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Introduction

Chemotaxis is the movement of cells in response to chemical
stimulus.

Figure: Chemotaxis1

We focus on the specific case when bacteria emit chemical signals to
attract others of the same kind. (E.coli)

The Patlak-Keller-Segel (PKS) equation is designed to analyse
this phenomena.

1//www.youtube.com/watch?v=lgUXnbUkgOQ
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Introduction

Consider the two-dimensional PKS equation with additional
advection, which models the chemotaxis in moving fluid: ∂tn +

Aggregation︷ ︸︸ ︷
∇ · (n∇c) +

Fluid Transport︷ ︸︸ ︷
Au · ∇n =

Diffusion︷︸︸︷
∆n ,

c = (−∆)−1n,
n(x , y , t = 0) = nin(x , y).

(mPKS)

Here n and c denote the bacteria density and the chemo-attractant
density, respectively. The divergence free vector field u represents the
underlying fluid velocity. A ∈ R+ denotes its magnitude. If Au ≡ 0,
the equation is the classical PKS equation.

The equation (mPKS) is a nonlocal equation.
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Introduction

It is well known that the classical PKS equation (Au ≡ 0) is L1

critical and exhibits blow-up phenomena on R2:

If ||nin||1 < 8π, the diffusion dominates the aggregation, and we have
global well-posedness of solutions.([5],[6])

If ||nin||1 > 8π, the aggregation dominates the diffusion, which yields
finite time blow-up. Dirac mass appears.

If ||nin||1 = 8π, the solution will form Dirac mass when time
approaches infinity. ([3])
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Introduction

Theorem

Consider the PKS equation (mPKS) subject to C∞ initial data. If Au = 0,
M := ||nin||1 > 8π and

∫
nin|x |2dx <∞, the solution n blows up in finite

time.

Proof.

It is straightforward to get the evolution equation for second moment:

d

dt

∫
R2

|x |2n(x , t)dx = 4M

(
1− M

8π

)

If the M > 8π, the second moment decreases at a constant rate.
Suppose the solution remains smooth for all time, the second moment
will reach zero at a finite time T ∗, which is a contradiction.
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Introduction: Goal

By adding an extra fluid transport term in the classical PKS equation,
we hope to answer the following question:

Is it possible to find simple vector fields Au such that for any smooth
enough initial data, the solutions n do not blow up for any finite time?

In [10], Alexander Kiselev and Xiaoqian Xu showed that there exist
vector fields capable of suppressing the chemotactic blow-up of the
equation. However, the vector fields they used are complicated.

Recall the equation ∂tn +

Aggregation︷ ︸︸ ︷
∇ · (n∇c) +

Fluid Transport︷ ︸︸ ︷
Au · ∇n =

Diffusion︷︸︸︷
∆n ,

−∆c = n, n(x , y , t = 0) = nin(x , y).

(mPKS)
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Suppression of blow-up through mixing

Theorem ([2] 2D case, Jacob Bedrossian and H.)

Consider the equation (mPKS) on a torus T2. Let u(x , y) = (u(y), 0) be
smooth non-degenerate shear flow and let nin ∈ C∞(T2) be arbitrary.
There exists an A0 such that if A > A0, then the solution to (mPKS) is
global in time.

Figure: Nondegenerate shear flow
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Theorem (3D case, Jacob Bedrossian and H.)

(a) Let u = (u(y1), 0, 0) be smooth non-degenerate shear flow and let
nin ∈ C∞(T3) be arbitrary such that ‖nin‖L1 < 8π and
minx∈T3 nin(x) > 0. Then there exists an A0 such that if A > A0 then
the solution to (mPKS) is global in time.

(b) Suppose u = (u(y1), 0, 0) is smooth non-degenerate shear flow. Let
nin ∈ C∞(T× R2) be arbitrary such that ‖nin‖L1 < 8π and∫
nin(x , y) |y |2 dxdy <∞. Then, there exists an A0, such that if

A > A0 then the solution to (mPKS) is global in time.

It is clear that ||nin||1 < 8π is essential in 3D. Indeed, consider any
solution to the 3D problem which is constant in the x direction:
n(t, x , y1, y2) = n(t, y1, y2). This solution will solve (mPKS) on T2

with A = 0 and hence the 8π critical mass will still apply.
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Idea of the proof: 1. A Different Time Scale

We can divide both side of (mPKS) by A and rescale in time to get
the following equation:

∂tn + u(y)∂xn = A−1∆n − A−1∇ · (n∇(−∆)−1n). (1)

When A is large, equation (1) can be regarded as a perturbation to
the passive scalar equation with small viscosity A−1:

∂tρ+ u(y)∂xρ = A−1∆ρ. (PS)

Direct energy method yields that the solution decay like e−A
−1t . This

is not enough for our analysis. To prove suppression of blow-up, we
need to study the enhanced diffusion effect of the passive scalar
equation (PS).
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Idea of the proof: 2. Passive Scalar Equation Revisited

When stirring a cup of coffee, we see that the information in the
angular direction diffuses faster than the one in the radial direction
does. This is the enhanced diffusion effect of shear flow.

