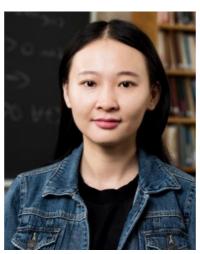
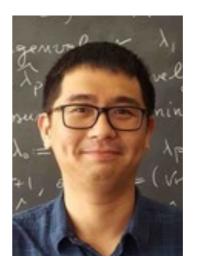
Learning Interaction kernels in agent-based systems

Mauro Maggioni

Joint work with Fei Lu, Sui Tang, Ming Zhong

Johns Hopkins University





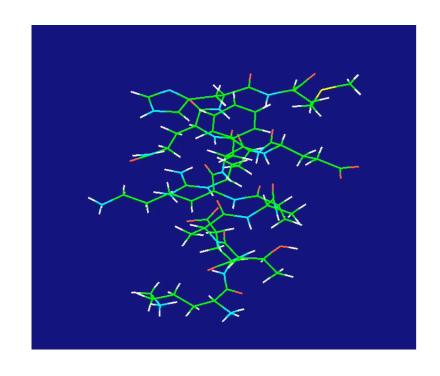
Ki-Net/Duke workshop on Dimension reduction in physical and data sciences

Machine Learning & Physical Systems

Many physical systems have very high-dimensional state spaces, are governed by a very large number of ODE's (or SDE's), which make them difficult to analyze. Homogenization, mean-field approximation, renormalization theory etc...are techniques to simplify such systems.

Physical systems with high-dimensional state spaces (e.g. many-particle systems) may exhibit behavior that is complex and high dimensional. Can Machine Learning help extract useful reductions?

Challenges for ML: learning principles that transfer across physical systems; incorporate existing physical knowledge or constraints.



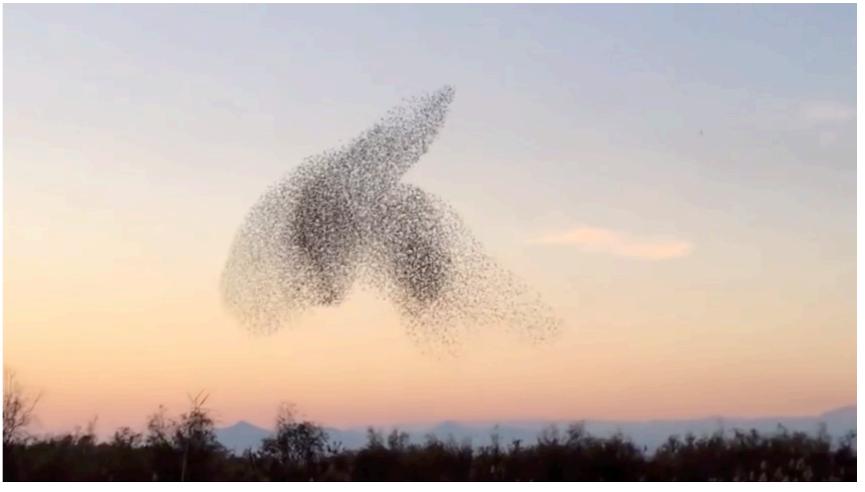
From https://www.youtube.com/watch?v=bb9ZTbYGRdc

Learning of Interaction Rules for agent-based systems

Given trajectories of dynamical system of interacting agents, learn the interaction rules. Applications: biological systems, particle systems.

Further goals: hypothesis testing for agent-based systems; transfer learning; agents on networks; collaborative and competitive games; learning dictionaries for complex dynamical systems.

Lots of recent interest in ML for learning ODE's and PDE's e.g. H. Shaeffer, N. Kutz, Y. Kevrekidis, R. Ward...



From https://www.youtube.com/watch?v=glhn7WmXWVY

From https://www.youtube.com/watch?v=bb9ZTbYGRdc

Learning of Interaction Rules for agent-based systems

Given observations of the positions of agents $\{\mathbf{x}_i\}_{i=1}^N$ at different times $\{t_l\}_{l=1}^L$ and/or for different initial conditions $\{\mathbf{x}^{(m)}(0)\}_{m=1}^M$, evolving for example according to

$$\dot{\mathbf{x}}_i = \frac{1}{N} \sum_{i'=1}^N \phi(||\mathbf{x}_i - \mathbf{x}_{i'}||)(\mathbf{x}_{i'} - \mathbf{x}_i)$$

we want to learn ϕ . Different limits: $N \to +\infty$ (mean-field limit, joint work with M. Fornasier and M. Bongini), $M \to +\infty$ (joint current work with F. Lu,

M. Zhong and S. Tang).

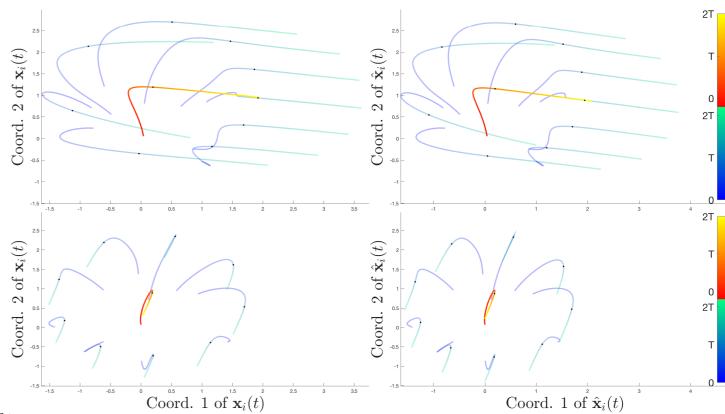
Interesting extensions to:

- higher-order systems,
- stochastic systems,
- agents of different types,
- varying environment.

• • •

Second-order prey-predator model.

Left: true trajectories; Right: trajectories with learned interactions.



