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Boundaries and interfaces in asymptotics
of hyperbolic systems of balance laws

Hyperbolic systems of balance laws with stiff effects
e hyperbolic limit
e parabolic limit

Pointwise effects and small layers
e Boundary conditions
e Coupling interfaces
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Boundaries and interfaces in asymptotics
of hyperbolic systems of balance laws

Two distinct problems:

l. Jin—Xin model with implicit equilibrium manifold on a bounded domain
e Asymptotic behavior of boundary conditions
e Approximate but explicit computation of the equilibrium manifold

with B. Perthame and M. Tournus

Il. Interface coupling of a systems of balance laws with its parabolic limit
e The Goldstein—Taylor model and the heat equation
e The p-system and the nonlinear heat equation
e Interface coupling/domain decomposition/two-scale discontinuous rate
with A.-C. Boulanger, C. Cancés, H. Mathis and K. Saleh
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Jin—Xin model with implicit equilibrium manifold

U-tube with porous walls (from kidney modeling):

O + Opue = 1(h(vg) — ug)
i on [0,1]
Opve — Oxve = E(uf — h(vg))

BC's: u.(t,0) =w; and wv.(t,1) =au(t,1) (0<a<1)
and {h(v) =u}N{v=au} =0
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Jin—Xin model with implicit equilibrium manifold

U-tube with porous walls (from kidney modeling):

1
O + Opue = f(h(vg) — ug)
i on [0,1]
Oy, — OV, = E(uf — h(vg))
BC's: u.(t,0) =w; and wv.(t,1) =au(t,1) (0<a<1)
and {h(v) =u}N{v=au} =0
Two main difficulties
1. Asymptotic boundary conditions: numerical boundary layers
2. Implicit equilibrium manifold & = {u = h(v)}
Assuming h' > 1, the limit ¢ — 0 satisfies u = h(v) and

0t A(v) + 0;B(v) =0
where

A(v) =h(v)+v and B(v)=h(v) —wv
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Numerical boundary layers for the Jin—Xin model

The classical Jin—Xin model:

815(15 + &Lbe =0

(%) O +da. = = (f(az) ~ b.)

Assuming 0 < f’ < 1, the limit £ — 0 satisfies

(CL) 0sa+ 0z f(a) =0, b= f(a)
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Numerical boundary layers for the Jin—Xin model

The classical Jin—Xin model:

815(15 + &Lbe =0

(%) O +da. = = (f(az) ~ b.)

Assuming 0 < f’ < 1, the limit £ — 0 satisfies
(CL) a+0:f(a) =0, b= f(a)

Numerical approximation by a splitting technique
e Upwind scheme for the PDE part (a.,b.)" — (ac,b.)! '/
e Implicit scheme with explicit formula (az,b.)" "/ = (az,bo)? "
(ac)f ™! = (ac);

€/ 7 ’

(o = 022 4+ 2 (™) - o).
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Numerical boundary layers for the Jin—Xin model

The classical Jin—Xin model:

815(15 + &Lbe =0

(%) O +da. = = (f(az) ~ b.)

Assuming 0 < f’ < 1, the limit £ — 0 satisfies
(CL) a+0:f(a) =0, b= f(a)

Numerical approximation by a splitting technique

e Upwind scheme for the PDE part (ac,b.)!" — (a67b5)n+1/2

e Implicit scheme with explicit formula (az,b.)" "/ = (az,bo)? "
When ¢ = 0, it becomes the Rusanov scheme for (CL)

aitt =af — m(f(aiﬂ) — flai ) — (afyy — 24} +af )
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Numerical boundary layers for the Jin—Xin model

Define u. = a. + b. and v. = a. — b. to decouple the PDE part:

1
Opte + Opue = g(j Ue +0e)/2) — (ue — vg)/Q)

Oy — Byve = — (e — v2)/2 — F((ue +02)/2)

e

(JXd)

Bounded domain [0, 1]:
e Imposed entrance at = = 0:
ue(t,0) =
e Re-entrance at z = 1:
ve(t,1) = aue(t, 1) (with 0 < v < 1)
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Numerical boundary layers for the Jin—Xin model

Define u. = a. + b. and v. = a. — b. to decouple the PDE part:

O+ Dy = = (((ue +0:)/2) — (e = v2)/2)

