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KPZ in d = 1: ht = hxx + h2
x + V (t, x)

h(t, x) – height of a growing interface

V (t, x) – sticky objects falling from the sky

Experimental fact: too many discrete problems have

ht = hxx + h2
x + Ẇ (t, x) as a formal long time-large

space continuum limit, Ẇ (t, x) – Gaussian white noise,

E(Ẇ (t, x)Ẇ (s, y)) = δ(t− s)δ(x− y)

How regular is h(t, x)? Does h2
x make sense?

2



The Hopf-Cole transform: u(t, x) = exp(h(t, x))

Random heat equation: ut = ∆u+ V (t, x)u

Regardless of KPZ, makes sense in d > 1: branching

Brownian motion, directed polymers...

Simplest random PDE: linear, time-dependent V (t, x),

Feynman-Kac can be used

Main issue for RHE: long time/large spatial scale be-

havior
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RHE as linearization of semi-linear PDE with noise

Imagine ∂tΨ = ∆Ψ + F (Ψ) + V (t, x) has a stationary

solution Ψ̄(t, x)

Stability: linearize Ψ = Ψ̄ + δu

ut = ∆u+ F ′(Ψ̄(t, x))u

Random potential V (t, x) = F ′(Ψ̄(t, x)) – is stationary

but ”more correlated” than W (t, x)

Long time behavior?
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Interlude. Long time: weak coupling vs. ”straight up long time”

Weak coupling problems – microscopic noise is weak (Spencer):

A particle in a random velocity field Ẏ (s) = εV (s, Y (t))

Random heat equation ∂su = ∆yu+ εV (s, y)u

Random Schrödinger equation i∂su = ∆u+ εV (s, y)u

Long time: s ∼ ε−m – what is the ”right” m?

How long can we control the solutions?

”Straight up long time”: strong microscopic noise (”Armstrong”)

A particle in a random velocity field Ẏ (s) = V (s, Y (t))

Random heat equation ∂su = ∆yu+ V (s, y)u

Random Schrödinger equation i∂su = ∆u+ V (s, y)u

Long time: s� 1 = correlation time of V (s, y)
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Weak coupling problems are occasionally harder than

they seem to a naive simpleton (see ESY)
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Neanderthal weak coupling: central limit theorem

Sεk := εX1 + εX2 + · · ·+ εXk is ≈ Gaussian if k ∼ ε−2

and Xk i.i.d. or rapidly decorrelating

”Randomness of size ε” ⇒ time scale ε−2

Typical generalization: Ẏ (s) = εV (s, Y ), then

Y ε(t) = εY (t/ε2) ⇒ B(t) – Brownian motion (Khas-

minsky, Kesten-Papanicolaou, ...)

Larger times, beyond CLT? \end{interlude}
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Back to KPZ in d = 1 (still introductory compote)

Can we make sense of

ht = hxx + h2
x + Ẇ (t, x)

Ẇ (t, x) – Gaussian white noise, a distrbution such that

E(Ẇ (t, x)Ẇ (s, y)) = δ(t− s)δ(x− y)

How regular is h(t, x)? Does h2
x make sense?

This is a weak coupling – very long time problem
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A toy approximate problem in d = 1

Regularize and drop nonlinearity: ∂th
ε = hεxx+

1

ε3/2
η(

t

ε2
,
x

ε
)

ηε(t, x) = ε−3/2η(t/ε2, x/ε) – regularized white noise

E(ηε(t, x)ηε(s, y)) = ε−3R(
t− s
ε2

,
x− y
ε

)→ δ(t−s)δ(x−y)

Applied math – a multiple scale expansion should be

hε(t, x) = h̄(t, x)+ε1/2h1(t, x,
t

ε2
,
x

ε
)+εh2(t, x,

t

ε2
,
x

ε
)+. . .

