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Nonlocality is ubiquitous

From modeling
I Biological and social models: Lévy flight, anomalous diffusion, flocking.

I Kinetic models: Boltzmann equation with fractional collision kernels.

I Data analysis: graph Laplacian, manifold learning.

I Continuum mechanics: Eringen model, Peridynamics.

From computation
I Computational fluid dynamics: SPH, vortex-blob method.

I From solving elliptic PDEs: wide stencil monotone schemes.

I Nonlocality naturally appears with model reduction or homogenization.
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Motivation
“Diffusion is a process where the variable under consideration (a particle density,
a temperature, or a population) tends to revert to its surrounding average. ”

— Luis Caffarelli
• The heat equation takes the form

ut = ∆u =

n∑
i=1

uxixi .

However, this does not help us to understand the diffusion process unless
we realize that the Laplacian is the limit of an averaging process:

∆u = lim
r→0

1

rn+2

ˆ
|y−x|<r

(u(y)− u(x))dy

• More generally, a diffusion operator 1 can be written as

Lu =

ˆ
K(x, y)(u(y)− u(x))dy

1More rigorously, one could refer to Levy-Khintchine formula for charactering a
Levy process, Beurling-Deny formula for charactering a Dirichlet form.
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Nonlocal diffusion and nonlocal mechanics model
A typical nonlocal elliptic operator is given by

Lδu(x) =

ˆ
Rn
Kδ(x, y)(u(y)− u(x))dy ,

where Kδ is the kernel of the operator and δ is a modeling parameter.

• u : Rn → R, Kδ(x, y) = cn,δ|y − x|−n−2δ, Lδ = −(−∆)δ
δ→1−−−→ ∆

• u : Rn → R, Kδ(x, y) = δ−n−2K(|y − x|/δ)χ|y−x|<δ, Lδ
δ→0−−−→ ∆

• u : Rn → Rn, Kδ(x, y) = δ−n−1 (y − x)⊗ (y − x)

|y − x|3
χ|y−x|<δ, Lδ

δ→0−−−→ µ∆ + 2µ∇div

Lδu = f L0u = f

u ∈ Ω
u|Rn\Ω = 0

u ∈ Ω

u|∂Ω = 0

δ → δ0

Figure: Consistency of nonlocal models with δ > 0 to classical models with δ = δ0.
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Peridynamics
• Since Silling 2000, peridynamics (PD) has found various applications

• Classical continuum theory derives local PDEs for smooth fields. PD uses an
integro-differential equation to allow more singular solutions

ρ ü = ∇ · σ + b ⇔ ρ ü =

ˆ
Bδ(x)

f(u(y)− u(x),y − x) dy + b

Classical continuum model Nonlocal peridynamics model

• PD describes a nonlocal force balance law, accounting for interactions in a nonlocal
neighborhood characterized by a horizon parameter δ.
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Numerical challenges

• While singularities in solutions (cracks/fractures) may make peridynamics
(PD) closer to reality, the added complexities also highlight the
importance of understanding their mathematical properties and
developing efficient and robust numerical methods, rigorous and careful
validation and verification.

• In fact, the first issue encountered in the community is the consistency of
the numerical simulations based on the nonlocal PD model with those
based on the conventional PDE model when the latter is known to be
valid, such as in cases where linear elasticity theory holds.

• Moreover, the discretization of the nonlocal operator in results in a matrix
A with high density, for which fast algorithms must be considered in order
to lower the cost of matrix multiplication and inversion.
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Today

• Asymptotically compatible schemes

• Variational methods

• Non-variational methods

• Fast algorithms

• Homogenization and nonlocal effects
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Asymptotically compatible (AC) 2 schemes
AC schemes: discrete schemes that are convergent to nonlocal solution with a
fixed δ as h→ 0, and to the correct local limit δ → 0, h→ 0.

uhδ uh0

uδ u0

Discrete
Nonlocal

Continuum
Nonlocal h = 0

Discrete
Local δ = 0

Continuum
PDE δ = h = 0

δ → 0

h
→

0

δ → 0

h
→

0
δ →

0

h→
0

sparse

dense

Q: Why AC? robust, useful to VV and multi-scale simulations, efficient for adaptivity.
Q: What schemes are AC?

