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KPZ ind=1: hy = haz + h2 + V (¢, 2)

h(t,z) — height of a growing interface

V(t,z) — sticky objects falling from the sky
Experimental fact: too many discrete problems have
hi = hge + h2 + W(t,z) as a formal long time-large
space continuum limit, W (t, ) — Gaussian white noise,
E(W (t, )W (s,y)) = 6(t — 5)d(z — y)

How regular is h(t,z)? Does h2 make sense?



The Hopf-Cole transform: u(t,z) = exp(h(t,x))
Random heat equation: u; = Au+ V (¢, 2)u
Regardless of KPZ, makes sense in d > 1: branching
Brownian motion, directed polymers...

Simplest random PDE: linear, time-dependent V (¢, x),
Feynman-Kac can be used

Main issue for RHE: long time/large spatial scale be-

havior



RHE as linearization of semi-linear PDE with noise
Imagine ;W = AWV + F(WV) + V(t,z) has a stationary
solution W(t, x)

Stability: linearize W = W 4+ §u

up = Au+ F'(W(t, z)u

Random potential V(t,z) = F/(W(t,z)) — is stationary
but " more correlated” than W (¢, x)

Long time behavior?



Interlude. Long time: weak coupling vs. "straight up long time”
Weak coupling problems — microscopic noise is weak (Spencer):
A particle in a random velocity field Y(s) = eV (s, Y (t))
Random heat equation dsu = Ayu + eV (s, y)u

Random Schrodinger equation i0su = Au 4+ eV (s, y)u

Long time: s ~ e~ "™ — what is the "right” m?

How long can we control the solutions?

" Straight up long time” : strong microscopic noise (" Armstrong’)
A particle in a random velocity field Y(s) = V(s,Y (¢))

Random heat equation dsu = Ayu + V(s,y)u

Random Schrodinger equation i0su = Au + V(s,y)u

Long time: s > 1 = correlation time of V (s, y)



Weak coupling problems are occasionally harder than

they seem to a naive simpleton (see ESY)




Neanderthal weak coupling: central limit theorem

St :=eX1+eXo+ - +eX} is ~ Gaussian if k~ e ?
and X i.i.d. or rapidly decorrelating
"Randomness of size ¢’ = time scale ¢~ 2

Typical generalization: Y (s) =V (s,Y), then

YE(t) = €Y (t/e2) = B(t) — Brownian motion (Khas-

minsky, Kesten-Papanicolaou, ...)

Larger times, beyond CLT7? \end{interlude}



Back to KPZ in d = 1 (still introductory compote)

Can we make sense of

hi = hgo + h2 + W (t, x)

W (t,x) — Gaussian white noise, a distrbution such that
E(W (t,2)W (s,y)) = 6(t — s)d(z — y)
How regular is h(t,z)? Does h2 make sense?

This is a weak coupling — very long time problem



A toy approximate problem in d =1

1 t
Regularize and drop nonlinearity: 0;h° = h:. . 3/277( 2,5)

ne(t, ) = e 3/2n(t/e2,2/e) — regularized white noise

_ t—s x—vy
Eme(t, x)ne(s,y)) = ¢ 3R( ) = 6(t—s)d(z—y)
Applied math — a multiple scale expansion should be

h*(t,@) = h(t,z)+e'/?hi(t, 2, 2, ) +eha(t,a, 2,—>+

= h®(t,z) is Holder 1/2— in space and 1/4— in time

No way (k)2 has a limit. What can be done?



Hairer'l13 KPZ in d = 1 (regularity structures)
Formal and non-sensical: h; = hyo + h2 + W (t, z)
Regularize: 9;h° = he., + (h5)? + n=(t, z)

ne(t, x) "L e=3/2p(¢ /2, £ /e) — regularized white noise,
Hopf-Cole: uf(t,x) = exp(h®), Ow® = u’., + n(¢t, x)u®
ué(t,z) ~ e~ Cetu(t, z), Ce = ¢1/e+co — renormalization
Multiplicative SHE: 4; = tuye + aW (¢, )

u(t, z) = ePug(z) + /Ot/G(t — s,z —y)u(s,y)W(ds, dy)

10



Microscopic picture in d =1

Osu = uyy +/en(s,y)u; n(s,y) — smooth Gaussian field
Standard CLT time: t ~ e~ 1 (noise is /)

ut(t,x) = u(t/e,x/\/e) = u(t,z), Ot = Ugg + c1Ue
Hairer — very long time: t ~ e~ 2, u(t,z) = u(t/e?, z/e)
ohu® = u., + n:(t,x)u = u(t,x) ~ e—(c1/etety (¢ 2),
Multiplicative SHE: 4; = tuye + uW (¢, )

Correct regularity from the asymptotic expansion
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Why can one control ¢t ~ (" noise” )™4?

