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Collective behavior

e Collective behavior: complex pattern in an animal group
emerging from simple rules based on local interactions

e Good for: protection from predation, mating, foraging...
e Bad for: competition for resources, jamming...
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Bats

e Suborder Microchiroptera
e Use echolocation

e Live in colonies

e Many insectivorous species

(Chiroptera plate from Ernst Haeckel’s

http://www.tripadvisor.com/Attraction_ Review-g30196-d106 Kunstformen der Natur, 1904)
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Bat echolocation strategies
* Frequency modulation

— N. Ulanovsky et al., 2004. “Dynamics of jamming avoidance in echolocating
bats.” Proc of the Royal Society of London B 271(1547), pp. 1467-1475

— M. E. Bates et al., 2008. “Jamming avoidance response of big brown bats in
target detection.” Journal of Experimental Biology 211(1), p. 106-113

e Vocalization cessation
— C. Chiu, W. Xian, and C. F. Moss, 2008. “Flying in silence: Echolocating bats

cease vocalizing to avoid sonar jamming.” PNAS 105(35), pp. 13116-13121

e Offensive jamming for hunting

— A.J. Corcoran and W. E. Conner, 2014. “Bats jamming bats: Food
competition through sonar interference.” Science 346(6210), pp. 745-747
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Long term goals

Long-term goal: Develop a multi-agent system with active sensors
capable of strategically coupled communication and sensing
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Applications:
Cooperative sensing in
vehicle teams, animal-
robot interactions




This talk

1. Feasibility of a bat-inspired network that can
“passively” collaborate to avoid collisions:

— Agent-based model and simulation

2. Two aspects of the future robotic bat swarm:
— Experimental setup for capturing data from wild bat swarms
— Network-based modeling to design interactions

3. Where we go next: robots!



Feasibility study: Agent-based model of
collision avoidance

e Bats are self-propelled particles with constant speed
e 3D duct with periodic boundaries and discrete time
e Collision avoidance using conical sensing space, echoes from

boundary and other bats /

x;: bat i’s position vector
v;: bat i’s velocity vector
N: number of bats

Xi
Y / / 1.: sensing range
| , Y

¢: angular sensing range




Modeling (1)

Position update:  x;(t + At) = x;(t) + v;(t + At)At,
(=1,2,...,N

Velocity update :
ZjeE e; (t) N ZjeE' é}(t)
[Ejer Ol |2, 50|

a, 5, y: weighting parameters

e: position of echoes bat i’s senses as too close using its own
echolocation pulse (set of these echoes is E)

e: position of echoes bat i’s senses as too close using peers’
echolocation pulse (set of these echoes is E)

0: unit vector in the positive y direction

w: random vector with Gaussian distribution for length, uniform
for direction

v;(t + At) = av;(t) — B

+y0+ w



Modeling (2)

Eavesdropping:

e Echoes perceived from own
echolocation pulse give true
position of echo’s center

e Echoes received from peers

perturbed by Gaussian noise O @
Xi €;

Ceasing echolocation:

e Chiu et al., 2008. “Flying in silence: echolocating bats cease
vocalizing to avoid sonar jamming”. PNAS, 105(35), p. 13116

e Probability to cease emitting echolocating pulses and only use
peers’ echoes passively

- p = 0: Never emit pulse at time step after hearing peers’ echoes
- p = 1: Always emit pulses regardless of prior information



Model flowchart

Emit a pulse?
(Bernoulli
random variable)

Yes

No

A 4

by

Use self echoes to obtain
exact obstacle locations

Eavesdrop peers’ echoes and
pulses to obtain perturbed
obstacle locations

Perform velocity update to avoid obstacles whose
exact or perturbed locations are in the repulsion zone

:

Perform position update
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Metrics

e Mean number of collisions over sim, individuals: ¢

— May be compared to collisions for sim with no eavesdropping: ¢’

e Balance between collisions and energy use:

S1 =.c+ a;Np
Mean number of
Number of collisions echolocation pulses
averaged over time over group, ~ sensing
and individuals energy, jamming, etc.