Figure: Stirring a cup of coffee
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Idea of the proof: 2. Passive Scalar Equation Revisited

In the paper [1], Jacob Bedrossian and Michele Coti Zelati proved
that if u(y) is nondegenerate shear flow, the x dependent part of the
solution ρ6= to the passive scalar equation satisfies the estimate

||ρ 6=(t)||2L2 . ||ρ6=(0)||2H1exp{−
ct

A1/2 logA
}. (2)

Note that if A is large, the decay rate (≈ A−1/2) is larger than the
heat decay rate (A−1). This is the enhanced diffusion effect of shear
flow.

The proof is based on analyzing the hypocoercivity functional
introduced in C. Villani’s work [11],

Φ[ρ 6=] =||ρ6=||2L2 + ||
√
α(∂x)∂yρ6=||22

+ 2〈βu′∂xρ6=, ∂yρ6=〉+ ||√γ(∂x)u′∂xρ 6=||2L2 , (3)

and showing that Φ[ρ6=(t)] ≤ Φ[ρ6=(0)] exp{−c t
A1/2 }.
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Idea Of The Proof: 3. Energy Estimates

In order to apply the enhanced diffusion estimate of the passive scalar
equation, it is natural to separate the solution to the PKS equation
(1) into x independent part and x dependent part:

∂tn0 =
1

A
∆n0 +

1

A
∇y · (∇yc0n0) + Interaction, (4)

∂tn6= + u(y)∂xn6= =
1

A
∆n6= + Interaction. (5)

n0(y) =
1

2π

∫
T
n(x , y)dx , n6= = n − n0. (6)

Since the dimension of the n0 equation is one dimension lower than
the full problem, we can use the classical PKS technique to show that
the H1 norm of the solution is bounded uniformly in time. For the
second equation, we use the functional Φ to prove an enhanced

diffusion estimate Φ[n 6=] ≤ Φ[n6=(0)]e
− ct

A1/2 .
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Idea Of The Proof: 2D case

Nonzero modes: By taking the time derivative of Φ[n6=], we obtain:

d

dt
Φ[n6=] =− c

A1/2
||n6=||22 −

1

A
||∇n 6=||22 − ...+

1

A
〈∇n6=,∇c0n6=〉+ ...

≤− c

A1/2
||n6=||22 −

1

2A
||∇n6=||22 + ...+

1

2A1/2

||∇c0||2∞
A1/2

||n 6=||22

By choosing A large, we can absorb the last term in the first term.
Do the same for the other terms, we can estimate d

dt Φ.

Zero mode: standard energy estimate.

For the three-dimensional case, the n0 equation becomes critical. By
a modified free energy approach, we can still propagate the regularity
of the solutions.
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Suppression of blow-up through fast splitting scenario

Now we consider the equation (mPKS) on the plane R2. There are
two main differences from the (mPKS) on the Torus. We summarize
them as follows:

First, the shear flow induced enhanced diffusion effect on R2 can be
extremely slow. This poses difficulties when we adapt the previous
approach to the (mPKS) on the plane.

Second, the plane R2 is unbounded, whereas the Torus is compact.
Therefore, we have the freedom to send masses to infinity on the
plane R2.
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Suppression of blow-up through fast splitting scenario

Now we exploit yet another mechanism to suppress the blow-up on
R2, which we called the fast splitting scenario.

The flow we considered is the Hyperbolic flow u(x1, x2) = A(−x1, x2).
This flow splits cell density into upper and lower part.

Figure: Hyperbolic flow. 2

2Picture from ’One-dimensional model equations for hyperbolic fluid flow’, Tam Do,
V. Hoang, Maria Radosz, Xiaoqian Xu
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Basic Setup

We assume the cell density is symmetric about the x1 axis, so we can only
consider the solution in the upper half plane (R2

+). We introduce the
following probabilistic quantities:

Averaged distance to the x1 axis (upper half plane):

y+(t) :=
1

M+

∫
x2≥0

n(x , t)x2dx , M+ :=

∫
x2≥0

n(x , t)dx ≡ M

2
.

