Beyond Scalar Affinities for Network Analysis

 or
Vector Diffusion Maps and the Connection Laplacian

Amit Singer

Princeton University

Department of Mathematics and Program in Applied and Computational Mathematics

$$
\text { May 28, } 2015
$$

National Institute of
General Medical Sciences
Basic Discoveries for Better Health

SIMONS FOUNDATION

GORDON AND BETTY

Single Particle Reconstruction using cryo-EM

Schematic drawing of the imaging process:

The cryo-EM problem:

tomographic image

3-D structure

Main Algorithmic Challenges

(1) Orientation assignment
(2) Heterogeneity (resolving structural variability)
(3) 2D Class averaging (de-noising)
(9) Symmetry detection
(3) Motion correction
(0) Particle picking

Class Averaging in Cryo-EM: Improve SNR

Image denoising by vector diffusion maps

- Generalization of Laplacian Eigenmaps (Belkin, Niyogi 2003) and Diffusion Maps (Coifman, Lafon 2006)
- Introduced the graph Connection Laplacian
- S, Zhao, Shkolnisky, Hadani (SIIMS 2011)
- Hadani, S (FoCM 2011)
- S, Wu (Comm. Pure Appl. Math 2012)
- Zhao, S (J Struct. Bio. 2014)

Experimental images (70S) courtesy of Dr. Joachim Frank (Columbia)

Class averages by vector diffusion maps (averaging with 20 nearest neighbors)

Rotation Invariant Distances

- Projection images $I_{1}, I_{2}, \ldots, I_{n}$ with unknown rotations

$$
R_{1}, R_{2}, \ldots, R_{n} \in S O(3)
$$

- Rotationally Invariant Distances (RID)

$$
d_{R I D}(i, j)=\min _{O \in S O(2)}\left\|I_{i}-O \circ I_{j}\right\|
$$

- Cluster the images using K-means.
- Images are not centered; also possible to include translations and to optimize over the special Euclidean group.
- Problem with this approach: outliers.
- At low SNR images with completely different viewing directions may have relatively small $d_{\text {RID }}$ (noise aligns well, instead of underlying signal).

Outliers: Small World Graph on \mathbb{S}^{2}

- Define graph $G=(V, E)$ by $\{i, j\} \in E \Longleftrightarrow d_{R I D}(i, j) \leq \varepsilon$.

- Optimal rotation angles

$$
O_{i j}=\underset{O \in S O(2)}{\operatorname{argmin}}\left\|I_{i}-O \circ I_{j}\right\|, \quad i, j=1, \ldots, n
$$

- Triplet consistency relation - good triangles

$$
O_{i j} O_{j k} O_{k i} \approx I_{2 \times 2}
$$

- How to use information of optimal rotations in a systematic way? Vector Diffusion Maps
- "Non-local means with rotations"

Vector Diffusion Maps: Setup

In VDM, the relationships between data points (e.g., cryo-EM images) are represented as a weighted graph, where the weights $w_{i j}$ describing affinities between data points are accompanied by linear orthogonal transformations $O_{i j}$.

Manifold Learning: Point cloud in \mathbb{R}^{p}

- $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{p}$.
- Manifold assumption: $x_{1}, \ldots, x_{n} \in \mathcal{M}^{d}$, with $d \ll p$.
- Local Principal Component Analysis (PCA) gives an approximate orthonormal basis O_{i} for the tangent space $T_{x_{i}} \mathcal{M}$.
- O_{i} is a $p \times d$ matrix with orthonormal columns: $O_{i}^{T} O_{i}=I_{d \times d}$.
- Alignment: $O_{i j}=\operatorname{argmin}_{O \in O(d)}\left\|O-O_{i}^{T} O_{j}\right\|_{H S}$
(computed through the singular value decomposition of $O_{i}^{T} O_{j}$).

