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Machine Learning & Physical Systems

Many physical systems have very high-dimensional state spaces, are governed
by a very large number of ODE’s (or SDE’s), which make them difficult to
analyze. Homogenization, mean-field approximation, renormalization theory
etc...are techniques to simplify such systems.

Physical systems with high-dimensional state spaces (e.g. many-particle sys-
tems) may exhibit behavior that is complex and high dimensional. Can Machine
Learning help extract useful reductions?

Challenges for ML: learning principles that transfer across physical systems;
incorporate existing physical knowledge or constraints.

From https://www.youtube.com/watch?v=bb9ZTbYGRdc




[ earning of Interaction Rules
for agent-based systems

Given trajectories of dynamical system of interacting agents, learn the interac-
tion rules. Applications: biological systems, particle systems.

Further goals: hypothesis testing for agent-based systems; transfer learning;
agents on networks; collaborative and competitive games; learning dictionaries

for complex dynamical systems.

Lots of recent interest

in ML for learning

ODE’s and PDE’s i
e.g. H. Shaeffer, N. Kutz, g
Y. Kevrekidis, R. Ward...

Newton:

“That force by which
the moon is held back
in its orbit is that very

force which we
usually call ‘gravity’.”

From https://www.youtube.com/watch?v=bb9ZTbYGRdc

From https://www.youtube.com/watch?v=glhn7WmXWVY




[ earning of Interaction Rules
for agent-based systems

Given observations of the positions of agents {x;};*, at different times {t;},
and /or for different initial conditions {x(™ (0)}M_, evolving for example ac-
cording to

we want to learn ¢. Different limits: N — —+o0o (mean-field limit, joint work
with M. Fornasier and M. Bongini), M — +o0o (joint current work with F. Lu,
M. Zhong and S. Tang). b — . — §

Interesting extensions to: \ ' K
- higher-order systems, !
- stochastic systems, Lo r .,

Coord. 2 of x;(t)
{ /
Coord. 2 of %x;(t)

- agents of different types,
- varylng environment.
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Second-order prey-predator model.
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Left: true trajectories; Right: trajectories with learned interacuions.



The Mean-field limit .o

Rewriting

Z¢ HXZ—X@H ( /—XZ)—%qu(HXi_Ki,H)(Xi_xi')

—[|x —xu|]

we see this is the gradient flow of the energy Jny (X) = 5% ZZ =1 P(]xi —xir|]).

Considering the measure p” (t) = ~ 27],\;1 Ox,(t), We may let N — 400 to obtain
(under suitable regularity assumptions on ®) the mean field equations

Opp(t) = =V - ((— q)/‘(,u ”H) * u@)) u(t)) , w(0) = po -

This is also a gradient flow for the energy J(¢) = [paxa P(||x —y||)dp(x)du(y)
on the space of probability measures with Wasserstem distance.

This was studied in Inferring Interaction Rules from QObservations of Evolutive
Systems I: The Variational Approach, M. Bongini, M. Fornasier, M. Hansen,
and MM, M3S, 2017



[ earning the Interaction Kernel

Observations: {(x;,x;)™ (tl)}f\ii’lﬂi’m:l, where x("™)(0) ~ g for some py on

R9. Note that each state of the system is in RV,
All we want however is the one-dimensional interaction kernel ¢ in the equations

1 N

%o (1) = 3 6| xo () = xi(0)

7:/:1 WV

;i (t)

)(xi (1) = x:(t)) -

_J/

Fix the time scale [0, T]. We introduce the measure on R, defined by
L N
Pi%(r) = ﬁ Zl:l = x (0)~pio [Zz’,i’:l,i<i’ 57“7;7;/(&)(7“)}'

-
Example. The Lennard Jones force is the 200! [
derivative of the potential 00l
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VLJ(T) = 4e ((?) — (F) ) 600 — True
Right figure: In blue the LJ ¢, 800 earmed

superimposed to an empirical estimate of p%, 1000
for a system of N =7 agents, and L,T small. ,,
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r, pairwise distances



Example: L-J kernel and p7

Example. The Lennard Jones force is the
derivative of the potential

N\ 12 -\ 6
Vis(r) =4e(()"” - (2)°).
Right figure: In blue the LJ ¢,
superimposed to an empirical estimate of pk,

for a system of V = 7 agents, and L, T small.

Example (cont’d). The measure p% does
depend on L and 7'

With the same system as above,

we consider here L and 1T’ large.

p% is much more concentrated,

due to the system approaching equilibrium..
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Single large time trajectory learning
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The estimator

Observations: {(x;,x;)(t;) {IV:JI,l:p for M different IC’s, from

) = 3 0 (I (1) = xa(0)]) i (1) = x0)) = Folo1).