04V, — Opve = —%((u8 —0e)/2 — f((ue + vg)/Q))
us(t,0) =wu; and v (t,1) = au.(t,1)
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Numerical boundary layers for the Jin—Xin model

Define u. = a. + b. and v. = a. — b. to decouple the PDE part:

O+ Dy = = (((ue +0:)/2) — (e = v2)/2)

04V, — Opve = —%((u8 —0e)/2 — f((ue + vg)/Q))
us(t,0) =wu; and v (t,1) = au.(t,1)

Assuming 0 < f' < 1, the limit £ — 0 satisfies

{ata—&-amf(a) =0 on [0,1]
la+ f(a)](t,0) =
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Numerical boundary layers for the Jin—Xin model

Define u. = a. + b. and v. = a. — b. to decouple the PDE part:

O+ Dy = = (((ue +0:)/2) — (e = v2)/2)

0. — Bt = — (e = 2)/2 = (s +0.)/2)
us(t,0) =wu; and v (t,1) = au.(t,1)

Assuming 0 < f' < 1, the limit £ — 0 satisfies

{ata—&-amf(a) =0 on [0,1]
la+ f(a)](t,0) =

At = = 1, presence of a relaxation boundary layer which vanishes as ¢ — 0
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Numerical boundary layers for the Jin—Xin model

From the numerical point of view:
e Boundary conditions approximated by ghost cells

e But the Rusanov scheme

altt =a} - E(f(a?-&-l) — flai 1) — (afy ) — 24} +ai 1))

also introduces a numerical boundary layer
— Bad numerical approximation of the relaxation boundary layer
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Numerical boundary layers for the Jin—Xin model

From the numerical point of view:
e Boundary conditions approximated by ghost cells

e But the Rusanov scheme

it At

a, a; — m(f(aﬂq) — flai 1) — (afy ) — 24} +ai 1))

also introduces a numerical boundary layer
— Bad numerical approximation of the relaxation boundary layer

Idea. Modify the numerical scheme in order to obtain the upwind scheme

At
@t = a2 (f(a]) ~ flaly))

Solution. See [Chalons, Berthon, Turpault 2013]: convex combination w.r.t. &
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Jin—Xin model with implicit equilibrium manifold

Jin—=Xin model with implicit equilibrium manifold:

Opue + Opue = 1(h(va) - ue)
(1JX) e

Opve — Opve = é(us — h(vs))
Assuming h' > 1, the limit ¢ — 0 satisfies u = h(v) and
(ICL) 0 A(v) + 0, B(v) = 0
where A(v) = h(v) +v and B(v) = h(v) —v
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Jin—Xin model with implicit equilibrium manifold

Jin—=Xin model with implicit equilibrium manifold:

Opue + Opue = 1(h(va) - “e)
(1JX) e

1

Ove — Opve = g(us - h(vs))
Assuming h' > 1, the limit ¢ — 0 satisfies u = h(v) and
(ICL) O A(W) + 9, B(v) =0
where A(v) = h(v) + v and B(v) = h(v) — v
Alternative formulation:

a: = Us + Ve Orac + Ozbe =

=
be = ue — v, Otbe + Oga. =

(LN R

(h(ag —be) — (a- + bs))
Assuming h' > 1, the limit £ — 0 satisfies a + b = h(a — b) and

ora+ 0,C(a) =0
where C'(a) = Bo A7 !(a)
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Jin—Xin model with implicit equilibrium manifold

Whatever the formulation we choose:
e The limit equation requires to invert A =h +1

e The usual splitting method for (1JX) also needs to invert a nonlinear function:

241

(be)n-‘ﬂ _ (ba)n-&-l/Q + (h((aE)n,—&-l o (bg)n+1> o ((ae)n-&-l + (bg)”—H))
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Jin—Xin model with implicit equilibrium manifold

Whatever the formulation we choose:
e The limit equation requires to invert A =h +1

e The usual splitting method for (1JX) also needs to invert a nonlinear function:

24t

(bg)n-&-l _ (b€)71,+1/2 + (h((ag)n—&-l o (bg)n+l) o ((ae)n-&-l + (bg)'n,—&-l))

Construct a new numerical scheme for (1JX):
e which does not require any inversion of nonlinear functions
e which is a 3-point scheme
e which corresponds to the upwind scheme for the PDE part of (1JX)
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Jin—Xin model with implicit equilibrium manifold