Parallel Transport

- $O_{i j}$ approximates the parallel transport operator

$$
P_{x_{i}, x_{j}}: T_{x_{j}} \mathcal{M} \rightarrow T_{x_{i}} \mathcal{M}
$$

Laplacian Eigenmap (Belkin and Niyogi 2003) and Diffusion Map (Coifman and Lafon 2006)

- Symmetric $n \times n$ matrix W_{0} :

$$
W_{0}(i, j)=\left\{\begin{array}{cl}
w_{i j} & (i, j) \in E \\
0 & (i, j) \notin E
\end{array}\right.
$$

- Diagonal matrix D_{0} of the same size:

$$
D_{0}(i, i)=\operatorname{deg}(i)=\sum_{j:(i, j) \in E} w_{i j}
$$

- Graph Laplacian, Normalized graph Laplacian and the random walk matrix:

$$
L_{0}=D_{0}-W_{0}, \quad \mathcal{L}_{0}=I-D_{0}^{-1 / 2} W_{0} D_{0}^{-1 / 2}, \quad A_{0}=D_{0}^{-1} W_{0}
$$

- The diffusion map Φ_{t} is defined in terms of the eigenvectors of A_{0} :

$$
\begin{gathered}
A_{0} \phi_{l}=\lambda_{l} \phi_{l}, \quad I=1, \ldots, n \\
\Phi_{t}: i \mapsto\left(\lambda_{l}^{t} \phi_{l}(i)\right)_{l=1}^{n} .
\end{gathered}
$$

Vector diffusion mapping: W_{1} and D_{1}

- Symmetric $n d \times n d$ matrix W_{1} :

$$
W_{1}(i, j)=\left\{\begin{array}{cc}
w_{i j} O_{i j} & (i, j) \in E \\
0_{d \times d} & (i, j) \notin E .
\end{array}\right.
$$

$n \times n$ blocks, each of which is of size $d \times d$.

- Diagonal matrix D_{1} of the same size, where the diagonal $d \times d$ blocks are scalar matrices with the weighted degrees:

$$
D_{1}(i, i)=\operatorname{deg}(i) I_{d \times d},
$$

and

$$
\operatorname{deg}(i)=\sum_{j:(i, j) \in E} w_{i j}
$$

$A_{1}=D_{1}^{-1} W_{1}$ is an averaging operator for vector fields

- The matrix A_{1} can be applied to vectors v of length $n d$, which we regard as n vectors of length d, such that $v(i)$ is a vector in \mathbb{R}^{d} viewed as a vector in $T_{x_{i}} \mathcal{M}$. The matrix $A_{1}=D_{1}^{-1} W_{1}$ is an averaging operator for vector fields, since

$$
\left(A_{1} v\right)(i)=\frac{1}{\operatorname{deg}(i)} \sum_{j:(i, j) \in E} w_{i j} O_{i j} v(j) .
$$

This implies that the operator A_{1} transport vectors from the tangent spaces $T_{x_{j}} \mathcal{M}$ (that are nearby to $T_{x_{i}} \mathcal{M}$) to $T_{x_{i}} \mathcal{M}$ and then averages the transported vectors in $T_{x_{i}} \mathcal{M}$.

Affinity between nodes based on consistency of transformations

- In the VDM framework, we define the affinity between i and j by considering all paths of length t connecting them, but instead of just summing the weights of all paths, we sum the transformations.
- Every path from j to i may result in a different transformation (like parallel transport due to curvature).
- When adding transformations of different paths, cancelations may happen.
- We define the affinity between i and j as the consistency between these transformations.
- $A_{1}=D_{1}^{-1} W_{1}$ is similar to the symmetric matrix \tilde{W}_{1}

$$
\tilde{W}_{1}=D_{1}^{-1 / 2} W_{1} D_{1}^{-1 / 2}
$$

- We define the affinity between i and j as

$$
\left\|\tilde{W}_{1}^{2 t}(i, j)\right\|_{H S}^{2}=\frac{\operatorname{deg}(i)}{\operatorname{deg}(j)}\left\|\left(D_{1}^{-1} W_{1}\right)^{2 t}(i, j)\right\|_{H S}^{2}
$$