Weight to balance
orders of magnitude
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Simulations

Parameter values inspired

by big brown bats, Eptesicus

fuscus

Ten replicates with each

replicate as 3000 time steps =1
Domain dimensions: 20m x
5m x 5m 2
Bat sensing geometry Lol
7s=5m, ¢=60°
Group sizes: N = RN

{5, 10, 20, 50, 100} b

Measurement noise: n,; =
[1073,10°]

Emission probabilities: p =
{0,0.01,0.02,0.05,0.1,0.2,0.5,1}
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Simulation results: Collisions

e Small measurement noise > no eavesdropping
e Collisions increase as N increases, p decreases

0 p =05 logio(c) Ng =0
>y = 0 I :
- Jd =0.1 -1
Sna =1
Ong =2
na = 10
N4 = +0C _
10 '1==-No eavedropping :

Lo




Simulation results: Cost

e p corresponding to minimum cost decreases as N

Increases logio(s1)
e Bigidea: -
— Small measurement
noise -> avoid collisions
better by eavesdropping

0.8

0.60
than not N N
— Total energy can be w
saved and potential o S
. . . "—/
jamming avoided by A A
. 0.2¢ A*/'fq' 48
echolocating less o a5
AR , ~1.6
0 ' -1.6 ‘4‘4
1 2
10 10

N
There are cases when communicating over sensing

channels may be advantageous
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This talk

1. Feasibility of a bat-inspired network that can
“passively” collaborate to avoid collisions:

— Agent-based model and simulation

2. Two aspects of the future robotic bat swarm:

— Experimental setup for capturing data from wild bat
swarms

— Network-based modeling to design interactions

3. Where we go next: robots!

15



Experiments with wild bat swarms in
Shandong Province, China
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e, Research question: is
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Field equipment

Video system Audio system

6 GoPro cameras
modified to have IR-
sensitive lenses

e 15I(R illuminators

e Tablet with WIFI 17



Experimental setup




Video data




Data analysis

Measure intrinsic camera parameters, input into calibration code

Extract extrinsic camera parameters from calibration code with
laser pointer test

Track bat positions in all 6 camera views

Compute 3D bat position using a least squares minimization
scheme

Frame: 54484

20



Transfer entropy analysis

e Possible variables of interest: curvature of flight path,
speed,...

e [nformation theoretic approach: Transfer entropy
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This talk

1. Feasibility of a bat-inspired network that can
“passively” collaborate to avoid collisions:

— Agent-based model and simulation

2. Two aspects of the future robotic bat swarm:

— Experimental setup for capturing data from wild bat
swarms

— Network-based modeling to design interactions

3. Where we go next: robots!
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Coordination in bat swarms

For example:

e Coordinated
flight

 Nightly
emergence
timing

e Roost selection

http://www.tripadvisor.com/Attraction_Review-g30196-d106309-Reviews-
Congress_Avenue Bridge Austin Bats-AustinTexas:html
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Consensus protocols

Consensus protocols are distributed algorithms executed by a
group of agents interacting to agree on common quantity of
interest

A discrete-time protocol for N agents can be written as the linear
system:

x(k+1) =W(k)x(k)

From conspecific

with /agents

e W(k)1ly = 1y forall k and typically use [W (k) = Iy — €L (k)
o x(k) € RY is the state vector
e k > 0isthetimeindex
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Background on networks

Networks can be described equivalently as graphs and matrices

e \erticesi=1,..,N

e Directed edge e=(j, j) denotesjis a
neighbor of j

e QOut- and in-degree of a vertex

Directed network with N=3 and

e Characteristic matrices: L=D-A edges (1,2), (1,3), and (3,2)

Degree matrix Adjacency matrix Laplacian matrix
2 0 0] 0 1 1] 2 -1 -1
D=10 0 0 A=|0 0 0] L=(0 0 O
00 1 010 0 -1 1
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Conspecific model

Homogeneous individuals from Abaid, Igel, and Porfiri 2012
Draw traits from bivariate distribution: 9p,£(d,€)
Random variable D quantifies the cardinality of neighbor set

Random variable £ quantifies each agents’ averaging weight or
“stubbornness”

di,d2, and ds are realizations of D
€1, €2, and €3 are realizations of £
Weighted Laplacian matrix: M = diag(|eq, €4, €3])L

di =0

€2

d2=2 A €3

d3=1 26



Modeling eavesdropping versus jamming:
Collaborative and antagonistic interactions

e Collaborative pdf: 9p,,6,(d1,€1)

e Antagonistic pdf: 9p.,e,(d2,€2)
o M(k) = M1 (k) — MQ(k)

e Example:
0.2
M;(k) = |-0.1
0

—0.2
0.2
—0.3

—0.1
0.3

M, (k) =

0.1
0

0 0.1
0.2 -0.2
0 0




Back to consensus protocols

Consensus protocols are distributed algorithms executed by a
group of agents interacting to agree on common quantity of
interest

A discrete-time protocol for N agents can be written as the linear
system:

x(k+1) =W(k)x(k)

From conspecific

with /agents

e W(k)ly = 1y forall k and typically use (W (k) = Iy — M (k)
o x(k) € RY is the state vector
e k > 0isthetimeindex
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Convergence to consensus (1)

Assess consensus through
disagreement dynamics [Porfiri

2007] y] A=[L 1F
e Consensus protocol is
z(k+ 1) = W(k)z(k)
e Disagreement variable is £(k)
e Low-dimensional disagreement
system is &(k + 1) = W(k)é(k) E:

Stability of disagreement is taken
as the consentability of total
dynamics .