⇒ hε(t, x) is Hölder 1/2− in space and 1/4− in time

No way (hεx)2 has a limit. What can be done?
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Hairer’13 KPZ in d = 1 (regularity structures)

Formal and non-sensical: ht = hxx + h2
x + Ẇ (t, x)

Regularize: ∂th
ε = hεxx + (hεx)2 + ηε(t, x)

ηε(t, x)
law
= ε−3/2η(t/ε2, x/ε) – regularized white noise,

Hopf-Cole: uε(t, x) = exp(hε), ∂tu
ε = uεxx + ηε(t, x)uε

uε(t, x) ∼ e−Cεtū(t, x), Cε = c1/ε+c2 – renormalization

Multiplicative SHE: ūt = ūxx + ūẆ (t, x)

ū(t, x) = et∆u0(x) +
∫ t
0

∫
G(t− s, x− y)ū(s, y)Ẇ (ds, dy)
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Microscopic picture in d = 1

∂su = uyy+
√
εη(s, y)u; η(s, y) – smooth Gaussian field

Standard CLT time: t ∼ ε−1 (noise is
√
ε)

ũε(t, x) = u(t/ε, x/
√
ε)→ ũ(t, x), ∂tũ = ũxx + c1ũε

Hairer – very long time: t ∼ ε−2, uε(t, x) = u(t/ε2, x/ε)

∂tu
ε = uεxx + ηε(t, x)uε ⇒ uε(t, x) ∼ e−(c1/ε+c2)tū(t, x),

Multiplicative SHE: ūt = ūxx + ūẆ (t, x)

Correct regularity from the asymptotic expansion

11



Why can one control t ∼ (”noise”)−4?

The last time naive expansions should work

∂su = uyy +
√
εη(s, y)u

Expand: u(s, y) = 1 +
√
εχ(s, y) + . . .

∂sχ = χyy + η(s, y) ⇒ E(χ2(s, y)) ∼
√
s,

so
√
εχ(s/ε2) ∼ O(1)

Fails for Schrödinger at t ∼ (”noise”)−2
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Control on such long time scales is good for the workers

\end{the introduction compote}
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Magnen-Unterberger’17 KPZ in d ≥ 3 (64pp.)

Microscopically: hs = ∆h+ |∇h|2 + η(s, y)

η(s, y) – microscopic O(1) size smooth noise

Small solutions h(t/ε2, x/ε) = εd/2−1hε(t, x):

hεt = ∆hε + εd/2−1|∇hε|2 + ε−(1+d/2)η(t/ε2, x/ε)

Additive SHE : hε(t, x)−cεt→ h̄(t, x), h̄t = ae∆h̄+ νeẆ (t, x)

Not a naive linearization. Why εd/2−1?

”KPZ equation is infra-red super-renormalizable, hence (power-like) asymp-

totically free at large scales in ≥ 3 dimensions”
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An aside: additive and multiplicative SHE in d ≥ 3

Additive SHE ∂tu = ∆u+ Ẇ (t, x)

Makes sense, solution is a distribution:∫
u(t, x)φ(x)dx is defined for φ ∈ C∞c (R3) but not point-

wise: Wε(t, x) = ε−5/2η(t/ε2, x/ε) in d = 3

Multiplicative SHE ∂tu = ∆u+ uẆ (t, x)

makes no sense in d > 1 (multiplying distributions),

can not be the long time limit
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1D KPZ – 3D KPZ comparison

(1) Small noise, O(1) solutions, ”very large” (beyond CLT) time

– O(1) noise, small solutions, large time

(2) Make sense of equations with formally non-sensical limits

(3) Multiplicative SHE – additive SHE in the limit

(4) Explicit diffusivity, renormalization constant, and noise – ef-

fective parameters

(5) Non-Gaussian fluctuations – Gaussian fluctuations

(6) Interesting – boring

Can this be done as old-fashioned applied math, and without

small solutions in 3D?
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Hopf-Cole ⇒ the random heat equation

∂tu = ∆u+ βV (t, x)u, x ∈ Rd, d ≥ 3.

β > 0 – ”coupling”, different behavior for β small or large.