The last time naive expansions should work
Osu = uyy + /en(s, y)u

Expand: u(s,y) =1+ vex(s,y) + ...

Osx = xyy + 1(s,y) = E(3(5,9)) ~ /5,

so ex(s/e%) ~ O(1)

Fails for Schroédinger at t ~ (" noise” )2
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Control on such long time scales is good for the workers

\end{the introduction compote}
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Magnen-Unterberger'l7 KPZ in d > 3 (64pp.)
Microscopically: hs = Ah + |Vh|]Z 4+ n(s,y)
n(s,y) — microscopic O(1) size smooth noise
Small solutions h(t/e2,z/e) = ¥/ 2~ 1h (¢, z):
he = ARS + 2L wpe)2 4 o= (Hd/2) (1722 2 /6)

Additive SHE : he(t,x)—cet = h(t,x), ht = ae AR + veW (t, x)
Not a naive linearization. Why ¢%/2-17

"KPZ equation is infra-red super-renormalizable, hence (power-like) asymp-

totically free at large scales in > 3 dimensions”
14



An aside: additive and multiplicative SHE in d > 3
Additive SHE 6w = Au + W(t, x)

Makes sense, solution is a distribution:

/u(t, ) ¢p(z)dx is defined for ¢ € C°(R3) but not point-
wise: We(t,x) = 5_5/277(75/62,:1:/5) ind=3
Multiplicative SHE 6w = Au + uW (¢, x)

makes no sense in d > 1 (multiplying distributions),

can not be the long time limit
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1D KPZ — 3D KPZ comparison

(1) Small noise, O(1) solutions, "very large” (beyond CLT) time
— O(1) noise, small solutions, large time

(2) Make sense of equations with formally non-sensical limits
(3) Multiplicative SHE — additive SHE in the limit

(4) Explicit diffusivity, renormalization constant, and noise — ef-
fective parameters

(5) Non-Gaussian fluctuations — Gaussian fluctuations

(6) Interesting — boring

Can this be done as old-fashioned applied math, and without

small solutions in 3D7
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Hopf-Cole = the random heat equation

oru = Au—+ BV(t,x)u, x¢€ R d > 3.

B8 >0 — "coupling”, different behavior for g small or large.
V(t,z) — mean-zero space-time stationary Gaussian:
Vta) = [ ., ot =)@ —y)dW (s,y)

¢ € C°(R), ¥ € C(RY), supp ¢ € [0, 1]

I. Large scale spatial averages for ¢t > 1

I(T,L) = L@ u(T,x)qS(%)da:, peCx, T>1, L>1
Initial conditions: u(0,z) = ug(ex) or u(0,x) = 1.
Standard choice T ~ ¢ 2, L ~ ¢~ 1 not forced, especially for
uo(z) = 1, different for L2 < T and L2 > T, need L > 1.
II. How does u(T,z) look locally for T'> 17
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The rescaled equation with T ~ L2

ue(t, z) 1= u(t/e?, x/e)
I} t x
Orue = Aue + —QV(—, —)ue, us(0,x) = ug(x).
E € E
Formally: V(t,z) = e 2V (t/e2,z/e) ~ W2 1yqgW (¢, z):
1 t
E(Va(s, y)Ve(stt,y+a) = ZR( 5, ) ~ e %36(1,2).

1/8 = /RcH—l R(s,y)dsdy.