Whatever the formulation we choose:
e The limit equation requires to invert A =h +1

e The usual splitting method for (1JX) also needs to invert a nonlinear function:

24t

(bg)n-&-l _ (b€)71,+1/2 + (h((ag)n—&-l o (bg)n+1) o ((ae)n-&-l + (bg)"—H))

Construct a new numerical scheme for (1JX):

e which does not require any inversion of nonlinear functions

which is a 3-point scheme

which corresponds to the upwind scheme for the PDE part of (1JX)

which becomes an upwind scheme for the limit equation (ICL)
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Jin—Xin model with implicit equilibrium manifold

Construct a new numerical scheme for (1JX):
e which does not require any inversion of nonlinear functions
e which is a 3-point scheme
e which corresponds to the upwind scheme for the PDE part of (1JX)
e which becomes an upwind scheme for the limit equation (ICL)
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Jin—Xin model with implicit equilibrium manifold

Construct a new numerical scheme for (1JX):
e which does not require any inversion of nonlinear functions
e which is a 3-point scheme
e which corresponds to the upwind scheme for the PDE part of (1JX)
e which becomes an upwind scheme for the limit equation (ICL)

[S., Tournus 2015]
Construction of a class of such schemes, for instance:

At At
ntl _ [ — no_ n n
(lAP) (Us)L - (UE)z ﬁ.tl‘ ((ug)l (UE)'L—l) + EXtAw (Sug)l
(UE)?-H = (Us)? + E((UE)?-H - (Ue):l) - m(s’vs)?
where
(Su )i = h((ve)iy) = (ue)iq + (ve)? = (ve)ity
(Sue ) = hl(ve)i!) — (ue)} + (ve)iyy — (ve)?
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Jin—Xin model with implicit equilibrium manifold

The limit of the scheme

At At
n+l _ n__ = n _ n n
(lAP) (U’E)i = (UE)Z ﬁx ((U’E)z <u6>z—1) + €X A (Su. )i
(”6)7 = (ve)i + A ((U6)2+1 - (Ua)i) - m(svs)i
where
(Su.)i = h((ve)iy) = (ue)iy + (ve)} — (ve)iy
(S0 )i = h((ve)i’) = (ue)i! + (ve)ia — (ve)i!
is
aj™! = E(B(Ui ) — B(vj1))
(”_S) ,n+1 — ﬁ ny _ ,mn
Uz vz A(ﬁ (h’(vz ) uz )
u;z+1 a;ﬂrl _ v;ﬂrl
Nicolas Seguin (UMPC & Inria) Asymptotics with boundaries and interfaces 16 avril 2015

12 /45



Jin—Xin model with implicit equilibrium manifold

The limit scheme

n n At n n
ai+1 =a; — E(B(Uz ) — B(Uifl))
(L) o = = 2L (o) — uf)

u;v/Jrl _ a;H»l o U;(H»l
must solve
oa+0,(BoA N (a)=0

The second equation of the scheme corresponds to the numerical deviation from
the equilibrium manifold

& ={u=nh()}

— Approximate Newton method
— Consistency in the sense of finite differences
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Semi-implicit scheme versus adapted scheme

Riemann problem with non-equilibrium right-hand boundary conditions: ¢ = 1

u+v: semi-implicit scheme
u+v: adapted scheme
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Semi-implicit scheme versus adapted scheme

Riemann problem with non-equilibrium right-hand boundary conditions: ¢ = 102

u+v: semi-implicit scheme
u+v: adapted scheme
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Semi-implicit scheme versus adapted scheme

Riemann problem with non-equilibrium right-hand boundary conditions: ¢ = 10—

u+v: semi-implicit scheme
u+v: adapted scheme
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Jin—Xin model with implicit equilibrium manifold

[Perthame, S., Tournus 2015]
Convergence of the model when ¢ — 0 (even with h(v, z))

o Adapted heterogeneous entropies
e BV, (= BV,) estimates — strong convergence

[S., Tournus 2015]
Construction of an explicit AP scheme

e which tends to an upwind scheme
o which approximately solve the implicit equilibrium
o Complete analysis for ¢ > 0

Analysis of the limit scheme: convergence towards the entropy solution?