Convergence to consensus (2)

Measuring the disagreement:

e Mean square stability:  limx,00 E[||€][*] = 0 for all ¢,

E[nskuz])”"
e

e Asymptotic convergence factor: r, = sup lim (
[|€o|7£0 B0
e Necessary and sufficient condition for convergence:
e closer to zero means faster convergence
1, > 1 means no convergence

e Calculated from the spectral radius of a “second-moment
matrix: 7e(W) = p((R® R)[W ® W]) where R= Iy — x1n1%

/

Projection onto span(ly ® 1n)+
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Convergence to consensus (3)

Expected properties of networks:
e State matrix is W(k) = Iy — M(k), where M (k) describes a
sequence of IID random networks
e Find the second-moment matrix by counting realizations of M

e The second-moment matrix has at most four distinct
eigenvalues and linearly independent eigenspaces, for which
we can find closed forms

Main result:
The asymptotic convergence factor is

ra = (1 M 2—L(¢'2+¢2)+(¢ +92) + (¢3 + tha)
a = N1 N_1 ¥ 1 2 + P2 3 T3

with
¢1 = E[E1Dy), 2 = E[£1°D1?), ¢3 = E[£,°D)

¥1 = E[£:Ds), ¥ = E[£2°D5?), ¢35 = E[£:°Ds)
m=¢1—



Numerical validation

We validate these results
using Monte Carlo
simulations with N = 10

(1/10 for d; = 0,¢; = 0.01
2/10 for di =3,¢; =0.01
2/10 for d; =2,¢; =0.03

| 5/10 for dy =6,¢; =0.03

gD, & (d1,€1) =

1€kl

(1/10 for dz = 0,e3 = 0.01
1/10 for d2 =1,e3 =0.01
2/10 for d2 = 3,e2 = 0.03

6/10 for dz =2,e2 =0.03

9D,,; (d2, €2) = <
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Example: Erdos-Renyi networks (1)

 Asymptotic convergence
factor for N = 10, p; =
0.8,p, =0,0.3and e
constant, varying

* Antagonistic interactions
may enable consensus
which is otherwise not
possible

e Slower max possible
convergence rate

e

.

~

-~
~

20

0

0 0.2 0.4 0.6 0.8

1, = (1+eN(p, — p1))?+2e*(N — D)(p1(1 — p1) + p2(1 — p2))
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Example: Erdos-Renyi networks (2)

* Asymptotic
convergence factor for
N =10,p; = 0.8, p,
and € varying

e Antagonistic
interactions may enable
consensus which is
otherwise not possible

e Slower max possible
convergence rate

1, = (1+eN(p; — p1))*+2e*(N — 1)(p1(1 — p1) + p2(1 — py))
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Extend to synchronization

o zilk+1) = f(zi(k) = D (ML (R)f s (k)  on,

* Sync condition: 1, < —2hax

e 200 logistic maps (2h3x = 0.97) R R TR TR
A T §
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What does this mean for the model system?

e Collaborative/antagonistic interactions -> different
communication and sensory modalities

 May give conflicting information that doesn’t
necessarily “cancel”

e Possible inspiration for animal-robot interactions
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This talk

1. Feasibility of a bat-inspired network that can
“passively” collaborate to avoid collisions:

— Agent-based model and simulation

2. Two aspects of the future robotic bat swarm:

— Experimental setup for capturing data from wild bat
swarms

— Network-based modeling to design interactions

3. Where we go next: robots!
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Electrostatic
loudspeaker

|

The Sonic Beagle

Ultrasonic
microphone

BeagleBoV
Black

Custom
Sonic Cap
shield
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Experiments with target at 6 ft
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39



Where do we go from here?

e Sensorize mobile
robots with frequency
modulated sonar

 Design cooperative
control algorithms for
obstacle avoidance
via collective sensing
using transfer entropy
results

40
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