W (t,z) — space-time white noise.
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A very sensible plausible limit

t
Orue = Aue + %V(—, E)ug, us (0, ) = ug(x)
£ s €

" Approximate” by 0ips = A¢€+€d/2_1BV0W(t,ZE)¢g
Makes no sense in d > 1 but I am an applied mathe-
matician: a small perturbation of ;¢ = A¢

Naive guess: u-(t,z) = ¢(t,x) + sd/z_lqbl(t,ac) =

T he additive stochastic heat equation

Orp1 = Ad1 + Brod(t, x) W (¢, )
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Good things

The limit makes perfect sense: additive stochastic
heat equation

Bad things: looks fishy — €4/2=1 has no role

A related question

Orue = Aus + "W (t, x)ue

We:(t,x) — regularized white noise, what is the "inter-

esting” m??
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Superficially: an example of a question in singular stochastic
PDEs — need to make sense of the multiplication of distributions
(Hairer, Pardoux, Weber, Gubinelli, Otto ...).

Typical result: the solution of the equation with the mollified
white noise, after a suitable renormalization, converges to some
limit that is sometimes independent of the way in which the noise

is mollified, and sometimes depends on the mollification.

Sad reality: our problem is rather simple in the end, no need for

fancy machinery.
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0. Weak coupling limit: 8 = ¢ asymptotically small

oru = Au—~+ eV (t, z)u, u(0,z) = ug(ex),

Pardoux, Piatnitskii’12; Bal, Gu'16: t ~ g2

ohu® = Au® + éV(t/sz, x/e)u’

Regularization for oiu = Au + ed/ng(t, x)Uu

we(t,z) = u(t/e2,z/e)e” — w(t,z), € = /O T Eg[R(t, B)]dt
Diffusion equation d;u = Awu. Naive guess works herel

Fluctuation is additive SHE with " naive” variance vg.
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Hairer, Pardoux'1l5, Gu-Tsai'l7 (d = 1):

weak coupling "very long time" t ~ ¢4

oru = ugy + eV (¢, x)u,

1 t x
V(—, —=)us,

g3 (84 82)

e 3V (t/e* x/e?) ~ W (t,z) (no small pre-factor)

uf(t, x) = u(t/e*, z/e), uf = us,

Main result: us(t,z) exp{—(c+ 52c2)t/52} — u(t, x)
The multiplicative stochastic heat equation

Ot = Uz + W (t, x)u

23



Back to our problem

oru = Au + BV (¢, x)u,

Bgd/z_l
c14d/2
Noise is not weak coupling but the formal limit is

t~e 2 Ot = Auf V(t/e2, x/e)u

weaker than the white noise
Naive guess should no longer be true — microscopic

dynamics is not " trivial”
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1. White in time potentials: small 8 € (0, 31)
Mukherjee, Shamov, Zeitouni’'l6: V white in time
V(t,x) = Wy(t,2) = [ —y)dW(ty).

Oru = Au + BW¢(t,x)u, x € Rd, d>3, u(0,z) = 1.
MSZ'16: uc(t,z) = u(t/e?,z/e) — u(t,z) = 1 weakly
/ug(t,x)g(m)dm o /g(az)daz for any g € C°(R%).
Pointwise: us(t =1,2) — Z~ in law, Zs > 0 a.s.

The law of Z5 — open

25



White in time potentials: large 5 > 0

Mukherjee, Shamov and Zeitouni also show that for
all B > B> we have u:(t,z) — 0 in probability as € — 0,
for all t > 0 and z € R? fixed. This is the main differ-
ence between the weak and strong disorder regimes.
Existence of a sharp transition from one regime to the

other was also left as an open question.
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2. Non-white in time potentials: 8 € (0,31) small

Homogenization for spatial averages

B

t
87511,5 = Aue + —QV(—7 E)/u'&“a t>0, e Rda d > 3,
E EC &

Theorem. (Gu, R., Zeitouni'l7)

c1t _
/Rd ue(t, x) exp { — 2 cz}g(az)dx — /Rdu(t, x)g(x)dx,
in probability. The effective diffusion equation:
ou =V - aereVu, u(0,x) = ug(x), aerr = Id .
Mukherjee'17: E(us(t,x)) — u(t,x), directed polymers.
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Gaussian fluctuations

Theorem. (Gu, R., Zeitouni'l7)

a1 (ue(t,2) — Elus(t o)) exp { = 5 — oo} = (e, 2)
in law. Additive SHE v2¢ > 0, vefr 7 10

OU =V - arr VU + Bresrti(t, z)W, U(0,z) =0,

After integration against a test function g(z) € C°(R%).
Why £4/2-17 What are C1, €2, aeff aNd Vg ?