The Mean-field limit

Rewriting

$$\dot{\mathbf{x}}_{i} = \frac{1}{N} \sum_{i'} \phi(||\mathbf{x}_{i} - \mathbf{x}_{i'}||) (\mathbf{x}_{i'} - \mathbf{x}_{i}) = \frac{1}{N} \sum_{i'} \frac{\Phi'(||\mathbf{x}_{i} - \mathbf{x}_{i'}||)}{||\mathbf{x}_{i} - \mathbf{x}_{i'}||} (\mathbf{x}_{i} - \mathbf{x}_{i'})$$

we see this is the gradient flow of the energy $\mathcal{J}_N(\mathbf{X}) = \frac{1}{2N} \sum_{i,i'=1}^N \Phi(||\mathbf{x}_i - \mathbf{x}_{i'}||)$.

Considering the measure $\mu^N(t) = \frac{1}{N} \sum_{i=1}^N \delta_{\mathbf{x}_i(t)}$, we may let $N \to +\infty$ to obtain (under suitable regularity assumptions on Φ) the mean field equations

$$\partial_t \mu(t) = -\nabla \cdot \left(\left(-\frac{\Phi'(||\cdot||)}{||\cdot||} * \mu(t) \right) \mu(t) \right) , \quad \mu(0) = \mu_0 .$$

This is also a gradient flow for the energy $\mathcal{J}(\mu) = \int_{\mathbb{R}^{d\times d}} \Phi(||\mathbf{x} - \mathbf{y}||) d\mu(\mathbf{x}) d\mu(\mathbf{y})$ on the space of probability measures with Wasserstein distance.

This was studied in *Inferring Interaction Rules from Observations of Evolutive Systems I: The Variational Approach*, M. Bongini, M. Fornasier, M. Hansen, and MM, M3S, 2017

Learning the Interaction Kernel

Observations: $\{(\mathbf{x}_i, \dot{\mathbf{x}}_i)^{(m)}(t_l)\}_{i=1, l=1, m=1}^{N, L, M}$, where $\mathbf{x}^{(m)}(0) \sim \mu_0$ for some μ_0 on \mathbb{R}^d . Note that each state of the system is in \mathbb{R}^{dN} .

All we want however is the one-dimensional interaction kernel ϕ in the equations

$$\dot{\mathbf{x}}_{i'}(t) = \frac{1}{N} \sum_{i'=1}^{N} \phi(\underbrace{||\mathbf{x}_{i'}(t) - \mathbf{x}_{i}(t)||}_{r_{ii'}(t)}) (\mathbf{x}_{i'}(t) - \mathbf{x}_{i}(t)).$$

Fix the time scale [0,T]. We introduce the measure on \mathbb{R}_+ defined by

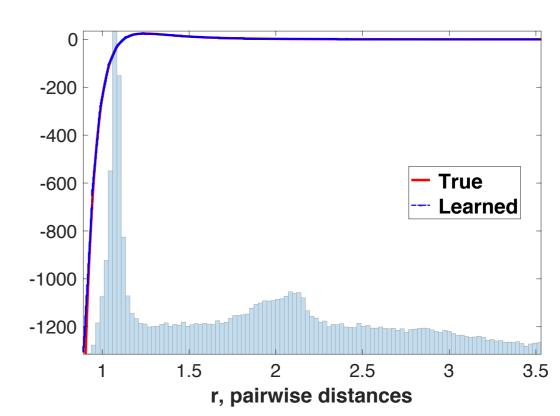
$$\rho_T^L(r) := \frac{1}{\binom{N}{2}L} \sum_{l=1}^L \mathbb{E}_{X(0) \sim \mu_0} \left[\sum_{i,i'=1,i < i'}^N \delta_{r_{ii'}(t_l)}(r) \right].$$

Example. The Lennard Jones force is the derivative of the potential

$$V_{LJ}(r) = 4\epsilon \left(\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right).$$

Right figure: In blue the LJ ϕ , superimposed to an empirical estimate of ρ_T^L ,

for a system of N=7 agents, and L,T small.



Example: L-J kernel and ρ_L^T

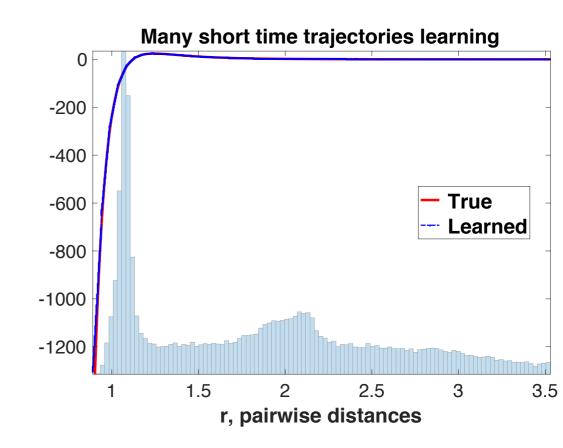
Example. The Lennard Jones force is the derivative of the potential

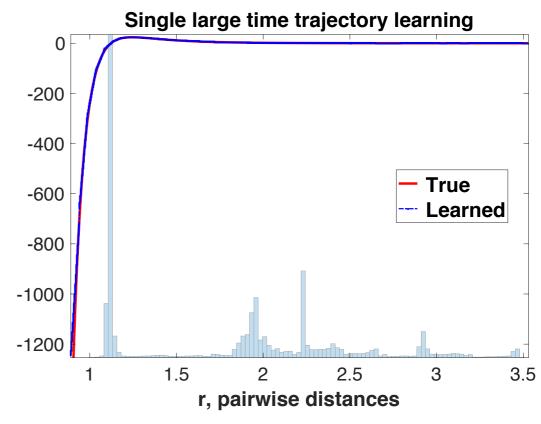
$$V_{LJ}(r) = 4\epsilon \left(\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right).$$

Right figure: In blue the LJ ϕ , superimposed to an empirical estimate of ρ_T^L , for a system of N=7 agents, and L,T small.

