\right) \Gamma\left(\frac{1}{1-q}\right)}{2 \pi^{\frac{N}{2}} \Gamma\left(\frac{1}{1-q}-\frac{N}{\lambda}\right) \Gamma\left(\frac{N}{\lambda}\right)}\right)^{\frac{1-q}{q}}
\end{gathered}
$$

Equality is achieved if and only if

$$
\rho(x)=\left(1+|x|^{\lambda}\right)^{-\frac{1}{1-q}}
$$

up to translations, dilations and constant multiples
(Carlson 1934) (Levine 1948)

Proposition
Let $\lambda>0$. If $N /(N+\lambda)<q<1$, then $\mathcal{C}_{N, \lambda, q}>0$
By rearrangement inequalities: prove the reverse HLS inequality for symmetric non-increasing ρ 's so that

$$
\int_{\mathbb{R}^{N}}|x-y|^{\lambda} \rho(y) d x \geq \int_{\mathbb{R}^{N}}|x|^{\lambda} \rho d x \quad \text { for all } \quad x \in \mathbb{R}^{N}
$$

implies

$$
I_{\lambda}[\rho] \geq \int_{\mathbb{R}^{N}}|x|^{\lambda} \rho d x \int_{\mathbb{R}^{N}} \rho d x
$$

In the range $\frac{N}{N+\lambda}<q<1$

$$
\frac{I_{\lambda}[\rho]}{\left(\int_{\mathbb{R}^{N}} \rho(x) d x\right)^{\alpha}} \geq\left(\int_{\mathbb{R}^{N}} \rho d x d x\right)^{1-\alpha} \int_{\mathbb{R}^{N}}|x|^{\lambda} \rho d x \geq c_{N, \lambda, q}^{2-\alpha}\left(\int_{\mathbb{R}^{N}} \rho^{q} d x\right)^{\frac{2-\alpha}{q}}
$$

and conclude with Carlson's inequality.

The case $\lambda=2$

Corollary

Let $\lambda=2$ and $N /(N+2)<q<1$. Then the optimizers for (RHLS) are given by translations, dilations and constant multiples of

$$
\rho(x)=\left(1+|x|^{2}\right)^{-\frac{1}{1-q}}
$$

and the optimal constant is

$$
\mathcal{C}_{N, 2, q}=\frac{1}{2} c_{N, 2, q}^{\frac{2 q}{N(1-q)}}
$$

By rearrangement inequalities it is enough to prove (RHLS) for symmetric non-increasing ρ 's, and so $\int_{\mathbb{R}^{N}} x \rho d x=0$. Therefore

$$
I_{2}[\rho]=2 \int_{\mathbb{R}^{N}} \rho d x \int_{\mathbb{R}^{N}}|x|^{2} \rho d x
$$

and the optimal function is optimal for Carlson's inequality.

$N=4$, region of the parameters (λ, q) for which $\mathcal{C}_{N, \lambda, q}>0$. The dashed, red curve is the threshold case $q=N /(N+\lambda)$

The threshold case $q=N /(N+\lambda)$ and below

Proposition
If $0<q \leq N /(N+\lambda)$, then $\mathcal{C}_{N, \lambda, q}=0$.

- Case $0<q<N /(N+\lambda)$ shown in (Carrillo, Delgadino, Patacchini 2018).
- Alternative proof that can be extended to the threshold case $q=N /(N+\lambda)($ i.e. $\alpha=1)$