2There are many existing studies on the effective discretization in limiting regimes,
such as asymptotic preserving schemes for kinect equations, locking-free finite element
methods for elasticity models, numerical discretization of radiative transfer in diffusive
limit, etc.
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AC schemes

Note that not all discretizations of linear PD models are AC. In fact, some of
the most popular schemes are known not to be AC! [T-Du, 2013]

• The scheme using Riemann sum approximations of integrals is not AC.

• Finite element with piecewise constant functions is not AC.

• When δ/h is kept as a constant (to maintain sparsity/banded-structure),
the above approximations may converge, but to a wrong local limit! They
tend to over-estimate elastic constants, thus are incompatible to the
correct local limit δ = 0.

• We will discuss the way to find AC schemes for both variational and
non-variational methods.
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1d example

Lδu(x) =

ˆ δ

−δ
(u(x+ s)− u(x))γδ(|s|)ds =

ˆ δ

0

D2u(x, s)γδ(|s|)ds

where D2u(x, s) = u(x+ s) + u(x− s)− 2u(x).

Direct quadrature scheme: Lδ,hu(xi) = h
r∑
j=1

(ui−j − 2ui + ui+j)γδ(jh)

It is convergent with fixed δ, but not convergent with fixed ratio δ/h.
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Figure: δ = 3h
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Variational methods
• Weak formulation needed for −Lδu = f . Choose a test function v, then

−(Lδu, v) = (f, v) .

Through nonlocal integration by parts

−
¨

γδ(y − x)(u(y)− u(x))v(x)dydx

Bδ[u, v] :=
1

2

¨
γδ(y − x)(u(y)− u(x)(v(y)− v(x))dydx

• Find solution in the space Sδ

Sδ = {u ∈ L2|
¨

γδ(y − x)(u(y)− u(x))2dydx <∞, u|Ωδ = 0}

• Galerkin approximation. Find finite dimensional solution uhδ ∈Wδ,h ⊂ Sδ
s.t.

Bδ[u
h
δ , v] = (f, v) ∀v ∈Wδ,h
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AC schemes for parameterized variational problems 3

A) About the spaces
• Ai) Uniform embedding: C1‖u‖L2 ≤ ‖u‖Sδ ≤ C2‖u‖H1

• Aii) Asymptotically compact embedding: If {‖uδ‖Sδ}δ<δ0 is uniformly
bounded, then {uδ} is relatively compact in L2 and each limit point is in
H1

0 .

B) About the bilinear forms
• Bδ(u, v) is uniformly bounded & coercive. (Nonlocal Poincaré inequality)

C) Consistency in a dense subspace
• Ci) ∃ dense subspace C∞0 ⊂ H1

0 such that Lδu ∈ L2 , ∀u ∈ C∞0
• Cii) ∆ is the limit of Lδ in C∞0 , lim

δ→0
‖Lδu−∆u‖L2 = 0 ∀u ∈ C∞0

D) Approximation properties
• Di) Given δ > 0, ∀v ∈ Sδ, inf

vh∈Wδ,h
{‖v − vh‖Sδ} → 0 as h→ 0,

• Dii) {Wδ,h, δ ∈ (0, δ0), h ∈ (0, h0)} is asymptotically dense in H1
0 ,i.e.,

∀v ∈ H1
0 , ∃{vk ∈Wδk,hk}

hk→0
δk→0 such that ‖v − vk‖H1 → 0 as k →∞.