Example (cont'd). The measure ρ_T^L does depend on L and T.

With the same system as above, we consider here L and T large. ρ_T^L is much more concentrated, due to the system approaching equilibrium..





The estimator

Observations: $\{(\mathbf{x}_i, \dot{\mathbf{x}}_i)(t_l)\}_{l=1,l=1}^{N,L}$, for M different IC's, from

$$\dot{\mathbf{x}}_{i'}(t) = \frac{1}{N} \sum_{i'} \phi(||\mathbf{x}_{i'}(t) - \mathbf{x}_i(t)||)(\mathbf{x}_{i'}(t) - \mathbf{x}_i(t)) =: \mathbf{f}_{\phi}(\mathbf{x}_i(t)).$$

Consider the empirical error functional

$$\mathcal{E}_{L,M}(\varphi) := \frac{1}{LMN} \sum_{l,m,i=1}^{L,M,N} \left\| \dot{\mathbf{x}}_i^{(m)}(t_l) - \mathbf{f}_{\varphi}(\mathbf{x}_i^{(m)}(t_l)) \right\|^2.$$

Our estimator is defined as a minimizer of $\mathcal{E}_{L,M}$ over $\varphi \in \mathcal{H}$, a simple hypothesis space of functions on \mathbb{R}_+ , with dimension n (which will be chosen dependent on M):

$$\hat{\phi}_{L,M,\mathcal{H}} := \arg\min_{\varphi \in \mathcal{H}} \mathcal{E}_{L,M}(\varphi).$$

For \mathcal{H} linear subspace, this is a least squares problem (Gauss, Legendre); the subspace serves as a regularizer.

Coercivity condition

$$\mathcal{E}_{L,M}(\varphi) := \frac{1}{LMN} \sum_{l,m,i=1}^{L,M,N} \|\dot{\mathbf{x}}_i^{(m)}(t_l) - \mathbf{f}_{\varphi}(\mathbf{x}_i^{(m)}(t_l))\|^2,$$
$$\hat{\phi}_{L,M,\mathcal{H}} := \arg\min_{\varphi \in \mathcal{H}} \mathcal{E}_{L,M}(\varphi).$$

We shall assume that the unknown interaction kernel ϕ is in the admissible class $\mathcal{K}_{R,S} := \{ \varphi \in C^1(\mathbb{R}_+) : \operatorname{supp} \varphi \subset [0,R], \operatorname{sup}_{r \in [0,R]} |\varphi(r)| + |\varphi'(r)| \leq S \}.$

Coercivity condition: $\forall \varphi : \varphi(\cdot) \in L^2(\rho_T^L)$, for $c_L > 0$

$$c_L \|\varphi(\cdot)\cdot\|_{L^2(\rho_T^L)}^2 \le \frac{1}{NL} \sum_{l,i=1}^{L,N} \mathbb{E} \|\frac{1}{N} \sum_{i'=1}^{N} \varphi(r_{ii'}(t_l)) \mathbf{r}_{ii'}(t_l)\|^2.$$

Lemma. Coercivity \Longrightarrow unique minimizer of $\lim_{M\to+\infty} \mathcal{E}_{L,M}(\varphi)$ over $\varphi\in\mathcal{H}$

The coercivity constant c_L also controls the condition number of the least squares problem yielding $\hat{\phi}_{L,M,\mathcal{H}}$.

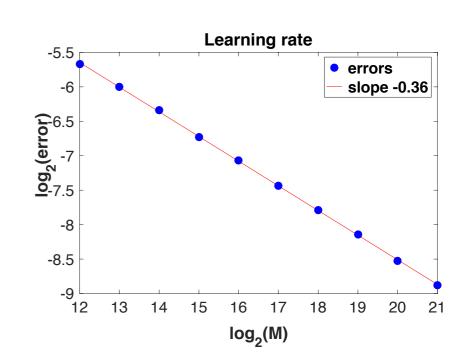
Main Theorem

Theorem. Let $\{\mathcal{H}_n\}_n$ be a sequence of subspaces of $L^{\infty}[0,R]$, with $\dim(\mathcal{H}_n) \leq c_0 n$ and $\inf_{\varphi \in \mathcal{H}_n} \|\varphi(\cdot) - \phi(\cdot)\|_{L^{\infty}([0,R])} \leq c_1 n^{-s}$, for some constants $c_0, c_1, s > 0$. It exists, for example, if ϕ is s-Hölder regular. Choose $n_* = (M/\log M)^{\frac{1}{2s+1}}$: then for some $C = C(c_0, c_1, R, S)$

$$\mathbb{E}[\|\widehat{\phi}_{L,M,\mathcal{H}_{n_*}}(\cdot)\cdot -\phi(\cdot)\cdot\|_{L^2(\rho_L^T)}] \le \frac{C}{c_L} \left(\frac{\log M}{M}\right)^{\frac{3}{2s+1}}.$$

- · The good: Rate in M is optimal, in fact even optimal in the case of regression, where we would be given $(r_m, \phi(r_m))_{m=1}^M$.
- · The bad: no dependency on L.

Example. The Lennard Jones kernel is *not* admissible, yet since particles rarely get very close to each other, we obtain a convergence rate close to optimal.