The threshold case $q=N /(N+\lambda)$ and below

Proposition
If $0<q \leq N /(N+\lambda)$, then $\mathcal{C}_{N, \lambda, q}=0$.
Let $\rho, \sigma \geq 0$ such that $\int_{\mathbb{R}^{N}} \sigma d x=1$, smooth (+ compact support)

$$
\rho_{\varepsilon}(x):=\rho(x)+M \varepsilon^{-N} \sigma(x / \varepsilon)
$$

Then $\int_{\mathbb{R}^{N}} \rho_{\varepsilon} d x=\int_{\mathbb{R}^{N}} \rho d x+M$ and, by simple estimates,

$$
\int_{\mathbb{R}^{N}} \rho_{\varepsilon}^{q} d x \rightarrow \int_{\mathbb{R}^{N}} \rho^{q} d x \quad \text { as } \quad \varepsilon \rightarrow 0_{+}
$$

and

$$
I_{\lambda}\left[\rho_{\varepsilon}\right] \rightarrow I_{\lambda}[\rho]+2 M \int_{\mathbb{R}^{N}}|x|^{\lambda} \rho d x \quad \text { as } \quad \varepsilon \rightarrow 0_{+}
$$

If $0<q<N /(N+\lambda)$, i.e., $\alpha>1$, take ρ_{ε} as a trial function,

$$
\mathcal{C}_{N, \lambda, q} \leq \frac{I_{\lambda}[\rho]+2 M \int_{\mathbb{R}^{N}}|x|^{\lambda} \rho d x}{\left(\int_{\mathbb{R}^{N}} \rho d x+M\right)^{\alpha}\left(\int_{\mathbb{R}^{N}} \rho^{q} d x\right)^{(2-\alpha) / q}}=: \mathcal{Q}[\rho, M]
$$

and let $M \rightarrow+\infty$.

A relaxed inequality

$$
\begin{equation*}
I_{\lambda}[\rho]+2 M \int_{\mathbb{R}^{N}}|x|^{\lambda} \rho d x \geq \mathfrak{C}_{N, \lambda, q}\left(\int_{\mathbb{R}^{N}} \rho d x+M\right)^{\alpha}\left(\int_{\mathbb{R}^{N}} \rho^{q} d x\right)^{(2-\alpha) / q} \tag{3}
\end{equation*}
$$

Proposition

If $q>N /(N+\lambda)$, the relaxed inequality (3) holds with the same optimal constant $\mathcal{C}_{N, \lambda, q}$ as (RHLS) and admits an optimizer (ρ, M).

- Heuristically, this is the extension of (RHLS)

$$
I_{\lambda}[\rho] \geq \mathcal{C}_{N, \lambda, q}\left(\int_{\mathbb{R}^{N}} \rho d x\right)^{\alpha}\left(\int_{\mathbb{R}^{N}} \rho^{q} d x\right)^{(2-\alpha) / q}
$$

to measures of the form $\rho+M \delta$.

- Recover original problem for $M=0$.

Existence of minimizers and relaxation

Existence of a minimizer: first case

The $\alpha<0$ case: dark grey region

Proposition
If $\lambda>0$ and $\frac{2 N}{2 N+\lambda}<q<1$, there is a minimizer ρ for $\mathcal{C}_{N, \lambda, q}$.
The limit case $\alpha=0, q=\frac{2 N}{2 N+\lambda}$ is the conformally invariant case: see (Dou, Zhu 2015) and (Ngô, Nguyen 2017)

A minimizing sequence ρ_{j} can be taken radially symmetric non-increasing by rearrangement, and such that

$$
\int_{\mathbb{R}^{N}} \rho_{j}(x) d x=\int_{\mathbb{R}^{N}} \rho_{j}(x)^{q} d x=1 \quad \text { for all } j \in \mathbb{N}
$$

Since $\rho_{j}(x) \leq C \min \left\{|x|^{-N},|x|^{-N / q}\right\}$ by Helly's selection theorem we may assume that $\rho_{j} \rightarrow \rho$ a.e., so that

$$
\liminf _{j \rightarrow \infty} I_{\lambda}\left[\rho_{j}\right] \geq I_{\lambda}[\rho] \quad \text { and } \quad 1 \geq \int_{\mathbb{R}^{N}} \rho(x) d x
$$

by Fatou's lemma. Pick $p \in(N /(N+\lambda), q)$ and apply (RHLS) with the same λ and $\alpha=\alpha(p)$:

$$
I_{\lambda}\left[\rho_{j}\right] \geq \mathcal{C}_{N, \lambda, p}\left(\int_{\mathbb{R}^{N}} \rho_{j}^{p} d x\right)^{(2-\alpha(\rho)) / p}
$$

