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Single Particle Reconstruction using cryo-EM

Schematic drawing of the imaging process:

The cryo-EM problem:
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Main Algorithmic Challenges

1 Orientation assignment

2 Heterogeneity (resolving structural variability)

3 2D Class averaging (de-noising)

4 Symmetry detection

5 Motion correction

6 Particle picking
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Class Averaging in Cryo-EM: Improve SNR
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Image denoising by vector diffusion maps

Generalization of Laplacian Eigenmaps
(Belkin, Niyogi 2003) and Diffusion Maps
(Coifman, Lafon 2006)

Introduced the graph Connection Laplacian

S, Zhao, Shkolnisky, Hadani (SIIMS 2011)

Hadani, S (FoCM 2011)

S, Wu (Comm. Pure Appl. Math 2012)

Zhao, S (J Struct. Bio. 2014)

Experimental images (70S) courtesy of
Dr. Joachim Frank (Columbia)

Class averages by vector diffusion maps
(averaging with 20 nearest neighbors)
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Rotation Invariant Distances

Projection images I1, I2, . . . , In with unknown rotations
R1,R2, . . . ,Rn ∈ SO(3)

Rotationally Invariant Distances (RID)

dRID(i , j) = min
O∈SO(2)

‖Ii − O ◦ Ij‖

Cluster the images using K-means.

Images are not centered; also possible to include translations and to
optimize over the special Euclidean group.

Problem with this approach: outliers.

At low SNR images with completely different viewing directions may
have relatively small dRID (noise aligns well, instead of underlying
signal).
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Outliers: Small World Graph on S
2

Define graph G = (V ,E ) by {i , j} ∈ E ⇐⇒ dRID(i , j) ≤ ε.
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Optimal rotation angles

Oij = argmin
O∈SO(2)

‖Ii − O ◦ Ij‖, i , j = 1, . . . , n.

Triplet consistency relation – good triangles

OijOjkOki ≈ I2×2.

How to use information of optimal rotations in a systematic way?
Vector Diffusion Maps
“Non-local means with rotations”
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Vector Diffusion Maps: Setup

wij

Oij

i

j

In VDM, the relationships between data points (e.g., cryo-EM images) are
represented as a weighted graph, where the weights wij describing affinities
between data points are accompanied by linear orthogonal transformations
Oij .
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Manifold Learning: Point cloud in R
p

x1, x2, . . . , xn ∈ R
p.

Manifold assumption: x1, . . . , xn ∈ Md , with d ≪ p.

Local Principal Component Analysis (PCA) gives an approximate
orthonormal basis Oi for the tangent space TxiM.

Oi is a p × d matrix with orthonormal columns: OT
i Oi = Id×d .

Alignment: Oij = argminO∈O(d) ‖O − OT
i Oj‖HS

(computed through the singular value decomposition of OT
i Oj).
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Parallel Transport

Oij approximates the parallel transport operator
Pxi ,xj : TxjM → TxiM
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Laplacian Eigenmap (Belkin and Niyogi 2003) and
Diffusion Map (Coifman and Lafon 2006)

Symmetric n × n matrix W0:

W0(i , j) =

{

wij (i , j) ∈ E ,
0 (i , j) /∈ E .

Diagonal matrix D0 of the same size:

D0(i , i) = deg(i) =
∑

j :(i ,j)∈E
wij .

Graph Laplacian, Normalized graph Laplacian and the random walk
matrix:

L0 = D0 −W0, L0 = I − D
−1/2
0 W0D

−1/2
0 , A0 = D−1

0 W0

The diffusion map Φt is defined in terms of the eigenvectors of A0:

A0φl = λlφl , l = 1, . . . , n

Φt : i 7→ (λt
l φl(i))

n
l=1.
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Vector diffusion mapping: W1 and D1

Symmetric nd × nd matrix W1:

W1(i , j) =

{

wijOij (i , j) ∈ E ,
0d×d (i , j) /∈ E .

n × n blocks, each of which is of size d × d .