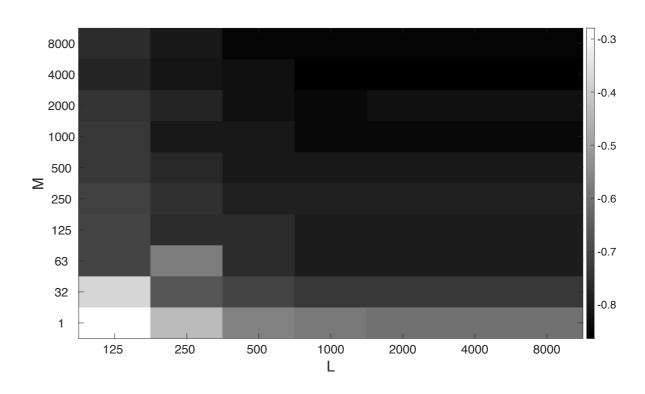
Main Theorem

Theorem. Let $\{\mathcal{H}_n\}_n$ be a sequence of subspaces of $L^{\infty}[0,R]$, with $\dim(\mathcal{H}_n) \leq c_0 n$ and $\inf_{\varphi \in \mathcal{H}_n} \|\varphi(\cdot) - \phi(\cdot)\|_{L^{\infty}([0,R])} \leq c_1 n^{-s}$, for some constants $c_0, c_1, s > 0$. It exists, for example, if ϕ is s-Hölder regular. Choose $n_* = (M/\log M)^{\frac{1}{2s+1}}$: then for some $C = C(c_0, c_1, R, S)$

$$\mathbb{E}[\|\widehat{\phi}_{L,M,\mathcal{H}_{n_*}}(\cdot)\cdot -\phi(\cdot)\cdot\|_{L^2(\rho_L^T)}] \leq \frac{C}{c_L} \left(\frac{\log M}{M}\right)^{\frac{s}{2s+1}}.$$

- · The good: Rate in M is optimal, in fact even optimal in the case of regression, where we would be given $(r_m, \phi(r_m))_{m=1}^M$.
- · The bad: no dependency on L.

Numerical results suggest that the effective sample size should scale linearly in L.



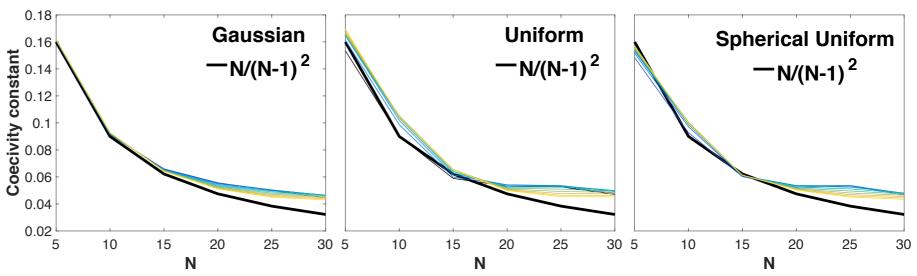
Main Theorem

Theorem. Let $\{\mathcal{H}_n\}_n$ be a sequence of subspaces of $L^{\infty}[0,R]$, with $\dim(\mathcal{H}_n) \leq$ $c_0 n$ and $\inf_{\varphi \in \mathcal{H}_n} \|\varphi(\cdot) - \phi(\cdot)\|_{L^{\infty}([0,R])} \le c_1 n^{-s}$, for some constants $c_0, c_1, s > 0$. It exists, for example, if ϕ is s-Hölder regular. Choose $n_* = (M/\log M)^{\frac{1}{2s+1}}$: then for some $C = C(c_0, c_1, R, S)$

$$\mathbb{E}[\|\widehat{\phi}_{L,M,\mathcal{H}_{n_*}}(\cdot)\cdot -\phi(\cdot)\cdot\|_{L^2(\rho_L^T)}] \le \frac{C}{c_L} \left(\frac{\log M}{M}\right)^{\frac{3}{2s+1}}.$$

 c_L can be as small as $\frac{N-1}{N^2}$, but in fact we conjecture that under some general conditions it is independent of N when evaluated on compact subspaces $\mathcal{H} \subset$ $L^2(\rho_T^L)$. We can prove this in special cases, for L=1 and μ_0 exchangeable

Gaussian.



Errors on trajectories

Proposition. Assume $\widehat{\phi}(\|\cdot\|) \in \text{Lip}(\mathbb{R}^d)$, with Lipschitz constant C_{Lip} . Let $\widehat{\mathbf{X}}(t)$ and $\mathbf{X}(t)$ be the solutions of systems with kernels $\widehat{\phi}$ and ϕ respectively, started from the same initial condition. Then for each trajectory

$$\sup_{t \in [0,T]} \lVert \hat{\mathbf{X}}(t) - \mathbf{X}(t) \rVert^2 \leq 2T e^{8T^2 C_{\mathrm{Lip}}^2} \int_0^T \!\! \left\lVert \dot{\mathbf{X}}(t) - \mathbf{f}_{\hat{\phi}}(\mathbf{X}(t)) \right\rVert^2 \!\! dt \,,$$

and on average w.r.t. the distribution μ_0 of initial conditions:

$$\mathbb{E}_{\mu_0} \left[\sup_{t \in [0,T]} \| \widehat{\mathbf{X}}(t) - \mathbf{X}(t) \| \right] \le C(T, C_{\text{Lip}}) \sqrt{N} \| \hat{\phi}(\cdot) \cdot - \phi(\cdot) \cdot \|_{L^2(\rho_T)},$$

where $C(T, C_{\text{Lip}})$ is a constant depending on T and C_{Lip} .