3[T-Du, 2014]
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Properties Aii) and Dii)

Aii) Asymptotically compact embedding: ([Bourgain-Brezis-Mironescu, 2001]4 )

‖vδ‖Sδ ≤ C =⇒{vδ} is relatively compact in L2

and each of the limit is in H1
0

Dii) Let Wδ,h = {space of p.w polynomials that contains p.w linear functions},
then {Wδ,h, δ ∈ (0, δ0), h ∈ (0, h0)} is asymptotically dense in H1 since

∀v ∈ H1, ∃{vk ∈Wδk,hk} such that ‖v − vk‖H1 → 0 as k →∞.

4Several extensions of BBM: [Ponce, 2004],[Mengesha-Du, 2013, 2014], [T-Du,
2015],[Du-Mengesha-T, 2018] ...
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AC schemes for parameterized variational problems

• Theorem 1. Any continuous or discontinuous conforming FEM containing
all continuous linear elements is AC, thus is good for both nonlocal and
local regimes.

• Theorem 2. Conforming FEM containing only piecewise constant
elements is convergent if h/δ → 0.

• The framework can be applied to PD systems,
uniform/unstructured-mesh & any space dimension.
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Non-variational methods
1. Finite difference method ([T-Du, 2013], [Du-Tao-T-Yang, 2018.])

• On uniform grid, we have the AC finite difference discretization

Lδ,hu(x) =

ˆ
Ikh

[u(x+ z) + u(x− z)− 2u(x)

Wk(z)

]
Wk(z)γδ(z)dz

where k = 0 or k = 1, and W0(z) = |z|2, W1(z) = |z|2/|z|1.

• A key property of the discretization is the quadratic exactness

Lδ,hxα = Lδxα, |α| ≤ 2 .

• The scheme satisfies discrete maximum principle (DMP). We have uniform

convergence rates O(hk+1).

• DMP is lost when going to higher order interpolation (k ≥ 2).
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Non-variational methods
2. Meshfree method ([Leng-T-Foster-Trask, 2019])

• Reproducing kernel (RK) approximations ([Liu, 1995]) are meshfree methods
that construct shape functions from sets of scattered data.

I Function approximation:
u(x) ≈ uRK(x) =

∑
k

Ψk(x)u(xk),

I Shape function:
Ψk(x) = C(x,x− xk)φa(x− xk),

I Reproducing condition: ∑
k∈Zd

Ψk(x)xαk = xα, |α| ≤ p,

I LδuRK(xi) =
∑
k

u(xk)

ˆ
γδ(|y − xi|)(Ψk(y)−Ψk(xi))dy

• RK collocation method: −rhLδuRK = rhf

(rh restricts the function value to the nodes)
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Non-variational methods

2. Meshfree method ([Leng-T-Foster-Trask, 2019])

• p ≥ 2 preserves quadratic exactness naturally. For p = 1, it turns out we also
have quadratic exactness because of∑

k∈Zd
Ψk(x)xαk = xα + c, |α| = 2

• DMP is lost for all cases. However, we can show the stability of method for
p = 1 on bounded domains with rectangular grids. Using Fourier analysis, we
could show the equivalence of the RK collocation scheme with a RK Galerkin
scheme.

• We have the uniform convergence rates O(h2) for the RK collocation scheme
with p = 1.

• It is ongoing work (with Leng-Foster-Trask) to extend the analysis to the PD
models.
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Fast algorithms
Our next goal is to develop fast algorithm for the nonlocal operator:

Lu =

ˆ
K(x,y)(u(y)− u(x))dy

or a sum of the form
N∑
i=1

wi,j(u(xj)− u(xi))

• Direct evaluation of such sums at N target points requires O(N2)
operations

• Algorithms which reduce the cost to O(Nα) (1 ≤ α < 2),
O(N log(N))· · · are referred to as fast summation methods 5.

• Fast evaluate of the operator is critical in solving time-dependent
problems or iterative methods for solving static problems.