Embedding into a Hilbert Space

- Since \tilde{W}_{1} is symmetric, it has a complete set of eigenvectors $\left\{v_{l}\right\}_{l=1}^{\text {nd }}$ and eigenvalues $\left\{\lambda_{1}\right\}_{1=1}^{n d}$ (ordered as $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \ldots \geq\left|\lambda_{\text {nd }}\right|$).
- Spectral decompositions of \tilde{W}_{1} and $\tilde{W}_{1}^{2 t}$:

$$
\tilde{W}_{1}(i, j)=\sum_{l=1}^{n d} \lambda_{l} v_{l}(i) v_{l}(j)^{T}, \quad \text { and } \quad \tilde{W}_{1}^{2 t}(i, j)=\sum_{l=1}^{n d} \lambda_{l}^{2 t} v_{l}(i) v_{l}(j)^{T},
$$

where $v_{l}(i) \in \mathbb{R}^{d}$ for $i=1, \ldots, n$ and $I=1, \ldots, n d$.

- The HS norm of $\tilde{W}_{1}^{2 t}(i, j)$ is calculated using the trace:

$$
\left\|\tilde{W}_{1}^{2 t}(i, j)\right\|_{H S}^{2}=\sum_{l, r=1}^{n d}\left(\lambda_{l} \lambda_{r}\right)^{2 t}\left\langle v_{l}(i), v_{r}(i)\right\rangle\left\langle v_{l}(j), v_{r}(j)\right\rangle .
$$

- The affinity $\left\|\tilde{W}_{1}^{2 t}(i, j)\right\|_{H S}^{2}=\left\langle V_{t}(i), V_{t}(j)\right\rangle$ is an inner product for the finite dimensional Hilbert space $\mathbb{R}^{(n d)^{2}}$ via the mapping V_{t} :

$$
v_{t}: i \mapsto\left(\left(\lambda_{l} \lambda_{r}\right)^{t}\left\langle v_{l}(i), v_{r}(i)\right\rangle\right)_{l, r=1}^{n d} .
$$

Vector Diffusion Distance

- The vector diffusion mapping is defined as

$$
V_{t}: i \mapsto\left(\left(\lambda_{l} \lambda_{r}\right)^{t}\left\langle v_{l}(i), v_{r}(i)\right\rangle\right)_{l, r=1}^{n d} .
$$

- The vector diffusion distance between nodes i and j is denoted $d_{\mathrm{VDM}, t}(i, j)$ and is defined as

$$
d_{\mathrm{VDM}, t}^{2}(i, j)=\left\langle V_{t}(i), V_{t}(i)\right\rangle+\left\langle V_{t}(j), V_{t}(j)\right\rangle-2\left\langle V_{t}(i), V_{t}(j)\right\rangle
$$

- Other normalizations of the matrix W_{1} are possible and lead to slightly different embeddings and distances (similar to diffusion maps).
- The matrices $I-\tilde{W}_{1}$ and $I+\tilde{W}_{1}$ are positive semidefinite, because

$$
v^{T}\left(I \pm D_{1}^{-1 / 2} W_{1} D_{1}^{-1 / 2}\right) v=\sum_{(i, j) \in E}\left\|\frac{v(i)}{\sqrt{\operatorname{deg}(i)}} \pm \frac{w_{i j} O_{i j} v(j)}{\sqrt{\operatorname{deg}(j)}}\right\|^{2} \geq 0
$$

for any $v \in \mathbb{R}^{n d}$. Therefore, $\lambda_{l} \in[-1,1]$. As a result, the vector diffusion mapping and distances can be well approximated by using only the few largest eigenvalues and their corresponding eigenvectors.

Application to the class averaging problem in Cryo-EM (S, Zhao, Shkolnisky, Hadani 2011)

(a) Neighbors are identified using $d_{\text {RID }}$

(b) Neighbors are identified using $d_{V D M, t=2}$

Figure: $\mathrm{SNR}=1 / 64$: Histogram of the angles (x-axis, in degrees) between the viewing directions of each image (out of 40000) and it 40 neighboring images. Left: neighbors are identified using the original rotationally invariant distances $d_{\text {RID }}$. Right: neighbors are post identified using vector diffusion distances.

