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Why non-gradient method?

• Gradient is hard to calculate


• Objective function is non-smooth


• Flat local minimum

X1

X2

Goal: find x⇤ = argminx L(x), L(x) is a non-convex function.

For example: L(x) =
1

n

X

i

li(x)



GD: X 0(t) = �rL(X(t))

SGD: dXt = �rL(Xt) +
q

1
� dBt
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, SGD is more likely to converge to the flat local

minimum.
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It is hard for gradient based method to escape from flat local minimum
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[Z-Dai, 18], [Jastrzebski-Bengio, 18]



It is hard for gradient based method to escape from flat local minimum

Example:
`(x, x̂i) = esin(2x

2) +
1

10
(x� x̂i �

⇡

2
)2, x̂i ⇠ N(0, 0.1)

L(x) =
1

n

X

i

`(x, x̂i)

Success rate for SGD to find the correct global minimum is 18%



   

   

   
Motivations

The Model and algorithm

Numerical experiments



where x̄⇤ =
1

PN
j=1 e

��L(Xj)

NX

j=1

Xje��L(Xj).

dX
j = ��(Xj � x̄

⇤)H✏(L(Xj)� L(x̄⇤)) dt+ �|Xj � x̄
⇤|dW j

For j = 1, · · · , N

Relax to their weighted average, in the meantime, explore their surrounding environment.
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X2X3
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Related Work [Pinnau-Totzeck-Tse-Martin, 17]

Require � ⇠ O(d) to guarantee the convergence of the method  

Bad for high-dimensional problems



First improvement

dXj = ��(Xj � x̄⇤) dt+ �
dX

k=1

(Xj � x̄⇤)kdW
j
k~ek

— Intuitively,  now the diffusivity allows the particles to explore each dimension 
with different rate, so more possible to find the global minimum.

component-wise geometric Brownian motion



d

dt
E|X � a|2 = �2�E|X � a|2 + �2

dX

i=1

E|X � a|2 = (�2�+ �2d)E|X � a|2.

dX = ��(X � a) dt+ �|X � a|dW j

d[(X)i � (a)i] = ��[(X)i � (a)i] dt+ �|X � a|d(W j)i

dE[(X)i � (a)i]
2 = �2�E[(X)i � (a)i]

2 dt+ �2E|X � a|2dt

[Carrillo-Choi-Totzeck-Tse, 18]

Assume x⇤ = a is a constant.

For each dimension i

By Ito’s formula and  
then take expectation

Sum over all dimension

 

2� > d�2   

d[(X)i � (a)i] = ��[(X)i � (a)i] dt+ �[(X)i � (a)i]d(W
j)i

dX = ��(X � a) dt+ �
dX

k=1

(Xj � a)kdW
j
k~ek

dE[(X)i � (a)i]
2 = �2�E[(X)i � (a)i]

2 dt+ �2[(X)i � (a)i]
2dt

d

dt
E|X � a|2 = �2�E|X � a|2 + �2

dX

i=1

E(X � a)2i = (�2�+ �2)E|X � a|2.

  
2� > �2

 

Previous model New model



Mean field limit of the continuous model

N ! 1

dX = ��(X �X⇤)dt+ �
dX

i=1

~ei(X �X⇤)idWi

with X⇤ =
E(Xe��L(X))

E(e��L(X))
.

  

   Under some condition on the initial distribution of X and �,�, X(t) ! x̃

exponentially fast and,

L(x̃)  � 1

�
logEe��L(X(0)) +

log 2

�
 L(x⇤) +O(��1)

Theorem: [Carrilo-Jin-Li-Z, 19]

The initial law of X The largeness of � 

  
dXj = ��(Xj � x̄⇤) dt+ �

dX

k=1

(Xj � x̄⇤)kdW
j
k~ek



Numerical method



A gradient-free optimization method

Goal: find x⇤ = argminx L(x) = argminx
1

n

X

i

li(x)

- Calculate L(Xj), j = 1, · · · , N .

- Let Xj move towards X⇤ and and explore their neighbor at the same time.

- Find a weighted average: X̄⇤ =
1

PN
j=1 µ

j

NX

j=1

Xjµj , µj = e��L(Xj)

Algorithm [Carrillo-Jin-Li-Z-19]

  
L̂(Xj) =

1

m

X

i2b

li(x), b ⇢ {1. · · · , n}.

  

  

  
  

  
only for j 2 B ⇢ {1, · · · , N}, |B| = M

  

  

Initially, randomly generate N particles Xj , at each step we randomly up-
date M particles.

Xj  Xj � ��(Xj � X̄⇤) + �
p
�

dX

i=1

~ei
�
Xj � X̄⇤�

i
zi, zi ⇠ N (0, 1)

O(n)

O(N)

O(nN)

O(1)
O(m)

O(M)
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Example:
`(x, x̂i) = esin(2x

2) +
1

10
(x� x̂i �

⇡

2
)2, x̂i ⇠ N(0, 0.1)

L(x) =
1

n

X

i

`(x, x̂i)

Success rate of our method is 98%!  
(with N = 100, M = 20)



 

Rastrigin function in               with 

 N = 50, M = 40 N = 100, M = 70 N = 200, M = 100 
 

x* = 0, success rate 97% 99% 98% 

x* = 0,  5.6E-03 5.03E-04 9.71E-04 

x* = 1, success rate 94% 99% 95% 

x* = 1,  3.9E-03 4.95E-04 3E-03 

x* = 2, success rate 97% 100% 92% 

x* = 2,  3.0E-03 8.06E-06 4E-03 

Computing time saved 22.03% 30.11% 36.14% 
 

L(x) =
1

d

dX

i=1

h
(xi �B)2 � 10 cos (2⇡(xi �B)) + 10

i
+ C

[Pinnau-Totzeck-Tse-Martin, 17]



Learning MNIST data with two layer Neural Network

X 2 R7290

Only using N = 100,M = 10



How parameters affect the performance



Future Directions

• Ongoing work: Constrained optimization problem


• How to choose all the parameters?


• Theory for the numerical method.



  

   

Thanks!