V (t, x) – mean-zero space-time stationary Gaussian:

V (t, x) =
∫
Rd+1

φ(t− s)ψ(x− y)dW (s, y)

φ ∈ C∞c (R), ψ ∈ C∞c (Rd), suppφ ∈ [0,1]

I. Large scale spatial averages for t� 1

I(T, L) = L−d
∫
u(T, x)φ

(
x

L

)
dx, φ ∈ C∞c , T � 1, L� 1

Initial conditions: u(0, x) = u0(εx) or u(0, x) ≡ 1.

Standard choice T ∼ ε−2, L ∼ ε−1 not forced, especially for

u0(x) ≡ 1, different for L2 � T and L2 � T , need L� 1.

II. How does u(T, x) look locally for T � 1?
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The rescaled equation with T ∼ L2

uε(t, x) := u(t/ε2, x/ε)

∂tuε = ∆uε +
β

ε2
V (

t

ε2
,
x

ε
)uε, uε(0, x) = u0(x).

Formally: Vε(t, x) = ε−2V (t/ε2, x/ε) ∼ εd/2−1ν0Ẇ (t, x):

E(Vε(s, y)Vε(s+t, y+x)) =
1

ε4
R(

t

ε2
,
x

ε
) ∼ εd+2−4ν2

0δ(t, x).

ν2
0 =

∫
Rd+1R(s, y)dsdy.

Ẇ (t, x) – space-time white noise.
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A very sensible plausible limit

∂tuε = ∆uε +
β

ε2
V (

t

ε2
,
x

ε
)uε, uε(0, x) = u0(x)

”Approximate” by ∂tφε = ∆φε+εd/2−1βν0Ẇ (t, x)φε

Makes no sense in d > 1 but I am an applied mathe-

matician: a small perturbation of ∂tφ̄ = ∆φ̄

Naive guess: uε(t, x) = φ̄(t, x) + εd/2−1φ1(t, x) + . . .

The additive stochastic heat equation

∂tφ1 = ∆φ1 + βν0φ̄(t, x)Ẇ (t, x)
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Good things

The limit makes perfect sense: additive stochastic

heat equation

Bad things: looks fishy – εd/2−1 has no role

A related question

∂tuε = ∆uε + εmẆε(t, x)uε

Ẇε(t, x) – regularized white noise, what is the ”inter-

esting” m?
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Superficially: an example of a question in singular stochastic

PDEs – need to make sense of the multiplication of distributions

(Hairer, Pardoux, Weber, Gubinelli, Otto ...).

Typical result: the solution of the equation with the mollified

white noise, after a suitable renormalization, converges to some

limit that is sometimes independent of the way in which the noise

is mollified, and sometimes depends on the mollification.

Sad reality: our problem is rather simple in the end, no need for

fancy machinery.
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0. Weak coupling limit: β = ε asymptotically small

∂tu = ∆u+ εV (t, x)u, u(0, x) = u0(εx),

Pardoux, Piatnitskii’12; Bal, Gu’16: t ∼ ε−2

∂tu
ε = ∆uε +

1

ε
V (t/ε2, x/ε)uε

Regularization for ∂tu = ∆u+ εd/2Ẇε(t, x)u

uε(t, x) = u(t/ε2, x/ε)e−c̄t→ ū(t, x), c̄ =
∫ ∞
0

EB[R(t, Bt)]dt

Diffusion equation ∂tū = ∆ū. Naive guess works here!

Fluctuation is additive SHE with ”naive” variance ν2
0.
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Hairer, Pardoux’15, Gu-Tsai’17 (d = 1):

weak coupling ”very long time” t ∼ ε−4

∂tu = uxx + εV (t, x)u,

uε(t, x) = u(t/ε4, x/ε), ∂tu
ε = uεxx +

1

ε3
V (

t

ε4
,
x

ε2
)uε,

ε−3V (t/ε4, x/ε2) ∼ Ẇ (t, x) (no small pre-factor)

Main result: uε(t, x) exp{−(c̄+ ε2c2)t/ε2} → ū(t, x)