Variation (upper half plane):

V+(t)

M+
:=

1

M+

∫
x2≥0

n(x , t)|x2 − y+|2dx .

We introduce the dimensionless quantity

η :=
y+√

V+/M+

≈ Average distance to the boundary

Standard deviation
.
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Suppression of blow-up through fast splitting scenario

Figure: Definition of the dimensionless number η

Recall the equation (mPKS){
∂tn +∇ · (∇cn) + A(−x1, x2) · ∇n = ∆n;

−∆c = n, n(x , t = 0) = nin(x), (x1, x2) ∈ R2.
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Suppression of blow-up through fast splitting scenario

Theorem (E. Tadmor and H., [8], 17)

Consider the PKS equation (mPKS) subject to regular initial data nin with
total mass M = ||nin||1 < 2× 8π. Assume nin is symmetric about the
x1-axis, and the dimensionless number

η(0) =
y+(0)√

V+(0)/M+

>
√

2. (7)

Then there exists a large enough amplitude A such that the free energy
solution exists for all time.

Remark

Since the hyperbolic flow A(−x1, x2) is the gradient of a harmonic potential
H = A

2 (−x2
1 + x2

2 ), the (mPKS) has a decreasing free energy

EH [n] =

∫
n log ndx +

1

4π

∫∫
n(x) log |x − y |n(y)dxdy −

∫
Hndx .
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Ingredients of the proof: Heuristics

Figure: Suppression of blow-up through a fast splitting scenario

Due to symmetry, the only possible blow-up position is on the x1 axis.
Therefore, we use the quantity η to control the mass inside the critical
strip Sδ := {x ||x2| ≤ δ}. Once the mass inside the strip is shown to
be smaller than 8π, we can prove global in time well-posedness.
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Ingredients of the proof: Review of the classical PKS

It is standard to derive global existence once we control the entropy

S [n] =

∫
n log ndx .

The (mPKS)Au≡0 equation is a gradient flow of the free energy:

E [nin] ≥ E [n] :=

∫
R2

n log ndx +
1

4π

∫∫
R2×R2

n(x) log |x − y |n(y)dxdy .

Combining it with the log-Hardy-Littlewood-Sobolev inequality

||n||1
∫
R2

n log ndx + 2

∫∫
R2×R2

n(x) log |x − y |n(y)dxdy ≥ −ClHLS(M),

yields that

S [n] ≤ E [nin] + C (M)

1− ||n||18π

<∞.

This concludes the proof. The M = ||n||1 < 8π condition is essential.
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Ingredients of the proof: Review of the classical PKS

Message: Consider the log-HLS inequality

K

∫
R2

n log+ ndx + 2

∫∫
R2×R2

n(x) log |x − y |n(y)dxdy ≥ C (M).

If one can the improve the constant K for M > 8π, then the critical mass
M can be improved. It is because in general,

S [n] ≤ E [nin] + C

1− K
8π

.
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Gluing reconstruction of the log-HLS inequality

To prove suppression of blow-up, the following log-HLS inequality is
essential:

K

∫
R2

n log+ ndx + 2

∫∫
R2×R2

n(x) log |x − y |n(y)dxdy ≥ C (M),

where K < 8π even when 8π < M < 16π.

To obtain the inequality, we heuristically glue the following two log-HLS
inequality together (following [4]):

M±

∫
R2

±

n log+ ndx + 2

∫∫
R2

±×R2
±

n(x) log |x − y |n(y)dxdy ≥ C , M± =
M

2
,

to get

(
M

2
+ ||n||L1(|x2|≤δ))︸ ︷︷ ︸

=:K

∫
R2

n log+ ndx + 2

∫∫
R2×R2

n(x) log |x − y |n(y)dxdy ≥ C .

Next we need to show that K < 8π.
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Ingredient of the proof: Control mass near x1 axis

To show K < 8π, it is enough to prove ||n||L1(|x2|≤δ) < 8π −M/2.

By the Chebychev’s inequality, the lower bound of the dimensionless
quantity η(t) controls the mass near the x1 axis.

||n||L1(|x2|≤δ) = 2

∫
Sδ={0≤x2≤δ}

ndx ≤ 2

∫
|x2−y+|≥η

√
V+/M+

ndx ≤ 2M+

η2
.

Next we use moment estimates to show that η(t) is approximately
constant along (mPKS).

Therefore, if η(0) is large enough, ||n(t)||L1(|x2|≤δ) � 8π −M/2, and
the suppression of blow-up follows.