Hence the ρ_{j} are uniformly bounded in $L^{p}\left(\mathbb{R}^{N}\right): \rho_{j}(x) \leq C^{\prime}|x|^{-N / p}$,

$$
\int_{\mathbb{R}^{N}} \rho_{j}^{q} d x \rightarrow \int_{\mathbb{R}^{N}} \rho^{q} d x=1
$$

by dominated convergence.

Existence of a minimizer: second case

If $N /(N+\lambda)<q<2 N /(2 N+\lambda)$ we consider the relaxed inequality

$$
I_{\lambda}[\rho]+2 M \int_{\mathbb{R}^{N}}|x|^{\lambda} \rho d x \geq \mathcal{C}_{N, \lambda, q}\left(\int_{\mathbb{R}^{N}} \rho d x+M\right)^{\alpha}\left(\int_{\mathbb{R}^{N}} \rho^{q} d x\right)^{(2-\alpha) / q}
$$

The $0<\alpha<1$ case: dark grey region

Proposition

If $q>N /(N+\lambda)$, the relaxed inequality holds with the same optimal constant $\mathcal{C}_{N, \lambda, q}$ as (RHLS) and admits an optimizer (ρ, M).

Sketch Proof

Let $\left(\rho_{j}, M_{j}\right)$ be a minimizing sequence with ρ_{j} radially symmetric non-increasing by rearrangement, such that

$$
\int_{\mathbb{R}^{N}} \rho_{j} d x+M_{j}=\int_{\mathbb{R}^{N}} \rho_{j}^{q}=1
$$

- Local estimates + Helly's selection theorem: $\rho_{j} \rightarrow \rho$ almost everywhere and $M_{j} \rightarrow M:=L+\lim _{j \rightarrow \infty} M_{j}$, so that $\int_{\mathbb{R}^{N}} \rho d x+M=1$, and $\int_{\mathbb{R}^{N}} \rho(x)^{q} d x=1$.
- μ_{j} are tight: up to a subsequence, $\mu_{j} \rightarrow \mu$ weak ${ }^{*}$ and $d \mu=\rho d x+L \delta$

$$
\begin{aligned}
& \liminf _{j \rightarrow \infty} I_{\lambda}\left[\rho_{j}\right] \geq I_{\lambda}[\rho]+2 M \int_{\mathbb{R}^{N}}|x|^{\lambda} \rho d x, \\
& \liminf _{j \rightarrow \infty} \int_{\mathbb{R}^{N}}|x|^{\lambda} \rho_{j} d x \geq \int_{\mathbb{R}^{N}}|x|^{\lambda} \rho d x
\end{aligned}
$$

- Conclusion: $\lim \inf _{j \rightarrow \infty} \mathbb{Q}\left[\rho_{j}, M_{j}\right] \geq Q[\rho, M]$.

Optimizers are positive

$$
\mathcal{Q}[\rho, M]:=\frac{I_{\lambda}[\rho]+2 M \int_{\mathbb{R}^{N}}|x|^{\lambda} \rho d x}{\left(\int_{\mathbb{R}^{N}} \rho d x+M\right)^{\alpha}\left(\int_{\mathbb{R}^{N}} \rho^{q} d x\right)^{(2-\alpha) / q}}
$$

Lemma

Let $\lambda>0$ and $N /(N+\lambda)<q<1$. If $\rho \geq 0$ is an optimal function for some $M>0$, then ρ is radial (up to a translation), monotone non-increasing and positive a.e. on \mathbb{R}^{N}

If ρ vanishes on a set $E \subset \mathbb{R}^{N}$ of finite, positive measure, then

$$
\mathcal{Q}\left[\rho, M+\varepsilon \mathbb{1}_{E}\right]=\mathcal{Q}[\rho, M]\left(1-\frac{2-\alpha}{q} \frac{|E|}{\int_{\mathbb{R}^{N}} \rho(x)^{q} d x} \varepsilon^{q}+o\left(\varepsilon^{q}\right)\right)
$$

as $\varepsilon \rightarrow 0_{+}$, a contradiction if (ρ, M) is a minimizer of \mathcal{Q}.

