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Summary

There is increasing concern that most
current published research findings are
false.The probability that a research claim
is true may depend on study power and
bias, the number of other studies on the
same question, and, importantly, the ratio
of true to no relationships among the
relationships probed in each scientific
field. In this framework, a research finding
is less likely to be true when the studies
conducted in a field are smaller; when
effect sizes are smaller; when thereis a
greater number and lesser preselection
of tested relationships; where there is
greater flexibility in designs, definitions,
outcomes, and analytical modes; when
there is greater financial and other
interest and prejudice; and when more
teams are involved in a scientific field
in chase of statistical significance.
Simulations show that for most study
designs and settings, it is more likely for
a research claim to be false than true.

factors that influence this problem and
some corollaries thereof.

Modeling the Framework for False
Positive Findings

Several methodologists have

pointed out [9-11] that the high

rate of nonreplication (lack of
confirmation) of research discoveries
is a consequence of the convenient,
yet ill-founded strategy of claiming
conclusive research findings solely on
the basis of a single study assessed by
formal statistical significance, typically
for a pvalue less than 0.05. Research
is not most appropriately represented
and summarized by p-values, but,
unfortunately, there is a widespread
notion that medical research articles

It can be proven that
most claimed research
findings are false.

chAanld ha intarnratad hacad Aanlov Aan

is characteristic of the field and can
vary a lot depending on whether the
field targets highly likely relationships
or searches for only one or a few

true relationships among thousands
and millions of hypotheses that may

be postulated. Let us also consider,

for computational simplicity,
circumscribed fields where either there
is only one true relationship (among
many that can be hypothesized) or

the power is similar to find any of the
several existing true relationships. The
pre-study probability of a relationship
being true is R/(R + 1). The probability
of a study finding a true relationship
reflects the power 1 — B (one minus
the Type II error rate). The probability
of claiming a relationship when none
truly exists reflects the Type I error
rate, 0. Assuming that ¢ relationships
are being probed in the field, the
expected values of the 2 x 2 table are
given in Table 1. After a research
finding has been claimed based on
achievine formal statistical sienificance.
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What this talk is not...

Bayesian v Frequentist

Reproducibility, p-hacking etc

What this talk is...

Statistical inference issues that |

repeatedly see in collective motion, and
some (imperfect) solutions
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distance from neighbour r (cm)

Katz et al., Inferring the structure and dynamics of
interactions in schooling fish. PNAS 2011
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Four data points



Model decaying acceleration

OPEN 8 ACCESS Freely available online @' PLOS S%A:S%LAHONAL

Deciphering Interactions in Moving Animal Groups

Jacques Gautrais''?*, Francesco Ginelli**>, Richard Fournier®’, Stéphane Blanco®’, Marc Soria®,
Hugues Chaté’, Guy Theraulaz'?

Control for autocorrelation

Inferring the rules of interaction of shoaling fish

James E. Herbert-Read"'?, Andrea Perna™’, Richard P. Mann®, Timothy M. Schaerf’,
David J. T. Sumpter®, and Ashley J. W. Ward**




 Control for autocorrelation
* Fit a single function, with spatial structure

* Use a neural network to define a flexible
function space
» Separate different stimuli
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Focus on change points

distance from target (body lengths)

10

informed

uninformed

time (sec)
Strandburg-Peshkin et al. Current Biology 2013




Embed the
time

correlations
with a latent
space

Mann et al. PLoS Comp. Biol. 2013
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Problem 4: Additivity

F(AUB) =F(A) + F(B)
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Nonpairwise interactions in three-fish
shoals.
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Bringing individual and
collective behaviour together

Mann et al.

PLoS Comp. Biol. 2013

Proportion of Experiments
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Explain the direction changes
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Local interactions
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A non-Markovian interaction

>

Low probability of changing direction



A non-Markovian interaction

High probability of changing direction



A non-Markovian interaction
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Still raised probability of changing direction
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6. Responses are ambiguous
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Perna et al. On the duality between interaction responses and mutual positions in
flocking and schooling. Movement Ecology 2014



7. Expected responses mirror

regression to the mean




Expected responses mirror

regression to the mean
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Perna et al. On the duality between interaction responses
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Return of agent to equilibrium

AFTER agent leaves.



Conclusion: The era of naive model fitting
& validation is over. Time to level up