Computational Aspects

Zhao, S J. Struct. Biol. 2014

- Naïve implementation requires $O\left(n^{2}\right)$ rotational alignments of images
- Rotational invariant representation of images: "bispectrum"
- Dimensionality reduction using a randomized algorithm for PCA (Rokhlin, Liberty, Tygert, Martinsson, Halko, Tropp, Szlam, ...)
- Randomized approximated nearest neighbors search in nearly linear time (Jones, Osipov, Rokhlin 2011)

The Hairy Ball Theorem

- There is no non-vanishing continuous tangent vector field on the sphere.
- Cannot find O_{i} such that $O_{i j}=O_{i} O_{j}^{-1}$.
- No global rotational alignment of all images.

Let $\iota: \mathcal{M} \hookrightarrow \mathbb{R}^{p}$ be a smooth d-dim closed Riemannian manifold embedded in \mathbb{R}^{p}, with metric g induced from the canonical metric on \mathbb{R}^{p}, and the data set $\left\{x_{i}\right\}_{i=1, \ldots, n}$ is independently uniformly distributed over \mathcal{M}. Let $K \in C^{2}\left(\mathbb{R}^{+}\right)$be a positive kernel function decaying exponentially, that is, there exist $T>0$ and $C>0$ such that $K(t) \leq C e^{-t}$ when $t>T$. For $\epsilon>0$, let $K_{\epsilon}\left(x_{i}, x_{j}\right)=K\left(\frac{\left\|\iota\left(x_{i}\right)-\iota\left(x_{j}\right)\right\|_{\mathbb{R}^{p}}}{\sqrt{\epsilon}}\right)$. Then, for $X \in C^{3}(T \mathcal{M})$ and for all x_{i} almost surely we have

$$
\lim _{\epsilon \rightarrow 0} \lim _{n \rightarrow \infty} \frac{1}{\epsilon}\left[\frac{\sum_{j=1}^{n} K_{\epsilon}\left(x_{i}, x_{j}\right) O_{i j} X_{j}}{\sum_{j=1}^{n} K_{\epsilon}\left(x_{i}, x_{j}\right)}-X_{i}\right]=\frac{m_{2}}{2 d m_{0}}\left(\left\langle\iota_{*} \nabla^{2} X\left(x_{i}\right), e_{l}\right\rangle\right)_{l=1}^{d}
$$

where ∇^{2} is the connection Laplacian, $X_{i} \equiv\left(\left\langle\iota_{*} X\left(x_{i}\right), e_{l}\right\rangle\right)_{l=1}^{d} \in \mathbb{R}^{d}$ for all $i,\left\{e_{l}\left(x_{i}\right)\right\}_{I=1, \ldots, d}$ is an orthonormal basis of $\iota_{*} T_{x_{i}} \mathcal{M}$, $m_{l}=\int_{\mathbb{R}^{d}}\|x\|^{I} K(\|x\|) \mathrm{d} x$, and $O_{i j}$ is the optimal orthogonal transformation determined by the algorithm in the alignment step.

Example: Connection-Laplacian for S^{d} embedded in \mathbb{R}^{d+1}

The connection-Laplacian commutes with rotations and the eigenvalues and eigen-vector-fields are calculated using representation theory:

$$
\begin{aligned}
& S^{2}: 6,10,14, \ldots \\
& S^{3}: 4,6,9,16,16, \ldots \\
& S^{4}: 5,10,14, \ldots \\
& S^{5}: 6,15,20, \ldots
\end{aligned}
$$

(a) S^{2}

(b) S^{3}

(c) S^{4}

(d) S^{5}

Figure : Bar plots of the largest 30 eigenvalues of A_{1} for $n=8000$ points uniformly distributed over spheres of different dimensions.