Extension to more complex models
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Boundaries and interfaces in asymptotics
of hyperbolic systems of balance laws

Two distinct problems:

l. Jin—Xin model with implicit equilibrium manifold on a bounded domain
e Asymptotic behavior of boundary conditions
e Approximate but explicit computation of the equilibrium manifold

with B. Perthame and M. Tournus

Il. Interface coupling of a systems of balance laws with its parabolic limit
e The Goldstein—Taylor model and the heat equation
e The p-system and the nonlinear heat equation
e Interface coupling/domain decomposition/two-scale discontinuous rate
with A.-C. Boulanger, C. Cancés, H. Mathis and K. Saleh
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Interface coupling of a systems of balance laws

with its parabolic limit

The coupling problem: € > 0 at the left, £ = 0 at the right

<0 rz=0

x>0

Hyperbolic system with relaxation \ Associated parabolic limit

The Goldstein—Taylor model
{satv +0,u=0

o
el + a’0pv = ——u
€

The heat equation
2

Oy — ‘iamv:o
o
u=0

The p-system with damping The nonlinear heat equation
1
e — Oyu =0 . OyT + game(T) =0
eﬁtu + GLP(T) = 7gu u = 0
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The Goldstein—Taylor model

Linear 2 x 2 system with linear dissipative term

GT 0w+ Ou =0
(6T O + a?0,v = _Zu
5
a2
e From the second equation: u = —c—d,v + O(£?)
g

e Inject in the first equation and divide by ¢
When £ — 0, one recover the linear heat equation
2

. a B
(HE) Oy — ;&mv =0

u=0

Passage from a hyperbolic regime to a parabolic regime. ..
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Design of asymptotic-preserving schemes

Construct a numerical scheme for system (GT) which becomes a numerical
scheme for system (HE) when ¢ — 0

e Control of the numerical diffusion compared to the parabolic limit

e From a hyperbolic CFL condition to a parabolic CFL condition
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Design of asymptotic-preserving schemes

Construct a numerical scheme for system (GT) which becomes a numerical
scheme for system (HE) when ¢ — 0

e Control of the numerical diffusion compared to the parabolic limit

e From a hyperbolic CFL condition to a parabolic CFL condition

Here, we follow [Gosse, Toscani 2003]:
1. Space localization of the source term (well-balanced schemes, LeRoux et al.)

2. Implicit discretization of the source to guarantee the asymptotic stability
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AP scheme: space localization of the source term

1. Given a mesh with At and Az, approximate solution (W/*);,, = (vI', ul)i n:

v, = v — E(Fv(wi SWik) = By (Wi, W ))
At ,
“?H = - E(F (Wi Wity — F, (Wi, Wi")) + At 5P
oruzT'H_l:vi _E(Fu (W’L7 i+1)_Fz:r( i— 17W ))
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AP scheme: space localization of the source term

1. Given a mesh with At and Az, approximate solution (W/");,, = (v}, ul");

U; = Vi — E(Fv(wi ) z‘+1) — F, (W, W] ))
At , ,
U?H =v; — E(Fu(Wi”7 i) — Fu(Wity, Wi")) + At S
n+1 n At — n n + n n
oru; = =v; — E(Fu (Wi Wity) — By (Wi, Wi ))
2. Solve at each interface the extended Riemann problem
u n
O +0;~ =0 W(o,x):{m iOrxig
v o : i+1 TOr T
272 _ with
Opu+ Oy c +€2uazx—0 (0,2) x; forz <O
7m -
dx =0 X X foraz >0

with x, — y; = Ax
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AP scheme: space localization of the source term

3. ...and obtain (remark the jump of v at z = 0)

14 for x/t < —a/e
W(t.z) - (?*,?/KE) for —afe <z/t <0
(vF,u/K.) for0<z/t<ale
W, for x/t > a/e
with K. = 1+ 727 and
2ae

ﬁi(Wl,WT) = — é(ﬂ(WhWr)/Ke — ul)

O (WL, W) = v (a0, W) /K — )

Nicolas Seguin (UMPC & Inria) Asymptotics with boundaries and interfaces 16 avril 2015 23 /45