Euler-Lagrange equation

Euler-Lagrange equation for a minimizer $\left(\rho_{*}, M_{*}\right)$

$$
\frac{2 \int_{\mathbb{R}^{N}}|x-y|^{\lambda} \rho_{*}(y) d y+M_{*}|x|^{\lambda}}{I_{\lambda}\left[\rho_{*}\right]+2 M_{*} \int_{\mathbb{R}^{N}}|y|^{\lambda} \rho_{*} d y}-\frac{\alpha}{\int_{\mathbb{R}^{N}} \rho_{*} d y+M_{*}}-\frac{(2-\alpha) \rho_{*}(x)^{-1+q}}{\int_{\mathbb{R}^{N}} \rho_{*}(y)^{q} d y}=0
$$

We can reformulate the question of the optimizers of (RHLS) as:
When is it true that $M_{*}=0$?
We already know that $M_{*}=0$ if

$$
\frac{2 N}{2 N+\lambda}<q<1
$$

Regions of no concentration and regularity of measure valued minimizers

No concentration 1

Proposition
Let $N \geq 1, \lambda>0$ and $\frac{N}{N+\lambda}<q<\frac{2 N}{2 N+\lambda}$
If $N \geq 3$ and $\lambda>2 N /(N-2)$, assume further that $q \geq \frac{N-2}{N}$ If $\left(\rho_{*}, M_{*}\right)$ is a minimizer, then $M_{*}=0$.

Regularity and concentration

Proposition
If $N \geq 3, \lambda>2 N /(N-2)$ and

$$
\frac{N}{N+\lambda}<q<\min \left\{\frac{N-2}{N}, \frac{2 N}{2 N+\lambda}\right\},
$$

and $\left(\rho_{*}, M_{*}\right) \in \mathrm{L}^{N(1-q) / 2}\left(\mathbb{R}^{N}\right) \times[0,+\infty)$ is a minimizer, then $M_{*}=0$

Regularity

Proposition

Let $N \geq 1, \lambda>0$ and $N /(N+\lambda)<q<2 N /(2 N+\lambda)$ Let $\left(\rho_{*}, M_{*}\right)$ be a minimizer
(1) If $\int_{\mathbb{R}^{N}} \rho_{*} d x>\frac{\alpha}{2} \frac{I_{\lambda}\left[\rho_{*}\right]}{\int_{\mathbb{R}^{N}}|x|^{\lambda} \rho_{*} d x}$, then $M_{*}=0$ and ρ_{*}, bounded and

$$
\rho_{*}(0)=\left(\frac{(2-\alpha) I_{\lambda}\left[\rho_{*}\right] \int_{\mathbb{R}^{N}} \rho_{*} d x}{\left(\int_{\mathbb{R}^{N}} \rho_{*}^{q} d x\right)\left(2 \int_{\mathbb{R}^{N}}|x|^{\lambda} \rho_{*} d x \int_{\mathbb{R}^{N}} \rho_{*} d x-\alpha I_{\lambda}\left[\rho_{*}\right]\right)}\right)^{\frac{1}{1-q}}
$$