On the bias variance tradeoff

Theorem. Let the true kernel $\phi \in \mathcal{K}_{R,S}$, and let \mathcal{H} be a compact convex subset of $L^{\infty}([0,R])$, containing only functions bounded above by $S_0 \geq S$ a.e.. Assume that the coercivity condition. Then for any $\epsilon > 0$, the estimate

$$c_L \|\hat{\phi}_{L,M,\mathcal{H}}(\cdot) \cdot -\phi(\cdot) \cdot \|_{L^2(\rho_L^T)}^2 \le 2 \inf_{\varphi \in \mathcal{H}} \|\varphi(\cdot) \cdot -\phi(\cdot) \cdot \|_{L^{\infty}([0,R])}^2 + 2\epsilon$$

holds true with probability at least $1 - \delta$, provided that

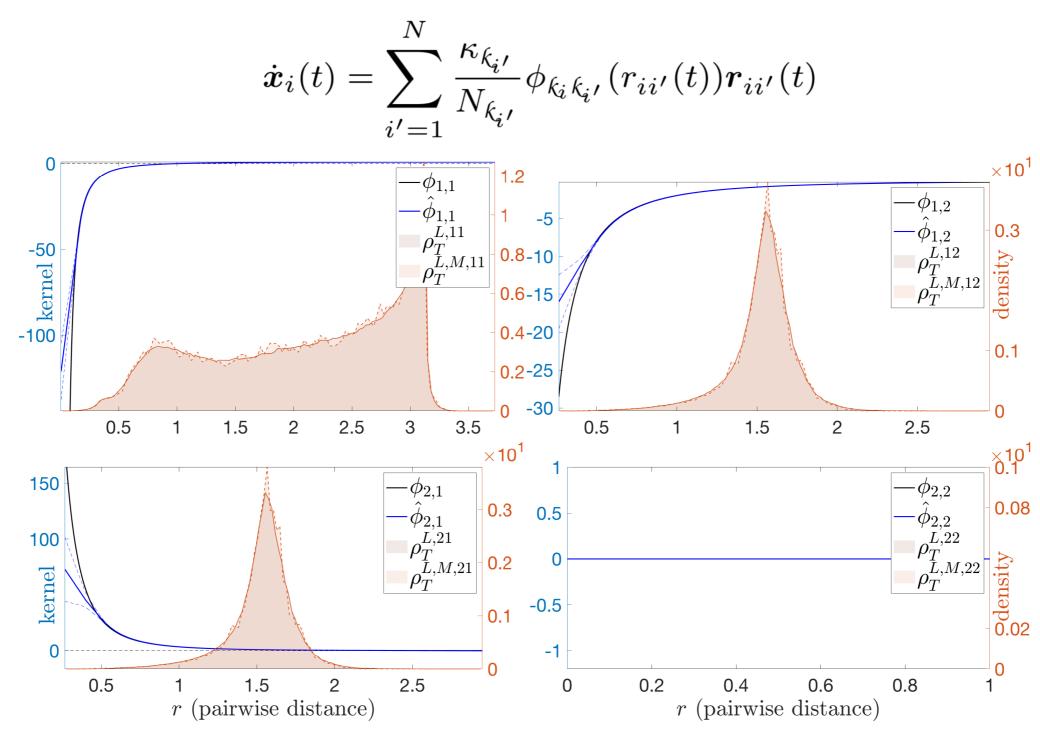
$$M \ge \frac{1152S_0^2R^2}{c_T\epsilon} \left(\log(\mathcal{N}(\mathcal{H}, \frac{\epsilon}{48S_0R^2})) + \log(\frac{1}{\delta}) \right),\,$$

where $\mathcal{N}(\mathcal{H}, \eta)$ is the η -covering number of \mathcal{H} under the ∞ -norm.

We want to chose the best finite-dimensional \mathcal{H} to minimize the error of the estimator. There are two competing issues. We want \mathcal{H} to be large so that the bias term above is small. But we also want \mathcal{H} to be small so that the covering number $\mathcal{N}(\mathcal{H}, \frac{\epsilon}{480R^2})$ to be small. A balanced choice leads to the main theorem.

Examples: multi-type agents

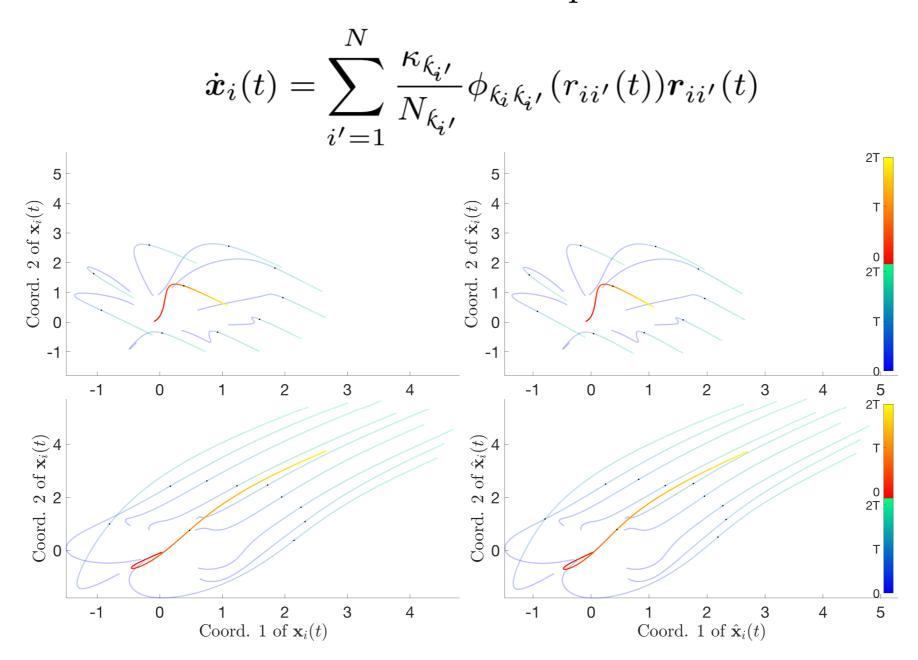
We may extend to first order agent systems with multiple types of agents, with different interaction kernels for each directed pair of interactions.



Example 1st order Prey-Predator system. The interaction kernels and ρ_L^T 's.

Examples: multi-type agents

We may extend to first order agent systems with multiple types of agents, with different interaction kernels for each directed pair of interactions.