AP scheme: space localization of the source term

4. The numerical scheme writes

At
vt = - [a(W, Wity) — a(Wity, W)

eK.Ax
U?H = uj — (5:‘; [’D_(Winﬂ Wity) — ot (W, Wzn)]
or equivalently, with o(1W;, W,.) = U —12—1},« — %(ur — ),
ot =t — gKAEtAx [a(W], Wi y) — a(W, W)
uptt = uf — e.cfiifm (oW W) — (Wi, W] - ;?{i uy!
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AP scheme: space localization of the source term

4. The numerical scheme writes

At
vt = - [a(W, Wity) — a(Wity, W)

eK.Ax
U?H = uj — (5:‘; [’D_(Winﬂ Wity) — ot (W, Wzn)]
or equivalently, with o(1W;, W,.) = U —12—1},« — %(ur — ),
ot =t — gKAEtAx [a(W], Wi y) — a(W, W)
uptt = uf — e.cfiifm (oW W) — (Wi, W] - ;?{i uy!

BUT the resulting source term is explicitly approximated!

2 A
— CFL condition: At < s (5 + 02x> which — 0 when ¢ — 0!
o a
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AP scheme: implicit modification of the source term

4. The classical well-balanced scheme:

n m At — m n — m m
Ui i = — K. Az [U(Wf7 i) _U(WiilvwiL)]
€
2
il ﬂ_aAtf n TR\ R (T _n_aAtn
uq’, - uz EKEAJJ [U(Wz 7Wz+1) ,U(W1717WZ )] €2KEUZ

5. Implicit discretization of the source term:

n+1 n At

Vi TV T TR AR [a(W, Wiy) — a(W W)
€
2
nil _ o @AL W™ W™ ) — (W™ . W _ AL i
uz uz EKEAZC [U( T z+1) U( 1—1> 7 )] €2K5ul
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AP scheme: implicit modification of the source term

4. The classical well-balanced scheme:

At
U;LJrl — ,UZ?L o AL [’l](WZ-”, erl) o 'a(WZ‘”,p Wz'”)]
€
2
n+l _  n a At = n n — n n UAt n
ul "t =l — KAz [U(WZ W) — oWy, W )] — —gszui

5. Implicit discretization of the source term, but explicit formula:

n n At — 1 1 — n n
vt = — UV W) — a(WL, W)
S

UAt n+1 n GQAt — n n — n n
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AP scheme

The final scheme (recall that K. = 1 + Z2%):

2ae

[ (Wzn’ iﬁ-l)*a( i— 17Wn)]

, At
U(L+1 o ,Un o

T eK.Ax
il oAt N eTAt _ n
up = <1+52K5> (UL *SKEA:U[U(WM ) — oWy, W)

When & — 0, one obtains (except for n = 0):

a? At
n+1 71 n n n n+1
v; i T ——Zz [viﬂ —20;" + vi,l} , u;, =0
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AP scheme

The final scheme (recall that K. = 1 + Z2%):

2ae

. . At n i = n
m'“ I 7 Am[ (Wi Wiky) —a(Wity, W, )]

n O—At 71 n a2At — n n Pt n n
Ui'H = <1+ %> (Uz YN [U(W1 W) — oWy, W )})

When & — 0, one obtains (except for n = 0):

2 At
n+1 ol a n n n n+1l __
v; i T A2 [viﬂ —20;" + UFJ , u;, =0

Proposition ([Gosse, Toscani 2003])
This numerical scheme is asymptotic preserving since

e it is consistent with (GT) when & > 0 and with (HE) when e =0
Az

e it is L2-stable under the CFL condition At < 5—L + %AmQ
a a
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The p-system with damping

The p-system with linear dissipative term, with P’ > 0,

e — Opu =0
(PS)

dpu + 0, P(r) = fgu

1
e From the second equation: u = —e—0, P(7) + O(c?)
g

e Inject in the first equation and divide by ¢
When £ — 0, one recover the nonlinear heat equation

1
W7+ —0peP(7) =0
o

u=0

(NHE)

Passage from a hyperbolic regime to a parabolic regime. ..
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Design of asymptotic-preserving schemes

Construct a numerical scheme for system (PS) which becomes a numerical
scheme for system (NHE) when ¢ — 0

e Control of the numerical diffusion compared to the parabolic limit
e From a hyperbolic CFL condition to a parabolic CFL condition
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Design of asymptotic-preserving schemes

Construct a numerical scheme for system (PS) which becomes a numerical
scheme for system (NHE) when ¢ — 0

e Control of the numerical diffusion compared to the parabolic limit
e From a hyperbolic CFL condition to a parabolic CFL condition

Here, we extend [Gosse, Toscani 2003] to the nonlinear case:
1. Use approximate Riemann solver (HLL, relaxation. . .)
2. Space localization of the source term (well-balanced schemes, LeRoux et al.)