5Classical fast summation methods include FFT (for translation-invariant
kernel with uniform discretization), FMM ([Greengard-Rokhlin 1987]),
H-matrices ([Hackbusch, 1999])
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The kernel K(x,y)

1 Non-radial symmetric kernels (such as the kernel with variable nonlocal
interaction δ(x))

∗ FFT-based methods are exact, but fail to work if symmetry is broken.

2 Type I singularity: point singularity (x = y).

Example: K(x,y) =
1

|y − x|2

∗ The classical FMM and H-matrices techniques are approximate. They
deal with point singularity.6

∗ The main idea is to take advantage of the smooth far field interaction
(off-diagonal blocks of the matrix are low-rank)

3 Type II singularity: co-dimension 1 singularity.

Example: nonlocal model with finite interaction distance.

K(x,y) = χ(|y − x| < 1)

6[Lin-Lu-Ying,2001], [Ho-Ying, 2016], [Zhao-Hu-Cai-Karniadakis,2017]
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The peridynamics kernel

∗ The graphs for the typical peridynamics kernels in practice are
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∗ It contains both Type I singularity and Type II singularity 7.

∗ The existing fast algorithms fail to work ([T-Engquist, 2019]).

7The non-smooth truncation of kernels also appears as the retarded potentials
raised in time domain boundary integral equations, where the potentials are
discontinuous functions defined in space-time.
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The splitting of singularities

In practice, the kernel γ contains both Type I singularity and Type II
singularity. We thus propose to split the kernel into two and deal with them
separately.
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Figure: The kernel γ(s) (left) splits into κ(s) (middle) and p(s)χ(|s| < 1)
(right).
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The hierarchical subdivision of Ω

Let L = log2(n), then from level 1 to L, the computation domain Ω = [0, 1]d

is hierarchically subdivided into panels. Each panel in the ith level can be

represented by one of the cubes
d∏
j=1

[
kj
2i
,
kj + 1

2i
] , 0 ≤ kj ≤ 2i − 1.

This forms a tree structure. (In 1d, this forms a binary tree, in 2d a quadtree,
and in 3d an octree.)

Figure: The hierarchical subdivision of [0, 1]2.
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A fast algorithm for the Type II singularity
Step 1. Initialization step. For each xi, decompose the domain of integration
{|y − xi| < δ(xi)} ∩ Ω using the panels.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure: The hierarchical decomposition of a circular region.
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A fast algorithm for the Type II singularity

Step 2. Compute the the partial sums for each tree node . For a given vector
{u(xi)}Ni=1, we assign the value u(xi) to a leaf node. Then traverse the tree
bottom to top, we assign each parent node the value of the sum of all its
children.

Figure: A 2d example of the process of computing partial sums.

Step 3. For each xi, use (1) and (2) to calculate the summation
∑

j∈N (xi)

u(xi).
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Complexity of the algorithm
∗ The complexity of the algorithm ([T-Engquist, 2019]) is given as{

O(N logN) for d = 1 ;

O(N2−1/d) for d ≥ 2 .
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∗ For further complexity reduction in higher dimensions, it would be natural to
use different geometries than boxes, for example, curvelets
[Candes-Donoho,2000] in 2d deals efficiently with line discontinuities.
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Homogenization and nonlocal effects 8

• The PD community claimed that nonlocal interactions necessarily appear in

a homogenized model of heterogeneous system ([Silling, 2014]), but rigorous

mathematical theory remains largely missing.

• The classical homogenization theory shows that nonlocal effects could be

induced by homogenization, such as [Bensoussan-Lions-Papanicolaou, 1978],

[Tartar, 1989].

• Numerical homogenization also connects to nonlocal effects, such as the

projection-based method [Dorobantu-Engquist,1998], or generalized FEM based

on subspace decomposition [Gallistl-Peterseim,2016].

• Here we the model of wave propagation to illustrative the origin of
nonlocality through homogenization.