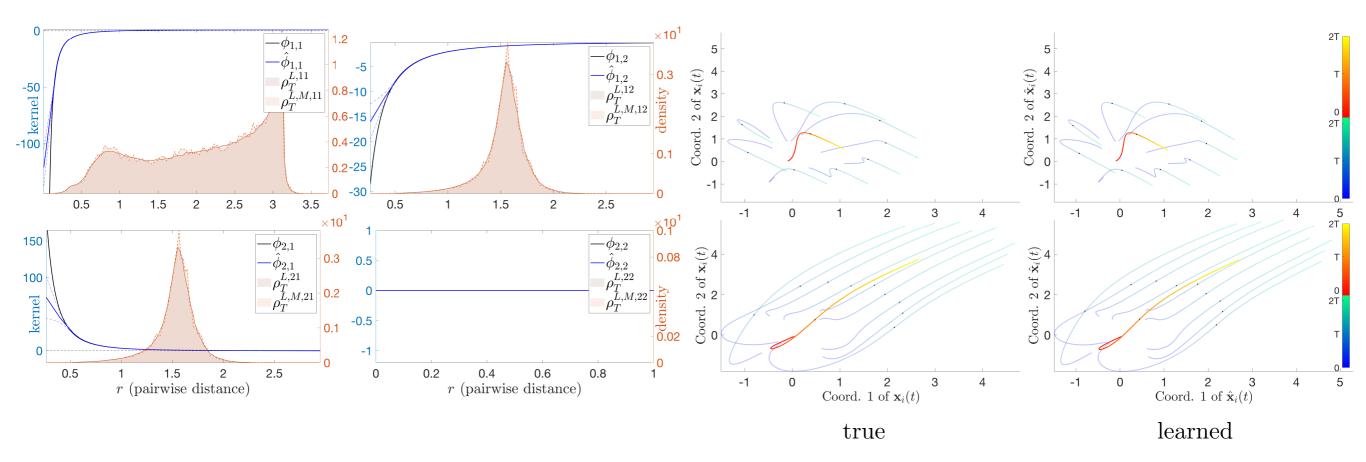


Example 1st order Prey-Predator system: trajectories of the true system (left col.) and learned system (right col.) with an initial condition from training data (top) and a new one (bottom).

Examples: multi-type agents

We may extend to first order agent systems with multiple types of agents, with different interaction kernels for each directed pair of interactions.

$$\dot{x}_{i}(t) = \sum_{i'=1}^{N} \frac{\kappa_{k_{i'}}}{N_{k_{i'}}} \phi_{k_{i}k_{i'}}(r_{ii'}(t)) r_{ii'}(t)$$

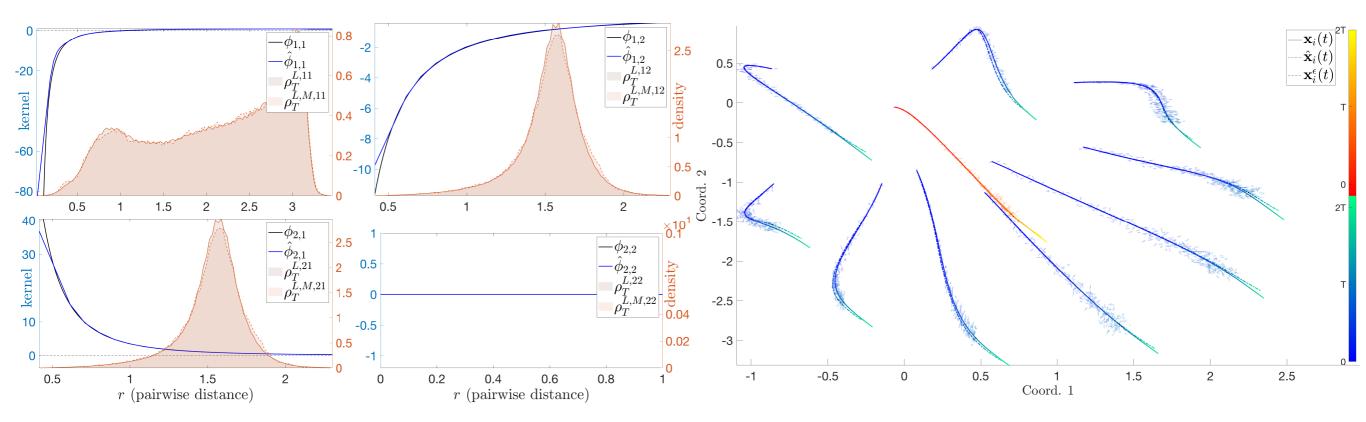


Example 1st order Prey-Predator system. Left: the interaction kernels and ρ_L^T 's. Right: trajectories of the true system (left col.) and learned system (right col.) with an initial condition from training data (top) and a new one (bottom).

Examples: multi-type agents + noise

We may extend to first order agent systems with multiple types of agents, with different interaction kernels for each directed pair of interactions.