To a child who does not know how to ask?
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What happens locally (no spatial averages)?
OsW=AWV+8V(s,y)¥W—-A(B)WV, W(s,y) — stationary

OsW=AV+4+5V(s,y) V- A(BV¥Y, V(0,z)=1

Theorem (Dunlap, Gu, R., Zeitouni'l8)

(1) For 8 € (0, By) there exists a space-time stationary
solution W (t, z).

(2) The finite-dimensional distributions of W(s,-) con-

verge as s — +oo to those of a multiple of W(s,x).

29



General solutions

B
o2
Theorem (Dunlap, Gu, R., Zeitouni'18)

t
Ooru = Au + V(—Q,E , u(0,z) = ug(x)
e €

For B8 € (0, 3p), we have

WE(t, 2)e MO gt p)w(t/e2, x/e)H —0

Iim E
e—0
Renormalization constants:

c1 = A(B), e2 =E |W(s,y)
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Old-fashioned applied mathematics
ut(t, x) =u(t, @)W (t/e?, x/e)Fex;(t/e?, x/e) O ult, )+ ..

T he corrector equation

Osxj=Ayx; + (BV(s,9) —A(B)) xj + Oy; W (s,9)

The backward stationary solution

OsP+AP+LV(s,y)P—A(B)P =0
2E [P (s, y)divyx(s, y)]

Effective diffusivity aerf = 1
° d E[W(s,y)P(s,y)]
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Demi-theorems

Why £4/2—1 weak error — spatial decay of correlations

of W(s,y)

What is verf — comes from the coefficient in the spatial

decay rate for Ry (s,y)
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The renormalization constants (scientifically)

The Feynman-Kac formula: u(0,x) = 1 for simplicity

u(t, x) :EB[{B/;V(t—S,w

Bs)ds}], and

E(u(t,z)) = &t = ]EB[exp(IB(B))]
Ig(B) = exp {52/2 /Ot/OtR(s — u, Bg — Bu)dsdu}]

With bit of work: ( =~ cit+co+0(1), as t — +oo.

This "explains’ the renormalization constants.
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The tilted Brownian paths as a Markov chain

Epslf(B)] :=Ep|f(B) exp(I5(B) — (1)
Increments of length 1: (zo,...,zN+41)-

The interaction term for z,y € Q2 = C([0, 1]):

1 ,1
I(z,y) = 62/0 /O R(s+1—u,y(s) +z(1) — z(u))dsdu.
Doob-Krein-Rutman: there exist p > 0 and W(y)

Jo, PV (y)m(dy) = pW (@), 0 <1 < W(y) < +oo
e! @V (y)w (dy)

Transition probability 7(z,dy) =
pW(z)
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The Doeblin condition: #(xz,A) > ~vw(A), all z € <2,
A C 2, with v € (0,1).
A coupling argument:

m(z1,dzp) — ym(dz2)

7(a1,dz2) = ymldzg) + (1= TR EP

n, — i.i.d. Bernoulli with the parameter ~: if n, = 1,

sample Z;, from n(dz), and if n, = 0, sample Z; from
m(Zg—1,dz) — ym(dz)
1 —7 '
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The invariance principle for the tilted Brownian path

Regeneration times: T; = inf{j > T;_1 : n; = 1}.

The path increment in each regeneration block
Tjt1-1

XJ .= Z Xk(1)7 73 =20,1,...

Proposition. 533/52 = Ws, a Brownian motion with

the covariance matrix aqfr = vEx[X1X}], hence

Elus(t, z)]e “t/e2 u(t,r) as € — 0.
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Why we need small 8 and d > 3
The key quantity:
. ©. @)
{(z,y, Xo,Yo) = /o Lz, (s)—y—wy, ()| <1395
the total “nearby time” of wx, and wy;.
Proposition. In d > 3, ©[¢(x,y, X, Yo) > t] < C1e 2t
hence if 8 < Cy, then E[ef4(®¥:X0,Y0)] <« oo,
This is why 8 < 1. Not an artefact of the proof — for

large B the solutions should behave differently.
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Open questions and work in progress

0.
1.
2.

3.

We are back to Joe Keller-like mathematics
Local error estimates
Long time behavior for large

Turn (a) linear and (b) non-linear (e.g. %) prob-

lems with weak noise/very long time into applied math

4.

5.

Very long time for the Schrodinger equation

Thanks to Alex Dunlap and Yu Gu
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