Siming He (Duke University) Suppression of blow-up in Chemotaxis through fluid flow October 24, 2018 24 / 30



Ingredient of the proof: Control mass near x1 axis

To show K < 8π, it is enough to prove ||n||L1(|x2|≤δ) < 8π −M/2.

By the Chebychev’s inequality, the lower bound of the dimensionless
quantity η(t) controls the mass near the x1 axis.

||n||L1(|x2|≤δ) = 2

∫
Sδ={0≤x2≤δ}

ndx ≤ 2

∫
|x2−y+|≥η

√
V+/M+

ndx ≤ 2M+

η2
.

Next we use moment estimates to show that η(t) is approximately
constant along (mPKS).

Therefore, if η(0) is large enough, ||n(t)||L1(|x2|≤δ) � 8π −M/2, and
the suppression of blow-up follows.

Siming He (Duke University) Suppression of blow-up in Chemotaxis through fluid flow October 24, 2018 24 / 30



Ingredient of the proof: Control mass near x1 axis

To show K < 8π, it is enough to prove ||n||L1(|x2|≤δ) < 8π −M/2.

By the Chebychev’s inequality, the lower bound of the dimensionless
quantity η(t) controls the mass near the x1 axis.

||n||L1(|x2|≤δ) = 2

∫
Sδ={0≤x2≤δ}

ndx ≤ 2

∫
|x2−y+|≥η

√
V+/M+

ndx ≤ 2M+

η2
.

Next we use moment estimates to show that η(t) is approximately
constant along (mPKS).

Therefore, if η(0) is large enough, ||n(t)||L1(|x2|≤δ) � 8π −M/2, and
the suppression of blow-up follows.

Siming He (Duke University) Suppression of blow-up in Chemotaxis through fluid flow October 24, 2018 24 / 30



Ingredient of the proof: Control mass near x1 axis

To show K < 8π, it is enough to prove ||n||L1(|x2|≤δ) < 8π −M/2.

By the Chebychev’s inequality, the lower bound of the dimensionless
quantity η(t) controls the mass near the x1 axis.

||n||L1(|x2|≤δ) = 2

∫
Sδ={0≤x2≤δ}

ndx ≤ 2

∫
|x2−y+|≥η

√
V+/M+

ndx ≤ 2M+

η2
.

Next we use moment estimates to show that η(t) is approximately
constant along (mPKS).

Therefore, if η(0) is large enough, ||n(t)||L1(|x2|≤δ) � 8π −M/2, and
the suppression of blow-up follows.

Siming He (Duke University) Suppression of blow-up in Chemotaxis through fluid flow October 24, 2018 24 / 30



Ingredient of the proof: Control mass near x1 axis

To show K < 8π, it is enough to prove ||n||L1(|x2|≤δ) < 8π −M/2.

By the Chebychev’s inequality, the lower bound of the dimensionless
quantity η(t) controls the mass near the x1 axis.

||n||L1(|x2|≤δ) = 2

∫
Sδ={0≤x2≤δ}

ndx ≤ 2

∫
|x2−y+|≥η

√
V+/M+

ndx ≤ 2M+

η2
.

Next we use moment estimates to show that η(t) is approximately
constant along (mPKS).

Therefore, if η(0) is large enough, ||n(t)||L1(|x2|≤δ) � 8π −M/2, and
the suppression of blow-up follows.

Siming He (Duke University) Suppression of blow-up in Chemotaxis through fluid flow October 24, 2018 24 / 30



Ingredient of the proof: Proof of the theorem

In the η(0) >
√

2 case, the key is to get the log-HLS

K

∫
R2

n log+ ndx + 2

∫∫
R2×R2

n(x) log |x − y |n(y)dxdy ≥ C , K < 8π.

The idea is to glue the following three log-HLS inequalities together:

M±

∫
R2
±\Sδ

n log+ ndx + 2

∫∫
(R2
±\Sδ)2

n(x) log |x − y |n(y)dxdy ≥ C ,

M

2

∫
Sδ

n log+ ndx + 2

∫∫
Sδ×Sδ

n(x) log |x − y |n(y)dxdy ≥ C ,

where Sδ := {x ||x2| ≤ δ}. Here we use the fact that η(0) >
√

2 when
we derive the last log-HLS.

We dynamically determine the boundaries of these three domains so
that the error created during the gluing process is small. Once the
gluing process is completed, existence follows.
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Summary

Classical PKS equation exhibits blow-up phenomena when the total
mass is large ||nin||L1 > 8π;

We use simple mixing shear flow to suppress the blow-up of (mPKS)
on T2 and T3;

We use a fast splitting hyperbolic flow to suppress the blow-up of
(mPKS) on the plane R2.
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Thank you!
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