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Background: Mixing

Question: How to mix two immiscible dyes?

• Can you mix it “perfectly”?

• At what cost?



Model: Transport Equation

• Can you mix it “perfectly”?

• At what cost?

Concentration of dye satisfies:

∂tθ + u∇θ = 0. (1)

θ: smooth, periodic, spatial mean-zero, bounded.
u: divergence free.

Goal: choose u that “best mixes” θ under following physical constraints.

• Fixed energy, ‖u‖L2 = 1.

• Fixed enstrophy, ‖∇u‖L2 = 1.
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Definition of Mixing

• Can you mix it “perfectly”?

• At what cost?

Quantify how “mixed” θ is:
Naive approach: Variance.

Var(θ) = ‖θ− < θ > ‖2
L2 = ‖θ‖2

L2 → 0.

Does not work!
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Definition of Mixing

Another candidate:
θ → 0, weakly in L2.

Proposition. Suppose the spatial mean-zero function θ(x , t) is bounded
uniformly in L2(Td) for all t > 0. Then

lim
t→∞

∫
Td

g(x)θ(x , t) = 0 ∀g ∈ L2(Td)

⇐⇒ lim
t→∞

‖θ‖Ḣ−a = 0,∀a > 0.

Here recall that ‖θ‖Ḣ−a = ‖|k |−aθ̂(k)‖l2 for mean-zero θ.
“Definition”: (Lin,Thiffeault,Doering 2011) The smaller ‖θ‖H−1 is, the
better mixing θ gets.
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‖θ‖Ḣ−a = 0, ∀a > 0.
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Previous results

Theorem.(Lin,Thiffeault,Doering 2011) Let θ be the solution to (1).
Under the constraint ‖u‖L2 = U, for some constant C (U) we have

‖θ‖H−1 ≥ ‖θ0‖H−1 − C (U)‖θ0‖L∞t.

Theorem.(Lunasin,Lin,Novikov,Mazzucato,Doering 2012) The linear lower
bound for fixed energy constraint is sharp.
Remark. In these papers, numerical simulation suggests that for
enstrophy-constraint flow we may have exponential decay of H−1 norm.



Enstrophy-constrained case

Theorem (G. Iyer, A. Kiselev, X. Xu, 2014)

Let θ solve (1) and p > 1. There exists constant c0, c1 depend only on
p, d and the initial data θ0, such that

‖θ‖H−1 ≥ c0 exp

(
−c1

∫ t

0
‖∇u(s)‖Lpds

)
.

Remarks.

1 This means in finite time, it is impossible for ‖θ‖H−1 to get zero for
fixed enstrophy constraint.

2 The proof based on the Crippa-DeLellis’ work related to Bressan’s
mixing conjecture and the connection between H−1 mixing and
Bressan’s δ-mixing.

3 Christian Seis got the similar result independently by using totally
different method.



Idea of the proof

Definition

Let κ ∈ (0, 1
2 ) be fixed. For δ > 0, we say a set H ⊆ Td is δ-mixed if

κ ≤ m(H ∩ B(x , δ))

m(B(x , δ))
≤ 1− κ for every x ∈ Td .



Idea of the proof

Conjecture (Bressan, 2003)

Let A to be the left half of the torus, and Ψ be the flow generated by an
incompressible vector field u. If after time T the image of A under the
flow Ψ is δ-mixed, then there exists a constant C such that∫ T

0
||∇u(·, t)||L1 dt ≥

| log δ|
C

.
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Theorem (G. Crippa, C. De Lellis, 2008)

Let A to be the left half of the torus, and Ψ be the flow generated by an
incompressible vector field u. If after time T the image of A under the
flow Ψ is δ-mixed, then there exists a constant C such that∫ T

0
||∇u(·, t)||Lp dt ≥

| log δ|
C

,

for all p > 1.



Idea of the proof

Slightly extension of δ-mixed setting:

Definition

Let κ ∈ (0, 1
2 ) be fixed. For δ > 0, we say a set H ⊆ Td is δ-semi-mixed if

m(H ∩ B(x , δ))

m(B(x , δ))
≤ 1− κ for every x ∈ Td .

Fact: Start with arbitrary sets, not just A.



Idea of the proof

Lemma

‖θ‖H−1 ≤ c0(λ)‖θ‖L∞δ2 =⇒ Aλ = {θ > λ‖θ‖L∞} is δ-semi-mixed.

1 Set δ ≈ ‖θ(t)‖1/2
H−1 .

2 Use Crippa-De Lellis’ rearrangement cost lemma:∫ t
0 ||∇u(·, t)||Lpdt ≥ m(Aλ)1/p

Cp
log( 2r0

δ ).



Optimal mixing flow

Question: Is that sharp?

Answer: Yes. Answered by Y. Yao and A. Zlatos in 2014, by constructing
a family of specific flows.
Meanwhile, G. Alberti, G. Crippa, and A. Mazzucato give a different
construction leading to similar result.

Question: Can this insight into mixing mechanisms be useful in other
applications?
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Keller-Segel equation

Keller-Segel equation describes a population of bacteria or mold that
secrete a chemical and are attracted by it. In one version of the simplified
parabolic-elliptic form, this equation can be written in R2 as

∂tρ−4ρ+∇ · (ρ∇c) = 0,

−4c = ρ,

ρ(x , 0) = ρ0(x).

(2)



Finite time blow-up

Assume ρ is smooth. Let m2(t) =
∫
R2 |x |2ρ(t, x)dx be the second

moment, m0 =
∫
R2 ρ0(x)dx be the total mass. Then, there exists some

constant mcrit such that

d

dt
m2(t) = 4m0(1− m0

mcrit
).