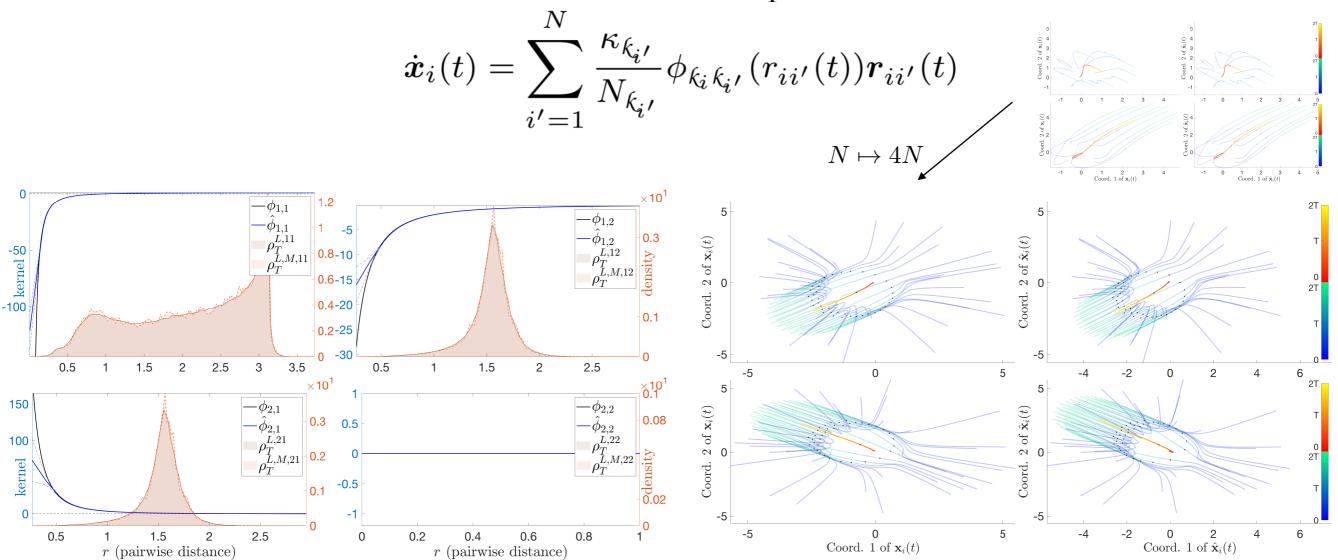
$$\dot{x}_{i}(t) = \sum_{i'=1}^{N} \frac{\kappa_{k_{i'}}}{N_{k_{i'}}} \phi_{k_{i}k_{i'}}(r_{ii'}(t)) r_{ii'}(t)$$



Example 1st order Prey-Predator system + noise: multiplicative noise $\sim \frac{1}{10} \text{Unif}[-\frac{1}{2}, \frac{1}{2}]$ is added to observed positions and velocities.

Examples: multi-type agents + scaling N

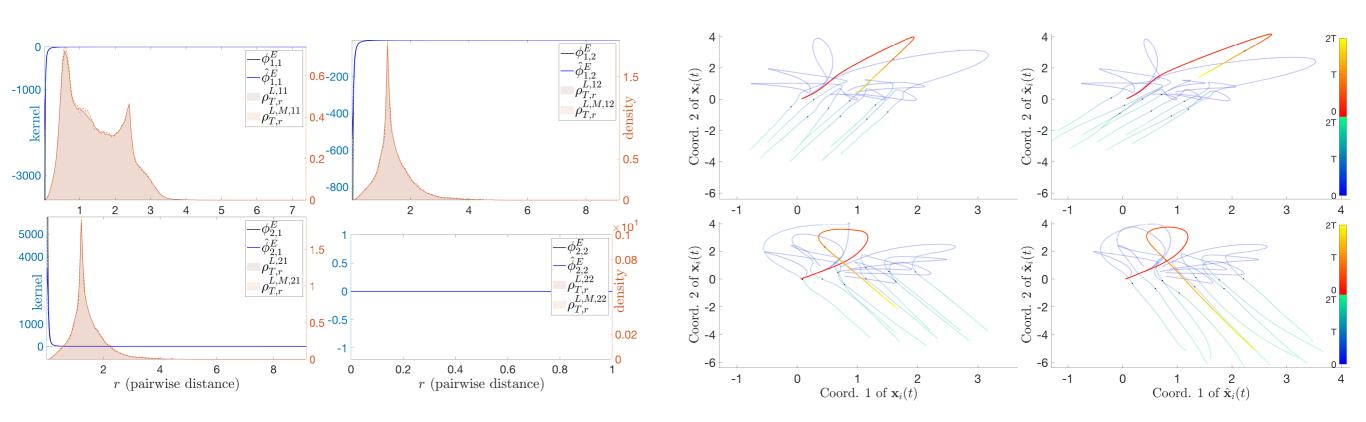
We may extend to first order agent systems with multiple types of agents, with different interaction kernels for each directed pair of interactions.



Example 1st order Prey-Predator system. Left: the interaction kernels and ρ_L^T 's. Right: trajectories of the true system (left col.) and learned system (right col.) with an initial condition from training data (top) and a new one (bottom).

Examples: 2nd order systems

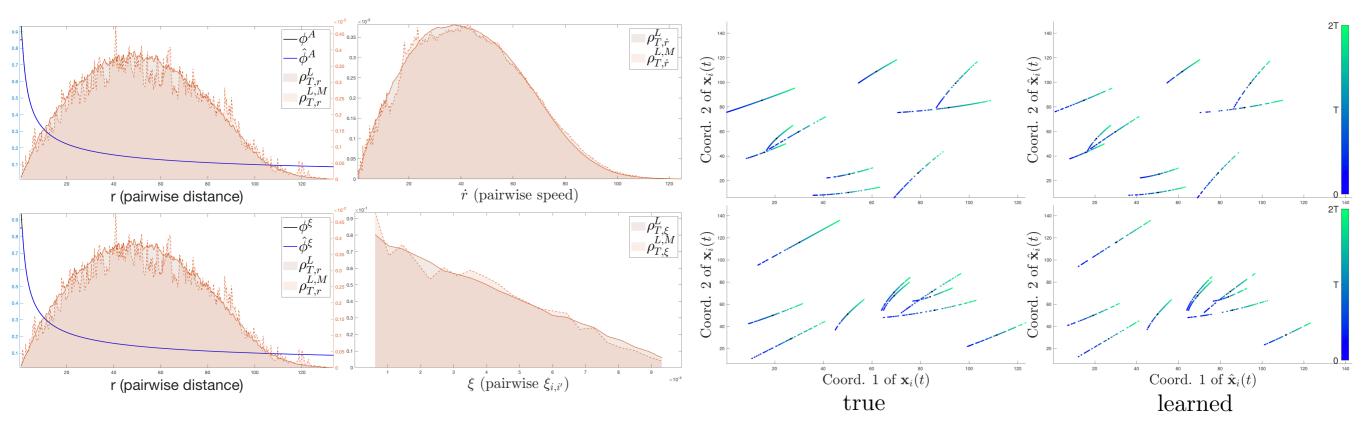
$$\begin{cases} m_{i} \ddot{\boldsymbol{x}}_{i} = F_{i}^{\boldsymbol{v}}(\dot{\boldsymbol{x}}_{i}, \xi_{i}) + \sum_{i'=1}^{N} \frac{\kappa_{\ell_{i'}}^{\boldsymbol{v}}}{N_{\ell_{i'}}} \left(\phi_{\ell_{i}\ell_{i'}}^{E}(r_{ii'}) \boldsymbol{r}_{ii'} + \phi_{\ell_{i}\ell_{i'}}^{A}(r_{ii'}) \dot{\boldsymbol{r}}_{ii'} \right) \\ \dot{\xi}_{i} = F_{i}^{\xi}(\xi_{i}) + \sum_{i'=1}^{N} \frac{\kappa_{\ell_{i'}}^{\xi}}{N_{\ell_{i'}}} \phi_{\ell_{i}\ell_{i'}}^{\xi}(r_{ii'}) \xi_{ii'} \end{cases}$$