The multiplicative stochastic heat equation

∂tū = ūxx + Ẇ (t, x)ū
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Back to our problem

∂tu = ∆u+ βV (t, x)u,

t ∼ ε−2: ∂tu
ε = ∆uε +

βεd/2−1

ε1+d/2
V (t/ε2, x/ε)u

Noise is not weak coupling but the formal limit is

weaker than the white noise

Naive guess should no longer be true – microscopic

dynamics is not ”trivial”
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1. White in time potentials: small β ∈ (0, β1)

Mukherjee, Shamov, Zeitouni’16: V white in time

V (t, x) = Ẇψ(t, x) =
∫
ψ(x− y)dW (t, y).

∂tu = ∆u+ βẆψ(t, x)u, x ∈ Rd, d ≥ 3, u(0, x) ≡ 1.

MSZ’16: uε(t, x) = u(t/ε2, x/ε)→ ū(t, x) ≡ 1 weakly∫
uε(t, x)g(x)dx→

∫
g(x)dx for any g ∈ C∞c (Rd).

Pointwise: uε(t = 1, x)→ Z∞ in law, Z∞ > 0 a.s.

The law of Z∞ – open
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White in time potentials: large β > 0

Mukherjee, Shamov and Zeitouni also show that for

all β > β2 we have uε(t, x)→ 0 in probability as ε→ 0,

for all t > 0 and x ∈ Rd fixed. This is the main differ-

ence between the weak and strong disorder regimes.

Existence of a sharp transition from one regime to the

other was also left as an open question.
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2. Non-white in time potentials: β ∈ (0, β1) small

Homogenization for spatial averages

∂tuε = ∆uε +
β

ε2
V (

t

ε2
,
x

ε
)uε, t > 0, x ∈ Rd, d ≥ 3,

Theorem. (Gu, R., Zeitouni’17)∫
Rd
uε(t, x) exp

{
−
c1t

ε2
− c2

}
g(x)dx→

∫
Rd
ū(t, x)g(x)dx,

in probability. The effective diffusion equation:

∂tū = ∇ · aeff∇ū, ū(0, x) = u0(x), aeff 6= Id .

Mukherjee’17: E(uε(t, x))→ ū(t, x), directed polymers.
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Gaussian fluctuations

Theorem. (Gu, R., Zeitouni’17)

1

εd/2−1
(uε(t, x) − E[uε(t, x)]) exp

{
−
c1t

ε2
− c2

}
⇒ U(t, x)

in law. Additive SHE ν2
eff > 0, νeff 6= ν0.

∂tU = ∇ · aeff∇U + βνeff ū(t, x)Ẇ , U(0, x) = 0,

After integration against a test function g(x) ∈ C∞c (Rd).

Why εd/2−1? What are c1, c2, aeff and νeff?

To a child who does not know how to ask?
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What happens locally (no spatial averages)?

∂sΨ̄=∆Ψ̄+βV(s, y)Ψ̄− λ(β)Ψ̄, Ψ̄(s, y) – stationary

∂sΨ=∆Ψ+βV(s, y)Ψ− λ(β)Ψ, Ψ(0, x) ≡ 1

Theorem (Dunlap, Gu, R., Zeitouni’18)

(1) For β ∈ (0, β0) there exists a space-time stationary

solution Ψ̄(t, x).

(2) The finite-dimensional distributions of Ψ(s, ·) con-

verge as s→ +∞ to those of a multiple of Ψ(s, x).
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General solutions

∂tu = ∆u+
β

ε2
V (

t

ε2
,
x

ε
), u(0, x) = u0(x)

Theorem (Dunlap, Gu, R., Zeitouni’18)

For β ∈ (0, β0), we have

lim
ε→0

E
∥∥∥∥uε(t, x)e−λ(β)t/ε2

− u(t, x)Ψ(t/ε2, x/ε)
∥∥∥∥ = 0

Renormalization constants:

c1 = λ(β), ec2 = E
[
Ψ̄(s, y)

]
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Old-fashioned applied mathematics

uε(t, x)= ū(t, x)Ψ(t/ε2, x/ε)+εχj(t/ε
2, x/ε)∂xjū(t, x)+. . .