Diagonal matrix D1 of the same size, where the diagonal d × d blocks
are scalar matrices with the weighted degrees:

D1(i , i) = deg(i)Id×d ,

and
deg(i) =

∑

j :(i ,j)∈E
wij
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A1 = D−1
1 W1 is an averaging operator for vector fields

The matrix A1 can be applied to vectors v of length nd , which we
regard as n vectors of length d , such that v(i) is a vector in R

d

viewed as a vector in TxiM. The matrix A1 = D−1
1 W1 is an

averaging operator for vector fields, since

(A1v)(i) =
1

deg(i)

∑

j :(i ,j)∈E
wijOijv(j).

This implies that the operator A1 transport vectors from the tangent
spaces TxjM (that are nearby to TxiM) to TxiM and then averages
the transported vectors in TxiM.
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Affinity between nodes based on consistency of
transformations

In the VDM framework, we define the affinity between i and j by
considering all paths of length t connecting them, but instead of just
summing the weights of all paths, we sum the transformations.
Every path from j to i may result in a different transformation (like
parallel transport due to curvature).
When adding transformations of different paths, cancelations may
happen.
We define the affinity between i and j as the consistency between
these transformations.
A1 = D−1

1 W1 is similar to the symmetric matrix W̃1

W̃1 = D
−1/2
1 W1D

−1/2
1

We define the affinity between i and j as

‖W̃ 2t
1 (i , j)‖2HS =

deg(i)

deg(j)
‖(D−1

1 W1)
2t(i , j)‖2HS .
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Embedding into a Hilbert Space

Since W̃1 is symmetric, it has a complete set of eigenvectors {vl}
nd
l=1

and eigenvalues {λl}
nd
l=1 (ordered as |λ1| ≥ |λ2| ≥ . . . ≥ |λnd |).

Spectral decompositions of W̃1 and W̃ 2t
1 :

W̃1(i , j) =

nd
∑

l=1

λlvl(i)vl(j)
T , and W̃ 2t

1 (i , j) =

nd
∑

l=1

λ2t
l vl(i)vl (j)

T ,

where vl(i) ∈ R
d for i = 1, . . . , n and l = 1, . . . , nd .

The HS norm of W̃ 2t
1 (i , j) is calculated using the trace:

‖W̃ 2t
1 (i , j)‖2HS =

nd
∑

l ,r=1

(λlλr )
2t〈vl (i), vr (i)〉〈vl (j), vr (j)〉.

The affinity ‖W̃ 2t
1 (i , j)‖2HS = 〈Vt(i),Vt(j)〉 is an inner product for the

finite dimensional Hilbert space R
(nd)2 via the mapping Vt :

Vt : i 7→
(

(λlλr )
t〈vl(i), vr (i)〉

)nd

l ,r=1
.
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Vector Diffusion Distance

The vector diffusion mapping is defined as

Vt : i 7→
(

(λlλr )
t〈vl(i), vr (i)〉

)nd

l ,r=1
.

The vector diffusion distance between nodes i and j is denoted
dVDM,t(i , j) and is defined as

d2
VDM,t(i , j) = 〈Vt(i),Vt(i)〉+ 〈Vt(j),Vt(j)〉 − 2〈Vt(i),Vt(j)〉.

Other normalizations of the matrix W1 are possible and lead to
slightly different embeddings and distances (similar to diffusion maps).

The matrices I − W̃1 and I + W̃1 are positive semidefinite, because

vT (I ± D
−1/2
1 W1D

−1/2
1 )v =

∑

(i ,j)∈E

∥

∥

∥

∥

∥

v(i)
√

deg(i)
±

wijOijv(j)
√

deg(j)

∥

∥

∥

∥

∥

2

≥ 0,

for any v ∈ R
nd . Therefore, λl ∈ [−1, 1]. As a result, the vector

diffusion mapping and distances can be well approximated by using
only the few largest eigenvalues and their corresponding eigenvectors.
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Application to the class averaging problem in Cryo-EM
(S, Zhao, Shkolnisky, Hadani 2011)
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(a) Neighbors are identified using dRID
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(b) Neighbors are identified using dVDM,t=2

Figure : SNR=1/64: Histogram of the angles (x-axis, in degrees) between the
viewing directions of each image (out of 40000) and it 40 neighboring images.
Left: neighbors are identified using the original rotationally invariant distances
dRID. Right: neighbors are post identified using vector diffusion distances.