Example 2nd order Prey-Predator system. Left: the interaction kernels and ρ_L^T 's. Right: trajectories of the true system (left col.) and learned system (right col.) with an initial condition from training data (top) and a new one (bottom).

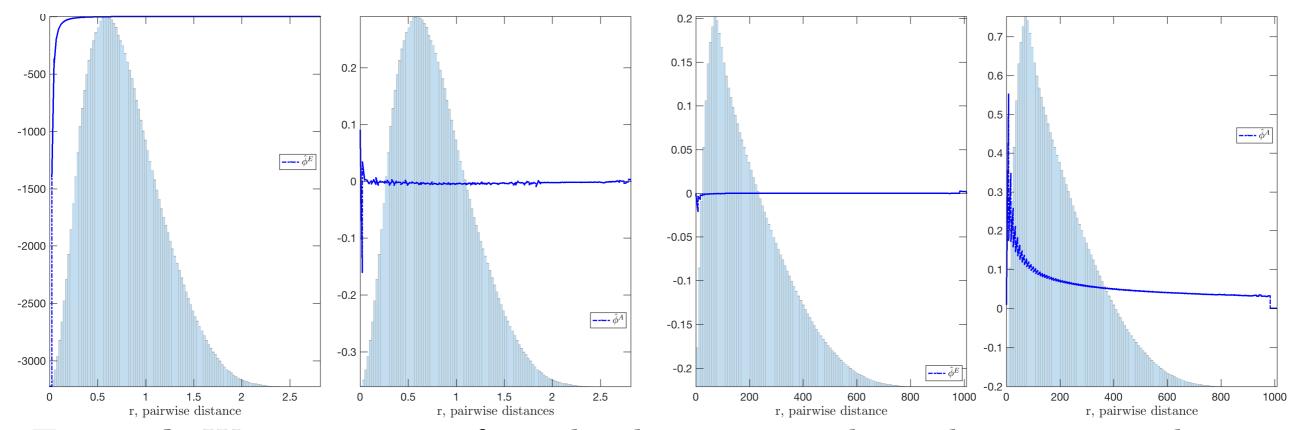
Example with environment (phototaxis)

$$\begin{cases} m_{i} \ddot{\boldsymbol{x}}_{i} = F_{i}^{\boldsymbol{v}}(\dot{\boldsymbol{x}}_{i}, \xi_{i}) + \sum_{i'=1}^{N} \frac{\kappa_{\ell_{i'}}^{\boldsymbol{v}}}{N_{\ell_{i'}}} \left(\phi_{\ell_{i} \ell_{i'}}^{E}(r_{ii'}) \boldsymbol{r}_{ii'} + \phi_{\ell_{i} \ell_{i'}}^{A}(r_{ii'}) \dot{\boldsymbol{r}}_{ii'} \right) \\ \dot{\xi}_{i} = F_{i}^{\xi}(\xi_{i}) + \sum_{i'=1}^{N} \frac{\kappa_{\ell_{i'}}^{\xi}}{N_{\ell_{i'}}} \phi_{\ell_{i} \ell_{i'}}^{\xi}(r_{ii'}) \xi_{ii'} \end{cases}$$



Example 2nd order Phototaxis model, which includes an environment modeling light, interacting with the agents. Left: the interaction kernels and ρ_L^T 's. Right: trajectories of the true system (left col.) and learned system (right col.) with an initial condition from training data (top) and a new one (bottom).

Testing hypotheses for agent systems



Example We want to test if a 2nd order system is driven by energy or alignment interactions. Left: we learn a general model (with both types of interaction) on a system with only energy interaction terms: we obtain $\hat{\phi}^A$ is ≈ 0 . Right: learning on a system with only alignment term yields $\hat{\phi}^E \approx 0$.

Example We want to test if a system is governed by 1st or 2nd order interac-

tions. We are able to tell the difference reliably, by testing the predictions of the learned models on trajectories.

True	Learned as 1^{st} order	Learned as 2^{nd} order
1^{st} order	0.039 \pm 0.16	28 ± 21
2^{nd} order	3.1 ± 0.99	$\textbf{0.58} \ \pm \textbf{0.89}$

Conclusions

- · Learning agent-based type system may be performed efficiently, nonparametrically, at least in special cases, notwithstanding the high-dimensional state space.
- · Important generalizations: 1st- and 2nd-order, multi-type; more general interaction kernels.
- · Hypothesis testing; transfer learning; dictionary learning for dynamical systems.
- · Many open problems. E.g.: quantifying information needed for learning; stochasticity; hidden variables; general interaction kernels; ...
- · Many applications: biological systems, particle systems, learning forces in molecular systems, ...