Consider the empirical error functional

L.M,N
1 ; ) (m -
Er.m(p) = T MN Z HXE )(tl)_fw(xfg )(tl))

l,m,i=1

I

Our estimator is defined as a minimizer of €7, 3 over ¢ € H, a simple hypothesis
space of functions on R, , with dimension n (which will be chosen dependent on
M):

; = in & .
L. M. arg min LM ()

For H linear subspace, this is a least squares problem (Gauss, Legendre); the
subspace serves as a regularizer.



Coercivity condition

1 "R L) (m) 2
ELu(p) = 5= > 15" (1) — £.™ (0))][",
[, m,1=1

; = n & .
OL M. arg min LM ()

We shall assume that the unknown interaction kernel ¢ is in the admissible class
Kr,s :={p € C'(Ry) : suppy C [0, R],sup,¢q g lo(r)| + |¢'(r)] < S}.
Coercivity condition: Vo : ¢(-)- € L?(p%), for ¢f > 0

| L,N ;o ,
enllo() gy = 777 22 Bll g 2 ol me )]

[,i=1

Lemma. Coercivity = unique minimizer of limp;_, 1. £ () over ¢ € H

The coercivity constant c¢;, also controls the condition number of the least
squares problem yielding ¢r, ar.4.



Main Theorem

Theorem. Let {#, },, be a sequence of subspaces of L>°[0, R], with dim(H,,) <
con and inf ey, |@(-) — @(-)|| Lo (jo,r)) < c1n™?, for some constants co, c1,5 > 0.

It exists, for example, if ¢ is s-Holder regular. Choose n, = (M/log M )Tlﬂ
then for some C = C(cg, c1, R, S)

- C (log M F+
S I — <) - 20,7y < .
Elll¢r,amm,, () - —=0C) - [l 2(om)] < ¢/ ( M )

- The good: Rate in M is optimal, in fact even optimal in the case of

regression, where we would be given (r,,, ¢(r,))M_,.

- The bad: no dependency on L.

Learning rate

5-5‘\ ® e‘rrors‘

-6 - [ ] \ — slope -0.36
Example. The Lennard Jones kernel 5o .
. . . . . 2.7 °
i1s not admissible, yet since particles rarely g .
get very close to each other, we obtain a 5 Y
convergence rate close to optimal. 5/ ~J

-9 w w w w w w w w
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log,(M)



Main Theorem

Theorem. Let {#, },, be a sequence of subspaces of L>°[0, R], with dim(H,,) <
con and inf ey, |@(-) — @(-)|| Lo (jo,r)) < c1n™?, for some constants co, c1,5 > 0.

It exists, for example, if ¢ is s-Holder regular. Choose n, = (M/log M )Tlﬂ

then for some C = C(cg, c1, R, S)

- C (log M F+
) —o(-) - 20,7V < — .
Elll¢r,mm,, () - =0C) - | 2(omy] < ¢/ ( M )

- The good: Rate in M is optimal, in fact even optimal in the case of
regression, where we would be given (r,,, ¢(r,,))M
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Main Theorem

Theorem. Let {#, },, be a sequence of subspaces of L>°[0, R], with dim(H,,) <
con and inf ey, |@(-) — @(-)|| Lo (jo,r)) < c1n™?, for some constants co, c1,5 > 0.

It exists, for example, if ¢ is s-Holder regular. Choose n, = (M/log M )Tlﬂ
then for some C = C(cg, c1, R, S)

N C looc M 5501
Elllor, ., (1) —¢() HLQ(pL)] ( b ) :

CrL, M

cr, can be as small as NN2 , but in fact we conjecture that under some general

conditions it is independent of N when evaluated on compact subspaces H C
L?(p%). We can prove this in special cases, for L = 1 and g exchangeable

GaU.SSiaIl. 0.18 ‘ ‘ ‘ - —— ‘ ‘ ‘ ‘
0.16 Gaussian Uniform K Spherical Uniform
0.14| —N/(N-1)* | —N/(N-1)° —N/(N-1)?

0.127

0.08

Coecivity constant
o

o
o
o)

0.04 ¢
0.02




Errors on trajectories

Proposition. Assume &(|| - ||)- € Lip(R%), with Lipschitz constant Crip. Let

X (t) and X(t) be the solutions of systems with kernels ¢ and ¢ respectively,
started from the same initial condition. Then for each trajectory

. on (. 2
sup [|X(t) — X(1)||* < 2T C/ HX(t) - fq;(X(t))H dt
te[0,T] 0

and on average w.r.t. the distribution pg of initial conditions:

E,[ sup [X(t) —X(®)[] < C(T, Crip)VN|o(-) - —=6() - | 22(p) -

te[0,T]

where C(T, CLip) is a constant depending on 7" and Ctip,.