Big mass =⇒ Finite time blow up!



Main theorem


∂tρ−4ρ+∇ · (ρ∇c) = 0,

−4c = ρ,

ρ(x , 0) = ρ0(x).

Theorem (A. Kiselev, X. Xu, 2015)

Consider the equation

∂tρ+ (u · ∇)ρ−4ρ+∇ · (ρ∇(−4)−1(ρ− ρ̄)) = 0,

ρ(x , 0) = ρ0(x), x ∈ Td .
(3)

Then, given any initial data ρ0 ≥ 0, ρ0 ∈ C∞(Td), d = 2 or 3, there exist
smooth incompressible flows u such that the unique solution ρ(x , t) of (3)
is globally regular in time.



Remarks

Remark.
1. This is not trivial!

Fact: Suppose we add advection term (u · ∇ρ) in (2) and take u · x = 0,
then the second moment will not change.
2. The proof of this theorem based on the idea in the paper about
relaxation enhancing flow, by P. Constantin, A. Kiselev, L. Ryzhik and A.
Zlatos in 2008.



Step 1: L2 criterion

Lemma

Suppose that ρ0 ∈ C∞(Td), ρ0 ≥ 0, and suppose that u ∈ C∞ is
divergence free, d = 2 or d = 3. Assume [0,T ] is the maximal interval of
existence of unique smooth solution ρ(x , t) of equation (3). Then we must
have ∫ t

0
‖ρ(·, τ)− ρ̄‖

4
4−d

L2(Td )
dτ

t→T−−−→∞. (4)

Remark. Only need to control L2 norm of ρ.



Step 2: H1 condition

Lemma

Let ρ(x , t) ≥ 0 be smooth local solution to (3) set on Td , d = 2 or 3.
Suppose that ‖ρ(·, t)− ρ̄‖L2 ≡ B > 0 for some t ≥ 0. Then there exists a
universal constant C1 such that

‖ρ(·, t + τ)− ρ̄‖L2 ≤ 2B for every 0 ≤ τ ≤ C1 min(1, ρ̄−1,B−
4

4−d ). (5)

Moreover, there exists a universal constant C0 such that if in addition

‖ρ(·, t)‖2
H1 ≥ B2

1 ≡ C0B
12−2d

4−d + 2ρ̄B2, (6)

then ∂t‖ρ(·, t)‖L2 < 0.



Step 3: approximation lemma

Lemma

Suppose u is divergence free and Lipschitz in x, η is the solution to the
transport equation:

∂tη + (Au · ∇)η = 0, η(x , 0) = ρ0(x). (7)

Then, suppose that the unique local smooth solution ρ(x , t) exists for
t ∈ [0,T ]. Then for every t ∈ [0,T ] we have

d

dt
‖ρ−η‖2

L2 ≤ −‖ρ‖2
H1 + 4‖ρ0‖2

H1F (t)2 +C‖ρ− ρ̄‖2
L2

(
‖ρ− ρ̄‖

12
6−d

L2 + ρ̄2

)
.

(8)
Here F (t) ∈ L∞[0,∞) and depend only on u.

Remark. After time rescaling (t = Aτ), the difference of ρ and η is small.



Step 4: H−1 condition

Lemma

Suppose u is divergence free and Lipschitz in x, η is the solution to the
transport equation:

∂tη + (u · ∇)η = 0, η(x , 0) = ρ0(x). (9)

Then for any σ > 0, integer N, there exists time T so that

1

T

∫ T

0
‖(Id − PN)η(·, t)‖2

L2dt ≥ (1− σ)‖ρ0(·)‖2
L2 ,

provided that
1

T

∫ T

0
‖η(·, t)‖2

H−1dt
T→∞−−−−→ 0.

Here PN is the projection to the first N frequencies.



Summary

Step 1. We only need to control L2 norm of the solution.

Step 2. If the H1 norm of the solution is “big”, then the L2 norm will
decrease.

Step 3. The solution to the nonlinear differential equation is close to the
transport equation in L2 if A is big enough.

Step 4. On the Fourier side, the velocity u will make the solution to
transport equation concentrate on high frequencies.



Examples

Remarks.

Here we can choose three kinds of velocity u: the optimal mixing flow
uYZ , the relaxation enhancing flow uRE and the cellular flow uL.

A: magnitude of u.

uYZ : We have an explicit form of A in terms of ρ0. However, uYZ depends
on time.

uRE : We don’t have an explicit form of A. Nevertheless, uRE does not
depend on time.

uL: We have an explicit form of A. uL does not depend on time. L
depends on the size of initial data ρ0.
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Cellualr flow

Lemma (G. Iyer, X, ≥ 2016)

Assume
∂tξ + (uL · ∇)ξ = 0 , x ∈ T2, ξ(·, 0) = ξ0. (10)

Here uL is a cellular flow of cell size L. In addition assume
∫
T2 ξ0 = 0.

Then for all C > 0, there exists L0 > 0 and T = T (L0) such that for all
L < L0 we have

1

T

∫ T

0
‖ξ‖H1 ≥ C‖ξ‖L2 .

Remark. L ≈ max{‖ρ0‖L2 , ‖ρ0‖L1}2.



Corollary

The following corollary is true for both uYZ and uRE .

Corollary

For every δ > 0 and κ > 0, there exists A1 = A1(ρ0, u, κ, δ) such that if
A ≥ A1, then

‖ρA(·, t)− ρ̄‖L2 ≤ ‖ρ0 − ρ̄‖L2e−κt (11)

for all t ≥ δ.



Generalization

• Generalized model, e.g., 3D Navier-Stokes equation.

• Coupled system, e.g., Keller-Segel equation coupled with Stokes
equation.
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