Spectral graph theory with vector fields

- The Graph Connection Laplacian

$$
L_{1}=D_{1}-W_{1}
$$

- The Normalized Graph Connection Laplacian

$$
\mathcal{L}_{1}=I-D_{1}^{-1 / 2} W_{1} D^{-1 / 2}=I-\tilde{W}_{1}
$$

- Averaging operator / random walk matrix for vector diffusion:

$$
A_{1}=D_{1}^{-1} W_{1}
$$

- A Cheeger inequality for the graph connection Laplacian (Bandeira, S, Spielman SIAM Matrix Analysis 2013)

More applications of VDM: Orientability from a point cloud

Encode the information about reflections in a symmetric $n \times n$ matrix Z with entries

$$
Z_{i j}=\left\{\begin{array}{cl}
\operatorname{det} O_{i j} & (i, j) \in E \\
0 & (i, j) \notin E
\end{array}\right.
$$

That is, $Z_{i j}=1$ if no reflection is needed, $Z_{i j}=-1$ if a reflection is needed, and $Z_{i j}=0$ if the points are not nearby. Normalize Z by the node degrees.

(a) S^{2}
(b) Klein bottle

(c) $\mathbb{R} P^{2}$

Figure: Histogram of the values of the top eigenvector of $D_{0}^{-1} Z$.

Orientable Double Covering

Embedding obtained using the eigenvectors of the (normalized) matrix

$$
\left[\begin{array}{rr}
Z & -Z \\
-Z & Z
\end{array}\right]=\left(\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right) \otimes Z
$$

Figure: Left: the orientable double covering of $\mathbb{R} P(2)$, which is S^{2}; Middle: the orientable double covering of the Klein bottle, which is T^{2}; Right: the orientable double covering of the Möbius strip, which is a cylinder.

Registration and Ordering of Drosophila Embryogenesis Images

- Dsilva, Lim, Lu, S, Kevrekidis, Shvartsman, Development 2015

D)	0		0	0] 6	10	0	-			
Q	O]	Q	Q	30	d 6	0	0	0	Q	
00	0	0	08	0] 6	0	-	\square			
0]	0	0	$0{ }^{\circ}$	C ${ }^{(2)}$	O	C장	0	\cdots	0	

Registered and Ordered using VDM

Q	\square	0	-		-	Q	Q	๑	Q	,	-	
\bigcirc	.	\square	¢	Q	Q 0	6	\bigcirc		-		Q	
0	\square	\square	O	$)^{\circ}$	¢	L	-	CO	0	Q6	0	0
O	\bigcirc		$0_{0} 0$	C	\square	0	6		O			

References

- A. Singer, Z. Zhao, Y. Shkolnisky, R. Hadani, "Viewing Angle Classification of Cryo-Electron Microscopy Images using Eigenvectors", SIAM Journal on Imaging Sciences, 4 (2), pp. 723-759 (2011).
- A. Singer, H.-T. Wu, "Orientability and Diffusion Maps", Applied and Computational Harmonic Analysis, 31 (1), pp. 44-58 (2011).
- R. Hadani, A. Singer, "Representation theoretic patterns in three dimensional Cryo-Electron Microscopy II - The class averaging problem", Foundations of Computational Mathematics, 11 (5), pp. 589-616 (2011).
- A. Singer, H.-T. Wu, "Vector Diffusion Maps and the Connection Laplacian", Communications on Pure and Applied Mathematics, 65 (8), pp. 1067-1144 (2012).
- A. S. Bandeira, A. Singer, D. A. Spielman, "A Cheeger inequality for the graph connection Laplacian", SIAM Journal on Matrix Analysis and Applications, 34 (4), pp. 1611-1630 (2013).
- Z. Zhao, A. Singer, "Rotationally Invariant Image Representation for Viewing Direction Classification in Cryo-EM", Journal of Structural Biology, 186 (1), pp. 153-166 (2014).
- C. J. Dsilva, B. Lim, H. Lu, A. Singer, I. G. Kevrekidis, S. Y. Shvartsman, "Temporal ordering and registration of images in studies of developmental dynamics", Development, 142, 1717-1724 (2015).