8See [Du-Engquist-T, 2019].
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Homogenization of wave equation
• Consider wave propagation through a periodic medium

∂2
t u

ε(x, t) = div (A(x/ε)∇uε)

• The classical homogenization theorem give a non-dispersive effective model

∂2
t u

0(x, t) = div(Ā∇u0(x, t)) ,
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• u0 is an O(ε) approximation of uε only for finite time
([Bensoussan-Lions-Papanicolaou, 1978], [Lin-Shen, 2019]).
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Dispersive effective model

• [Santosa-Symes, 1991] were the first that gave a dispersive effective model by
using Bloch wave expansion.

• Loosely speaking, their model is of the form ∂2
t u = L̄εu, with

L̄ε ≈ ∆ + ε2(∆)2, and the effective model is an O(ε) approximation when time
scale t ∼ O(ε−2). The equation is actually ill-posed due to the (∆)2 term,
although it can be made well-posed by a classical Boussinesq trick.

• To get an O(ε) approximation for all time t ∈ (0,∞), it is necessary for L̄ε to
be a nonlocal operator.
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Bloch wave analysis
• Consider the eigenvalue problem for −div (A(x)∇):

−div (A(x)∇u(x)) = λu .

For any real vector k ∈ Rd, there exists eigenfunctions

{ψm(x, k) = e2πik·xφm(x, k)}∞m=0 and eigenvalues {λm(k)}∞m=0.

• For the ε-problem, ψεm(x, k) := ψm(x/ε, εk), λεm(k) =
1

ε2
λm(εk).
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Bloch wave analysis
• The solution uε with initial condition uε(x, 0) = f(x) is written as the
expansion:

uε(x, t) =

∞∑
m=0

ˆ
Z/ε

f̂m(k)ψεm(x, k)e±it
√
λεm(k)dk .

• First observation: for smooth initial condition, the higher eigenmodes m ≥ 1
could be neglected. By defining

uε0(x, t) =

ˆ
Z/ε

f̂0(k)ψε0(x, k)e±it
√
λε0(k)dk ,

we have ‖uε(·, t)− uε0(·, t)‖ = O(ε) for t ∈ (0,∞).

• Second observation: uε0 can be further simplified by replacing f̂0(k) and ψε0
with the Fourier transform f̂(k) and the Fourier mode e2πik·x respectively:

ūε(x, t) =

ˆ
Z/ε

f̂(k)e2πik·xe±it
√
λε0(k)dk ,

then ‖uε0(·, t)− ūε(·, t)‖ = O(ε) for t ∈ (0,∞).
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Nonlocal effective equation

• If f̂(k) ⊂ Z/ε, then

ūε(x, t) =

ˆ
f̂(k)e2πik·xe±it

√
λε0(k)dk ,

• ūε satisfies

∂2
t ū

ε(x, t) = L̄εu =

ˆ
γε(y − x)(u(y)− u(x))dy,

and ˆ
γε(s)(1− e2πik·s)ds = λε0(k)

• Since λε0(k) =
1

ε2
λ0(εk), then we have γε(s) =

1

ε3
γ(
s

ε
)

• In general λε0(k) is not a polynomial of k, we have L̄ε to be a nonlocal
operator. 9

9[Peetre, 1959]
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Summary
• We presented some numerical analysis of a class of nonlocal models such

as those represented by nonlocal diffusion or the peridynamic model of
continuum mechanics.

• There is a class of robust discretization of parameterized nonlocal models
called the AC schemes (variational and non-variational). We also
discussed a new FMM type fast algorithm type method for kernels that
exhibit singularities on codimension 1 sets.

• We used wave propagation to illustrate how nonlocality could be
originated from homogenization of heterogeneous materials.

• The mathematical framework contains nonlocal calculus of variations and
asymptotically compatible schemes that may have broad applications.
Indeed, many concepts can be related to fractional calculus (for
anomalous diffusion and Levy processes), nonlocal means (for imaging
analysis) graph calculus/diffusion maps, SPH/RKPM (for numerical
approximations), ......
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