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Isentropic gas dynamics

Dimensionless conservation laws for mass and momentum:
Orp + div(pu) =0,

1
9¢(pu) +div(pu®u) + 6—2Vp(p) =0.

p = p(p) = pressure. et = \/P'(prer) = reference sound speed.

Uyef
¢ = —= = Mach number

Cref
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Zero Mach number limit

Asymptotic expansion (for general f(x, t;¢)):
F(x,t) = FO(x,t) +ef D (x, 1) +2FP (x, 1) . ..
gives to leading order

p=p0) +e2p@ (x, 1)
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Leading order equations

Constraints for p(® and v -u(©:

1
(V-u(o))(t)z@fuéz)ry-ndS(x)
o

%P(O)(t) =—p (1) (v-u®) (1)

Newton's law for u(®:

20 (fOu®) 4 5@ 5 - (u® g u®) + vp® = 0
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Incompressible equations

Assumption: zero net flux across the boundary.

Consequence: p(o) constant, u(® divergence free.

Incompressible Euler (Klainerman/Majda 1981)

0) 4 ,(0) . oy (0)
osut’ +u vu') + —— p(o)

=0

Elliptic constraint Ap®

PO)

v (u® . vu®) 0
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Challenge I: stiffness for small Mach number

Propagation speeds in direction n (u, =u-n, c =\/p'(p)):

C C
Up——, Up, Up+ —.
€ €

explicit schemes: inefficient (At = O(e Ax))

implicit schemes: excessively diffusive on advection wave

IMEX schemes: clever mix (Jin, Degond, ...)

Sebastian Noelle AP Stability Madison, May 2015

9/ 46



Challenge Il: asymptotic behavior as M — 0

Challenges:

Asymptotic consistency: for a sequence of well-prepared initial data, the
numerical scheme should follow the low Mach number asymptotics

Asymptotic stability: the CFL number should be independent of ¢
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L2 S
Admissible Splittings

Definition
A splitting

is admissible, if

(i) both A and A induce a hyperbolic system

X = p(A) = 0(1)
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L2 S
CFL Conditions

A
V= )\max—t full CFLnumber
Ax
~A
U= )\—t nonstiff CFL number
Ax
v=0(1) = 7=0() stable inefficient
v=0 (%) < 7v=0(1) unstable  efficient
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N

Flux-Splitting & IMEX Time-Discretization

Implicit-explicit discretization

Klein 1996
Degond, Tang 2011
Haack, Jin, Liu 2011

U™ =u" + AU+ AUT

Sebastian Noelle AP Stability Madison, May 2015 14 / 46



Plan of the Talk
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Plan of the talk

Noelle, Bispen, Arun, Lukacova, Munz SISC 2014
e splitting A unstable

Bispen, Arun, Lukacova, Noelle CiCP 2014
e splitting B stable

Schiitz, Noelle JSC 2014
e linear stability theory

Schiitz, Kaiser, Noelle, Zakerzadeh (submitted 2015)
o RS-IMEX splitting
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Euler equations

Ut+V'F(U)=0,
p pu”
U=|pul, F(U)=|puou+51],
pE (pE +p)u’”

Total energy pE and equation of state:

82
p= -1 (£ Sou).
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Splitting A (Klein 1995)

F(U) = F(U)+F(U),

where

0 ou”
F(U)y=| =p1 |, FWU)=|puou+pl].

52
(p-Mu” (pE+Mu’

Auxiliary pressure

N(x, 1) :=ep(x,t) + (1 - ) poo (),
Reference pressure
Pe(t) = inf p(x, t)

Sebastian Noelle AP Stability Madison, May 2015 19 / 46



Eigenvalues of subsystems

Eigenvalues of A:= F'(U)-n
_ 1— 2 1  pu 1/2
Too0 .17C ((v )(p-p ))
€ P
hyperbolicity. fast and slow waves. implicit timestep.

Eigenvalues of A:=F'(U)-n

—_

A= U, Uptc*

hyperbolicity. only slow waves. explicit timestep.
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Numerical experiment

e two colliding acoustic pulses (Klein 1995)
e weakly compressible

1 2
p(x,0) = po + 56’01 (1 - cos(%x)), po =0.955, p; =2.0,
1 2
u(x,0) = 5 Uo sign(x) (1 - cos(%x)), up = 2./7,

1 2mx
p(x,0) = po + §€p1 (1 —cos(T)), po =1.0, p1 =27.
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Stability for ¢ = 1/11

Pressure at t=0.815 Pressure at t=1.63
1.6 1
15 1.25
1.4 1.2]
1.3 1.15
a - a

1.2 11
11 1.05

1 1
0. -20 -10 0 10 20 O'QJ—ZO -10 0 10 20

X X

e two colliding pressure pulses
ec=1/11,7=09,1r=9.9
e stabilization constant cgap = 1/12
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Instability for £ = 0.01

difficulty:
@ instability for ¢ = 0.01
@ IMEX scheme needs reduced CFL number, 77 < 0.02

first fix:

@ high order pressure stabilization in elliptic equation

@ asymptotic consistency only for At = O(e2/3)
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Shallow water equations

Us+V-F(U)=5(U)

U-(m): FO =)= 522 (1) swr--2

with
b bottom topography
z water surface
h=z-b water height
u=(u,v) horizontal velocity
€= % Froude number
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Splitting B (Restelli, Giraldo 2009)

Linearize around z=0, u=0 (lake at rest):

F(U) = F(U)+F(U),
S(U)=5(U) +5(V),

where
h (0
For - ()4 (1) 5(U) - S()
0 2 (0
F(U):(hu®u)+§(l), S(U) =0
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Eigenvalues of subsystems