(2) If $\int_{\mathbb{R}^{N}} \rho_{*} d x=\frac{\alpha}{2} \frac{I_{\lambda}\left[\rho_{*}\right]}{\int_{\mathbb{R}^{N}}|x|^{\lambda} \rho_{*} d x}$, then $M_{*}=0$ and ρ_{*} is unbounded
(3) If $\int_{\mathbb{R}^{N}} \rho_{*} d x<\frac{\alpha}{2} \frac{I_{\lambda}\left[\rho_{*}\right]}{\int_{\mathbb{R}^{N}}|x|^{\lambda} \rho_{*} d x}$, then ρ_{*} is unbounded and

$$
M_{*}=\frac{\alpha I_{\lambda}\left[\rho_{*}\right]-2 \int_{\mathbb{R}^{N}}|x|^{\lambda} \rho_{*} d x \int_{\mathbb{R}^{N}} \rho_{*} d x}{2(1-\alpha) \int_{\mathbb{R}^{N}}|x|^{\lambda} \rho_{*} d x}>0
$$

Ingredients of the proof

- Vary $Q\left[\rho_{*}, M\right]$ with respect to M and make use of:

Lemma

For constants $A, B>0$ and $0<\alpha<1$, define

$$
f(M)=\frac{A+M}{(B+M)^{\alpha}} \text { for } M \geq 0
$$

Then f attains its minimum on $[0, \infty)$ at $M=0$ if $\alpha A \leq B$ and at $M=(\alpha A-B) /(1-\alpha)>0$ if $\alpha A>B$

- Vary $\mathcal{Q}\left[\rho, M_{*}\right]$ with respect to ρ and make use of the Euler-Lagrange condition to derive a condition for the boundedness of ρ_{*}.

No concentration 2

For any $\lambda \geq 1$ we deduce from

$$
|x-y|^{\lambda} \leq(|x|+|y|)^{\lambda} \leq 2^{\lambda-1}\left(|x|^{\lambda}+|y|^{\lambda}\right)
$$

that

$$
I_{\lambda}[\rho]<2^{\lambda} \int_{\mathbb{R}^{N}}|x|^{\lambda} \rho d x \int_{\mathbb{R}^{N}} \rho(x) d x
$$

For all $\alpha \leq 2^{-\lambda+1}$, we infer that $M_{*}=0$ if
$q \geq \frac{2 N\left(1-2^{-\lambda}\right)}{2 N\left(1-2^{-\lambda}\right)+\lambda}$

No concentration 3

Layer cake representation (superlevel sets are balls)

$$
\begin{aligned}
& I_{\lambda}[\rho] \leq 2 A_{N, \lambda} \int_{\mathbb{R}^{N}}|x|^{\lambda} \rho d x \int_{\mathbb{R}^{N}} \rho(x) d x \\
& A_{N, \lambda}
\end{aligned} \quad=\sup _{0 \leq R, S<\infty} \frac{\iint_{B_{R} \times B_{S}}|x-y|^{\lambda} d x d y}{\left|B_{R}\right| \int_{B_{S}}|x|^{\lambda} d x+\left|B_{S}\right| \int_{B_{R}}|y|^{\lambda} d y}
$$

References

Q J. Dou and M. Zhu. Reversed Hardy-Littlewood-Sobolev inequality. Int. Math. Res. Not. IMRN, 2015(19):9696-9726, 2015
Q Q.A. Ngô and V. Nguyen. Sharp reversed Hardy-Littlewood-Sobolev inequality on \mathbb{R}^{n}. Israel J. Math., 220 (1):189-223, 2017
Q J. A. Carrillo and M. Delgadino. Free energies and the reversed HLS inequality. ArXiv e-prints, Mar. 2018 \# 1803.06232
Q J. Dolbeault, R. Frank, and F. Hoffmann. Reverse Hardy-Littlewood-Sobolev inequalities. ArXiv e-prints, Mar. 2018 \# 1803.06151

Q J. A. Carrillo, M. Delgadino, J. Dolbeault, R. Frank, and F. Hoffmann. Reverse Hardy-Littlewood-Sobolev inequalities. In preparation.

Thank you for your attention !