The corrector equation

∂sχj=∆yχj + (βV (s, y)−λ(β))χj + ∂yjΨ(s, y)

The backward stationary solution

∂sΦ+∆Φ+βV(s, y)Φ− λ(β)Φ = 0

Effective diffusivity aeff = 1 +
2

d

E [Φ(s, y)divyχ(s, y)]

E [Ψ(s, y)Φ(s, y)]
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Demi-theorems

Why εd/2−1 weak error – spatial decay of correlations

of Ψ̄(s, y)

What is νeff – comes from the coefficient in the spatial

decay rate for RΨ̄(s, y)
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The renormalization constants (scientifically)

The Feynman-Kac formula: u(0, x) ≡ 1 for simplicity

u(t, x) = EB
[{
β
∫ t
0
V (t− s, x+Bs)ds

}]
, and

E(u(t, x)) = eζt := EB
[

exp(Iβ(B))
]

Iβ(B) := exp
{
β2/2

∫ t
0

∫ t
0
R(s− u,Bs −Bu)dsdu

}]
With bit of work: ζt ≈ c1t+ c2 + o(1), as t→ +∞.

This ”explains” the renormalization constants.
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The tilted Brownian paths as a Markov chain

ÊB,t[f(B)] := EB
[
f(B) exp(Iβ(B)− ζt)

]
Increments of length 1: (x0, . . . , xN+1).

The interaction term for x, y ∈ Ω = C([0,1]):

I(x, y) = β2
∫ 1

0

∫ 1

0
R(s+ 1− u, y(s) + x(1)− x(u))dsdu.

Doob-Krein-Rutman: there exist ρ > 0 and Ψ(y)∫
Ω
eI(x,y)Ψ(y)π(dy) = ρΨ(x), 0 < c1 ≤ Ψ(y) < +∞

Transition probability π̂(x, dy) =
eI(x,y)Ψ(y)π(dy)

ρΨ(x)
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The Doeblin condition: π̂(x,A) ≥ γπ(A), all x ∈ Ω,

A ⊂ Ω, with γ ∈ (0,1).

A coupling argument:

π̂(z1, dz2) = γπ(dz2) + (1− γ)
π̂(z1, dz2)− γπ(dz2)

1− γ
,

ηk – i.i.d. Bernoulli with the parameter γ: if ηk = 1,

sample Zk from π(dz), and if ηk = 0, sample Zk from

π̂(Zk−1, dz)− γπ(dz)

1− γ
.

35



The invariance principle for the tilted Brownian path

Regeneration times: Ti = inf{j > Ti−1 : ηj = 1}.

The path increment in each regeneration block

Xj :=
Tj+1−1∑
k=Tj

Xk(1), j = 0,1, . . .

Proposition. εBs/ε2 ⇒ Ws, a Brownian motion with

the covariance matrix aeff := γEπ[X1X
t
1], hence

E[uε(t, x)]e
−ζ

t/ε2 → ū(t, x) as ε→ 0.
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Why we need small β and d ≥ 3

The key quantity:

`(x, y,X0, Y0) =
∫ ∞
0

1{|x+ωX0
(s)−y−ωY0

(s)|≤1}ds,

the total “nearby time” of ωX0
and ωY0

.

Proposition. In d ≥ 3, π[`(x, y,X0, Y0) > t] ≤ C1e
−C2t,

hence if β < C2, then Eπ[eβ`(x,y,X0,Y0)] <∞.

This is why β < β1. Not an artefact of the proof – for

large β the solutions should behave differently.
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Open questions and work in progress

0. We are back to Joe Keller-like mathematics

1. Local error estimates

2. Long time behavior for large β

3. Turn (a) linear and (b) non-linear (e.g. Φ4) prob-

lems with weak noise/very long time into applied math

4. Very long time for the Schrödinger equation

5. Thanks to Alex Dunlap and Yu Gu
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