Amit Singer (Princeton University) May 2015 17 / 27



Computational Aspects

Zhao, S J. Struct. Biol. 2014

Näıve implementation requires O(n2) rotational alignments of images

Rotational invariant representation of images: “bispectrum”

Dimensionality reduction using a randomized algorithm for PCA
(Rokhlin, Liberty, Tygert, Martinsson, Halko, Tropp, Szlam, ...)

Randomized approximated nearest neighbors search in nearly linear
time (Jones, Osipov, Rokhlin 2011)
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The Hairy Ball Theorem

There is no non-vanishing continuous tangent vector field on the
sphere.

Cannot find Oi such that Oij = OiO
−1
j .

No global rotational alignment of all images.
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Convergence Theorem to the Connection-Laplacian (S, Wu)

Let ι : M →֒ R
p be a smooth d -dim closed Riemannian manifold

embedded in R
p, with metric g induced from the canonical metric on R

p,
and the data set {xi}i=1,...,n is independently uniformly distributed over
M. Let K ∈ C 2(R+) be a positive kernel function decaying exponentially,
that is, there exist T > 0 and C > 0 such that K (t) ≤ Ce−t when t > T .

For ǫ > 0, let Kǫ (xi , xj) = K
(

‖ι(xi )−ι(xj )‖Rp√
ǫ

)

. Then, for X ∈ C 3(TM)

and for all xi almost surely we have

lim
ǫ→0

lim
n→∞

1

ǫ

[

∑n
j=1 Kǫ (xi , xj)OijXj
∑n

j=1 Kǫ (xi , xj )
− Xi

]

=
m2

2dm0

(

〈ι∗∇
2X (xi ), el 〉

)d

l=1
,

where ∇2 is the connection Laplacian, Xi ≡ (〈ι∗X (xi ), el 〉)
d
l=1 ∈ R

d for all
i , {el (xi )}l=1,...,d is an orthonormal basis of ι∗TxiM,
ml =

∫

Rd ‖x‖
lK (‖x‖)dx , and Oij is the optimal orthogonal transformation

determined by the algorithm in the alignment step.
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Example: Connection-Laplacian for Sd embedded in R
d+1

The connection-Laplacian commutes with rotations and the eigenvalues
and eigen-vector-fields are calculated using representation theory:

S2 : 6, 10, 14, . . . .

S3 : 4, 6, 9, 16, 16, . . . .

S4 : 5, 10, 14, . . . .

S5 : 6, 15, 20, . . . .
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Figure : Bar plots of the largest 30 eigenvalues of A1 for n = 8000 points
uniformly distributed over spheres of different dimensions.
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Spectral graph theory with vector fields

The Graph Connection Laplacian

L1 = D1 −W1

The Normalized Graph Connection Laplacian

L1 = I − D
−1/2
1 W1D

−1/2 = I − W̃1

Averaging operator / random walk matrix for vector diffusion:

A1 = D−1
1 W1

A Cheeger inequality for the graph connection Laplacian
(Bandeira, S, Spielman SIAM Matrix Analysis 2013)
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More applications of VDM: Orientability from a point cloud

Encode the information about reflections in a symmetric n × n matrix Z

with entries

Zij =

{

detOij (i , j) ∈ E ,
0 (i , j) /∈ E .

That is, Zij = 1 if no reflection is needed, Zij = −1 if a reflection is needed,
and Zij = 0 if the points are not nearby. Normalize Z by the node degrees.
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Figure : Histogram of the values of the top eigenvector of D−1
0 Z .

Amit Singer (Princeton University) May 2015 23 / 27



Orientable Double Covering

Embedding obtained using the eigenvectors of the (normalized) matrix

[

Z −Z

−Z Z

]

=

(

1 −1
−1 1

)

⊗ Z ,

Figure : Left: the orientable double covering of RP(2), which is S2; Middle: the
orientable double covering of the Klein bottle, which is T 2; Right: the orientable
double covering of the Möbius strip, which is a cylinder.
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Registration and Ordering of Drosophila Embryogenesis
Images

Dsilva, Lim, Lu, S, Kevrekidis, Shvartsman, Development 2015
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Registered and Ordered using VDM
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