3. Implicit discretization of the source to guarantee the asymptotic stability

Note that schemes of [Chalons, Coquel, Godlewski, Raviart, S. 2010] and
[Berthon, Turpault 2010] correspond to steps 1+2 (see also [Chalons, Girardin,
Kokh 2013] for large time-step methods)
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AP scheme: space localization of the source term

1. Given a mesh with At and Az, approximate solution (W/);,, = (7]*,ul")i.n:

n n At n n n n
Tl — ~ (F-(W] W) — Fr (W, W)
n n At n n n n
“iH:”i*Ax( W(WE W) — Fu(Wy W) + At S;
T_L+1 A At - W?L n o F+ W?L
or Uu; U; AZ( u ( i z+1) u ( i— 17 ))
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AP scheme: space localization of the source term

1. Given a mesh with At and Az, approximate solution (W/"); , = (77", ul"); n:
n+1 n At n n n n
T =T _E(FT(WZ' 7Wi+1)_F‘F(Wi717Wi ))
ui+1 i Al‘( (Wz ’ i+1)7F ( i— 1)W ))+At Sz
n+1 n At n n + n
oru; -~ =1uv; _E(F (W, Wiy — B (W, W, ))

2. Solve at each interface the extended approximate Riemann problem

u

T —0p— =0

! € wp forx <0

T W(0,x) =

Ou+0;—+ sudex =0 Wi, forz>0
€, € with If
a

atﬂ' +8$7U =0 X(O7.’17) _ X1 orxz <0
€ X, foraz >0

8tX =0
with x, — x; = Az and a? > —P'(1)
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AP scheme

Same calculations + Implicit discretization of the source term. ..

n n At — n n — n n
T i =7 - K. Az [U(Wilv i1+1)_u( iLhWil)}
1
n+l __ oAt n At = n n - n n
U; - (1 + €2K€> (ul - €K€AZL' [TF(WZ' ’ i+1) - 7T(I/Vifla Wi )]

When & — 0, one obtains (except for n = 0):

At
sl — o

=t - S [P < 2P+ PO)) Lt =0

K2
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AP scheme

Same calculations + Implicit discretization of the source term. ..
n+l _ _n At

T =T

‘ K. Ax

-1
n+1 __ oAt n At — n n = n n
up = (1 + 52K€> (uz - K. Az [W(Wi SWik) —7(Wity, Wi )]
When & — 0, one obtains (except for n = 0):

n+l _ _n At
T =T, — x5
ocAx

[a(W, Wiiy) — a(Wity, W)

{P(Tﬁﬁ-l) - QP(T;L) + P(Tvn—l)] b un—‘—l - 0

Proposition ([Boulanger, Cances, Mathis, Saleh, S. 2012])
This numerical scheme is asymptotic preserving since
e it is consistent with (PS) when ¢ > 0 and with (NHE) when ¢ = 0
e it is positive and entropy-stable under the CFL condition, with a®> > —P'(7),
At < E& + LA[L‘Q
2a  4a?

Nicolas Seguin (UMPC & Inria) Asymptotics with boundaries and interfaces 16 avril 2015 30/ 45



The coupling problem

The coupling problem: € > 0 at the left, £ = 0 at the right

<0 z=0 x>0
The Goldstein—Taylor model The heat equation
1 2
O+ —0pu =0 av— L o,0=0
a? o g
O+ — 00 = ——u u=20
€ €

Basic requirements:
e When e > 1
Hyperbolic solution at the left and the parabolic solution at the right

e Whene <« 1
Hyperbolic and parabolic are similar, the coupling should also be

= Mixing of BC's
= Recover the parabolic scheme when ¢ — 0
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The coupling problem: a first simple idea

Coupling conditions, from parabolic/parabolic coupling:
e Continuity of the unknown:
v(t,07) = v(t,01)
e Continuity of the flu2x, i.e. global conservation of v:

vy 4 +
6(1570 ) Uaxv(uO )
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The coupling problem: a first simple idea