Eigenvalues of A:= F/(U)

hyperbolicity. fast and slow waves. implicit timestep.
Eigenvalues of A:=F'(U)-n

= 0, un, 2u,

hyperbolicity. only slow waves. explicit timestep.
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Numerical experiment

e compactly supported smooth vortex
e transported to the right

h(x,y,0) = 110 + ( ) (k(wr.) - k(7))
u(x,y,0)=0.6+T(1+cos(wr:))(0.5-y)
v(x,y,0) =T(1+cos(wre))(x—0.5)
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Bispen 2014
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e vortex, € = 0.8 (top) and € = 0.01 (bottom)
e Asymptotic Stability
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e-uniform convergence

Travelling Vortex, L!-errors and order of convergence in z

eps =0.8 eps =0.05 eps =0.01
error €0C error €ocC error €0C

20 | 7.16e-2 1.51e-3 1.35e-4
40 | 1.72e-2 2.05 | 3.07e-4 2.30 | 4.28e-5 1.65
80 | 3.68e-3 2.23 | 5.36e-b 251 | 6.37e-6 2.75
160 | 9.79e-4 191 | 1.51e-5 1.82 | 8.20e-7 2.96

e 7 =0.45, v =0.9,7.2,35.
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Linear Stability Theory

@ Linear Stability Theory
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Modified equation, cf. Warming/Hyett 1974

Theorem (Noelle, Schiitz 2014)
The modified equation of the IMEX scheme is

At
W + Awy = 7C Wi

with diffusion matrix

C:= (a+a)%| ~(A-A)(A+A)

and numerical viscosities @, &.

AP Stability Madison, May 2015 32 / 46



Linear Stability Theory

the crucial commutator

Is C positive definite?

C = ((@+a@)&1-A) + (AA-AA) + A2
= 0(1) + oY) + o(%)

Yes, if commutator [A,A] =0
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Linear Stability Theory

Example

Fourier stability analysis for prototype system

a 0
Azs%aal2
0 1 a

a > 0, eigenvalues

A=a,a+ —
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Linear Stability Theory

Euler: classical versus characteristic splitting

Allowable timestep sizes - A comparison

LR e 1 e L e e S RARLLL
10% )
10% .
A
107
107 5
—a— Splitting by Arun, Noelle...
—a—  Characteristic splitting
10774\””\ PRI VY e 73 s 3 e e Y
10® 10 10% 10 1072 107!
13

Comparison of classical versus characteristic splitting
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How to recover stability

o Need eg. _ _
AA-AA=0(1)
or

A=0(¢)

o Characteristic splitting is not possible in multi-D

@ We need a nice piece of luck!!
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RS-IMEX

© RS-IMEX
@ Modified equation
@ Van der Pol Equation
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Reference-Solution IMEX

Nonlinear hyperbolic system of balance laws

OrU(x,t;e)+V-F(U,x,t;e) =S(U,x,t;¢)
with

U:RYxR, x (0,1] > R™, (x,t;e) = U(x, t;¢)

e Challenge: Stiffness as ¢ > 0

e Goal: Asymptotic stability

Sebastian Noelle AP Stability Madison, May 2015 38 / 46



RS-IMEX

Reference solution and scaled perturbation: U = U+DV

U: RY x R, - R™, (x,t) +~ U(x,t)
V: RYxR, x(0,1] - R™, (x,t;e) +— U(x,t;e)

and
D = diag(c’, ... k)

Taylor expansion with remainder of F and S around U-

F=FU)+AU) DV+F(U,V)=D(G+G+G)

S=S(0)+S'VDV+5(U0,V)=D(Z+Z+2)
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RS-IMEX

Reference solution and scaled perturbation: U= U+ DV

U: RY x R, - R, (x,t) = U(x,t)
V: RYxR, x(0,1] —R™, (x,t;e) +— U(x,t;e)

and
D = diag(eh, ... ekm)

Taylor expansion with remainder of F and S around U:

F=F(U)+AU) DV +F(U,V)=D(G+G+G)

S=S(0)+S'VDV+5(U,V)=D(Z+Z+2)
———
RS+IM+EX
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RS-IMEX

Theorem (Modified equation for RS-IMEX (N. 2014))
BthZ—V'Bl+BQ+V-(B3'VW)
with
Bo ::/—E(?’—Z’),
2
7~ ~ At =1 ~IN(TI S A =~
Bri=G+G+—((C'-G)(Z'+2'- G- Gy)).
~ = At ~ =
B, ::Z+Z+7t(Zt—Zt),

_ (@+a)Ax
. 2

I+ %(E'_ &Y @ +E).

Study this for each application!
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RS-IMEX Van der Pol Equation
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van der Pol and IMEX (Schiitz, Kaiser 2015)

@ Prototype example
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van der Pol and IMEX

@ 'Reference solution’ (RS) ¢ — 0:

/
()]
0 g(¥(0) Z(0))
@ RS-IMEX splitting based on w(q:

f(W) = f(W(O)) + f,(W(O))(W - W(O)) + Rest

@ Motivation: w — w(q) = O(¢).
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RS-IMEX 4 Runge-Kutta

107 102 107 107 107 107 0 0 107
Size of &r Size of At Size of At

(Left to right) DPA-242, BHR-553, BPR-353. (Top to bottom) Standard / RS-IMEX

e IMEX Runge-Kutta (Pareschi, Russo, Boscarino ...)
@ standard splitting looses convergence order

@ RS-IMEX gives full order of accuracy
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Outlook

IMEX
@ Examples of uniform CFL stability and stability

@ Linearized stability analysis

RS-IMEX
@ A natural approach to stiff / non-stiff splitting
@ Improves stability of IMEX schemes

To do

Extend RS-IMEX to many more systems

Test stability and efficiency

Do rigorous stability analysis for modified equation

Higher order accuracy

Real life applications
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