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Abstract

Collective migration of animals in a cohesive group is rendered
possible by a strategic distribution of tasks among members:
some track the travel route, which is time and energy-consuming,
while the others follow the group by interacting among them-
selves. Here, we study a social dynamics system modeling col-
lective migration. We consider a group of agents able to align
their velocities to a global target velocity, or to follow the group
via interaction with the other agents. The balance between these
two attractive forces is our control for each agent, as we aim to
drive the group to consensus at the target velocity.

Model

Inspired by the Cucker-Smale model, we study:
ẋi = vi

v̇i = αi(V − vi) + (1− αi)
1

N

N∑
j=1

aij(vj − vi)

for i ∈ {1, ..., N}, where:
• xi and vi are the position and velocity of agent i.
• aij characterizes the influence of agent j on agent i. For

simplification purposes, aij = 1.
• V is the target velocity. WLOG, we set V = 0.
• αi is the control, choosing whether the i-th agent follows

the group (αi = 0), the target velocity (αi = 1), or com-
promises between the two (0 < αi < 1).

Projection of the dynamics

Notice that e = v̄/‖v̄‖ is constant and define wi = vi − 〈vi, e〉.
Then ẇi = −wi, i.e. wi cannot be controlled. Hence we define
ξi = 〈vi, e〉 and study the dynamics:

ξ̇i = −ξi + (1− αi)ξ̄, i ∈ {1, ..., N},

where ξ̄ = 1
N

∑
i ξi. We reduced an Nd-dimensional system to

an N-dimensional one. Here onward we assume:
1. v̄ 6= 0

2. ξ1(0) ≥ ξ2(0) ≥ · · · ≥ ξN (0)
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Minimization Objectives

V =
1

N

∑
i

ξ2i = ξ̄2

︸︷︷︸
Steers to target velocity

+
1

N

N∑
i=1

(ξi − ξ̄)2︸ ︷︷ ︸
Drives to consensus

Let T > 0. We aim to solve the following problems:
1. Instantaneous decrease: Minimize V̇(t) for all t ∈ [0, T ]

2. Final cost: Minimize V(T )

3. Integral cost: Minimize
∫ T
0

V(t)dt

for α ∈ U := {α : [0, T ]→ [0, 1]N measurable |
∑
i αi ≤ 1}.

Instantaneous Decrease

We compute: V̇ = −2V + 2
N
ξ̄
∑
i(1− αi)ξi . Then,

Find min
α

V̇⇔ Find min
α

∑
i

(1− αi)ξi.

Theorem 1 Let J(t) = {i ∈ {1, ..., N}|ξi(t) = maxj ξj(t)}.
Then

αi(t) :=

{
1/|J(t)|, i ∈ J(t)

0, i 6∈ J(t)

minimizes V̇ almost everywhere.
Remark 1 Similar results are obtained for

∑
i αi ≤M , M > 0.

Final Cost

We first solve the "full control" optimal control problem for α ∈ UF := {α : [0, T ]→ [0, 1]N measurable |
∑
i αi ≡ 1}. Then the optimal

control strategy is the same as for the instantaneous decrease.

Theorem 2 Full Control Strategy.

Let tl = N
N−1 ln

(
(l− 1)N−1

N

ξ̄1,l−1−ξl
ξ̄

(0) + 1

)
, l ∈ {1, ..., N},

where ξ̄1,l = 1
l

∑l
i=1 ξi.

If ∈ [tl, tl+1[, then any strategy satisfying:

• ξi(T ) = ξ̄1,l(T ) for i ∈ {1, ..., l} and
∑l
i=1 αi ≡ 1

• αi ≡ 0 for i ∈ {l + 1, ..., N}

is optimal in UF .
If T ≥ tN , then any strategy satisfying

• ξi(T ) = ξ̄(T ) for i ∈ {1, ..., N}

•
∑N
i=1 αi ≡ 1

is optimal in UF .
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Figure 1: Evolution of ξi, i ∈ {1, ..., 10} with the full strength
optimal control for a system of 10 agents, with t7 < T < t8.

Theorem 3 Sufficient condition for full control.
Let α ∈ U be an optimal control. Define tN as in Theorem 2. If T ≥ tN , then α ∈ UF and ξi(T ) = ξ̄(T ) for all i ∈ {1, ..., N}.

Theorem 4 Inactivation Principle.
If T < tN , then there exists some δ ∈ [0, T [ such that αopt ≡ 0 on [0, δ], and

∑
i α

opt
i ≡ 1 on [δ, T ].

Simulations for Final Cost

Figure 2: Vδ(T ) with respect to the inactivation time δ. Here the
optimal inactivation time is δopt = 1.94 > 0.

N 5 10 20 50
T=3 1.6 % 0.9 % 0% 0%
T=4 1.8 % 0.7 % 0.3 % 0%
T=5 1 % 0.2 % 0.2 % 0%
T=6 0.2 % 0.1 % 0% 0.1 %

Table 1: Number of cases in which δ > 0 out of 1000 simulations.
ξi(0) chosen randomly in [−1, 1].

N 5 10 20 50
T=3 0.073% 0.001% - -
T=4 0.27% 0.018% 0.001% -
T=5 0.91% 0.056% 0.0069% -
T=6 1.53% 0.2% - 0.00003 %

Table 2: Gain in performance compared to full strength control.

Integral Cost

Theorem 5 The optimal control strategies for the Integral Cost
problem requires using full-strength control, i.e. α ∈ UF . They
are the same strategies as described in Theorem 2.

Illustration
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Figure 3: Full-strength control of 5 agents to reach V = (1, 0).
Agents are represented in the velocity space, controlled ones in
red, uncontrolled ones in blue, and the mean velocity in black.

∀k ≤ l, ∀t ∈ [tk, tk+1[,

{
αi(t) = 1

k
if i ≤ k

αi(t) = 0 if i > k.

Conclusions and Future Directions

• Counter-intuitively, in order to minimize a final cost, it can be
beneficial to let the system evolve freely on some initial time
interval. However, the number of cases in which Inactivation
is advantageous is small, and even decreases as the number
of agents in the group increases (see Table 1). Furthermore,
the gain in performance compared to the strategy saturating
the control at all time is minor (Table 2). For reasons of
computational speed and complexity, it is very reasonable to
neglect this phenomenon and to act with full control at all
time.

• In the case of instantaneous decrease or integral cost, full
control must be used at all time.

• A future direction is to exert sparse control, i.e. aim to control
only a few agents spreading them optimally among the group.
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