Coupling conditions, from parabolic/parabolic coupling:
e Continuity of the unknown:
v(t,07) = v(t,01)
e Continuity of the flu2x, i.e. global conservation of v:

u a
—(¢t,07) = ——0,v(t, 0"
2(1,07) = - Lo,(t, 0)
At the numerical interface of coupling 7/, = 0 between cells 0 and 1:
e Ghost-cell method:

W' = (u,ug) | W= (05.0)

e Compute the common flux for v using the hyperbolic model:

1
eK,

FY)jy = Fuyp (Wg', (v7,0)) = ——a(Wg', (v7,0))
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The coupling problem: a first simple idea

Riemann problem with Dirichlet boundary conditions: ¢ = 1

100% hyperbolic
100% parabolic
Basic coupling
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The coupling problem: a first simple idea

Riemann problem with Dirichlet boundary conditions: € = 0.1

100% hyperbolic
100% parabolic
Basic coupling
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The coupling problem: partial Riemann problem

Coupling conditions, from parabolic/parabolic coupling:
e Continuity of the unknown:
v(t,07) =v(t,0T)
e Continuity of the flu2x, i.e. global conservation of v:

Uy - 4 +
2(£,07) = = =0,0(t,0%)
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The coupling problem: partial Riemann problem

Coupling conditions, from parabolic/parabolic coupling:
e Continuity of the unknown:
v(t,07) =v(t,0T)
e Continuity of the flu2x, i.e. global conservation of v:

Uy - 4 +
2(£,07) = = =0,0(t,0%)

At the numerical interface of coupling x,,, = 0:

e Solve a partial Riemann problem at the left:

* n __ n *
Uy o — ug = a(vg — vy)s)

e Continuity of the flux:
UT/2 a? vt — UT/Q

e o Az/2

Nicolas Seguin (UMPC & Inria) Asymptotics with boundaries and interfaces 16 avril 2015

35 /45



The coupling problem: partial Riemann problem

Riemann problem with Dirichlet boundary conditions: ¢ = 1
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The coupling problem: partial Riemann problem

Riemann problem with Dirichlet boundary conditions: € = 0.1
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The coupling problem for the p-system with damping

The coupling problem: € > 0 at the left, £ = 0 at the right

<0 z=0 x>0
The p-system with damping The nonlinear heat equation
. 1, 2
O = Z0u=0 O+ 0,0 P(7) = 0
1 g
Opu+ -0, P(1) = —%u u="0
€ €

Same requirements and ideas. . .
o First idea: use the AP numerical flux
e Second idea: use a partial Riemann problem

Same consequences!
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The coupling problem: using the AP flux

Riemann problem with Dirichlet boundary conditions: ¢ = 0.5

100% hyperbolic
100% parabolic
Basic coupling
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The coupling problem: using the AP flux

Riemann problem with Dirichlet boundary conditions: € = 0.1

100% hyperbolic
100% parabolic
Basic coupling
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The coupling problem: partial Riemann problem

Riemann problem with Dirichlet boundary conditions: ¢ = 0.5

100% hyperbolic
100% parabolic
Part. RP coupling
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The coupling problem: partial Riemann problem

Riemann problem with Dirichlet boundary conditions: € = 0.1

100% hyperbolic
100% parabolic
Part. RP coupling
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Interfacial coupling and parabolic limit
e Goldstein—Taylor model and the p-system with damping
e Construction of asymptotic preserving schemes

e Interfacial coupling between two numerical schemes which perfectly match

1. Direct use of the numerical flux of the AP scheme
2. Partial Riemann problem in the hyperbolic part
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Interfacial coupling and parabolic limit

e Goldstein—Taylor model and the p-system with damping
e Construction of asymptotic preserving schemes

e Interfacial coupling between two numerical schemes which perfectly match

1. Direct use of the numerical flux of the AP scheme
2. Partial Riemann problem in the hyperbolic part

But. ..
e What are the rigorous coupling conditions?
e How to extend this coupling to more complex systems?

e What happens when the two numerical schemes do not perfectly match?

[Salvarani 1999], [Salvarani, Golse 2007], [Golse, Jin, Levermore 2003],
[Lemou, Méhats 2012], [Vasseur 2012], [Coquel, Jin, Liu, Wang 2015]...
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Than you for your attention
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