On the bias variance tradeoft

Theorem. Let the true kernel ¢ € Kr, g, and let H be a compact convex subset
of L*°(]0, R]), containing only functions bounded above by Sy > S a.e.. Assume
that the coercivity condition. Then for any € > 0, the estimate

crll@n () - —o() - 172y <2 inf () =6() - 11 (o.m)) T 2€
(pL) SOEH

holds true with probability at least 1 — 9, provided that

> HO2508 o N, —)) +log (L))

M
CT€E 7 4850R2 )

where N (H,n) is the n-covering number of H under the co-norm.

We want to chose the best finite-dimensional H to minimize the error of the
estimator. There are two competing issues. We want H to be large so that the
bias term above is small. But we also want H to be small so that the covering

number N (H, 480€R2) to be small. A balanced choice leads to the main theorem.




Examples: multi-type agents

We may extend to first order agent systems with multiple types of agents, with
different interaction kernels for each directed pair of interactions.

N
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Example 1st order Prey-Predator system. The interaction kernels and p7 ’s.



Examples: multi-type agents

We may extend to first order agent systems with multiple types of agents, with
different interaction kernels for each directed pair of interactions.
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Example 1st order Prey-Predator system: trajectories of the true system (left
col.) and learned system (right col.) with an initial condition from training
data (top) and a new one (bottom).



Examples: multi-type agents

We may extend to first order agent systems with multiple types of agents, with
different interaction kernels for each directed pair of interactions.
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Example 1st order Prey-Predator system. Left: the interaction kernels and
p1’s. Right: trajectories of the true system (left col.) and learned system (right
col.) with an initial condition from training data (top) and a new one (bottom).



Examples: multi-type agents + noise

We may extend to first order agent systems with multiple types of agents, with
different interaction kernels for each directed pair of interactions.

Dk, (T3 (£)) 73550 (1)
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Example 1st order Prey-Predator system 4 noise: multiplicative noise ~

1—10Unif [—%, %] is added to observed positions and velocities.



Examples: multi-type agents + scaling N

We may extend to first order agent systems with multiple types of agents, with
different interaction kernels for each directed pair of interactions.
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Example 1st order Prey-Predator system. Left: the interaction kernels and
p1’s. Right: trajectories of the true system (left col.) and learned system (right
col.) with an initial condition from training data (top) and a new one (bottom).



Examples 2Nd order systems
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Example 2nd order Prey-Predator system. Left: the interaction kernels and
pi’s. Right: trajectories of the true system (left col.) and learned system (right
col.) with an initial condition from training data (top) and a new one (bottom).



Example with environment (phototaxis)

80

Coord. 1 of x;(t)
true

¢ (pairwise & ;)

r (pairwise distance)

N
( oo A K;,ZL/ FE A .
m;xr; = F?, (CL‘,L', fz) —|— Z N (¢kzk1/ (Tii’)rii’ + Qbkzkt, (’rii/)'rii/)
=1 N
< N 3
: 3 Mk e
&= FL (&) + ) e, (rav )
\ ’L,:l k‘i,
- 2T
s - 2 P
& e S .
T o Ry
T — T 0
- T Y Ao T
S P ) Sh -

" Coord. 1of %i(t)
learned

Example 2nd order Phototaxis model, which includes an environment modeling
light, interacting with the agents. Left: the interaction kernels and p7’s. Right:
trajectories of the true system (left col.) and learned system (right col.) with
an initial condition from training data (top) and a new one (bottom).



lesting hypotheses for agent systems
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Example We want to test it a 2nd order system is driven by energy or alignment
interactions. Left: we learn a general model (with both types of interaction)

on a system with only energy interaction terms: we obtain QASA s =
learning on a system with only alignment term yields ¢

E%O

0. Right:

Example We want to test if a system is governed by 1st or 2nd order interac-

tions. We are able to tell the
difference reliably, by testing
the predictions of the learned
models on trajectories.

True Learned as 1°t order | Learned as 2"< order
15t order 0.039 + 0.16 28 + 21
2md order 3.1 +0.99 0.58 + 0.89




Conclusions

- Learning agent-based type system may be performed efficiently, nonpara-
metrically, at least in special cases, notwithstanding the high-dimensional
state space.

- Important generalizations: 1st- and 2nd-order, multi-type; more general
interaction kernels.

- Hypothesis testing; transter learning; dictionary learning for dynamical
systems.

- Many open problems. E.g.: quantifying information needed for learning;
stochasticity; hidden variables; general interaction kernels; ...

- Many applications: biological systems, particle systems, learning forces in
molecular systems, ...

Nonparametric inference of interaction laws in systems of agents from trajectory data, F. Lu, S. Tang, M. Zhong, MM



