A Mean-Field Optimal Control Formulation of Deep Learning

Jiequn Han

Department of Mathematics, Princeton University Joint work with Weinan E and Qianxiao Li

Dimension Reduction in Physical and Data Sciences
Duke University, Apr 1, 2019

Outline

1. Introduction

- 2. Mean-Field Pontrayagin's Maximum Principle
- 3. Mean-Field Dynamic Programming Principle
- 4. Summary

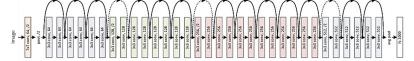
Table of Contents

1. Introduction

- 2. Mean-Field Pontrayagin's Maximum Principle
- 3. Mean-Field Dynamic Programming Principle
- 4. Summary

Great Success of Deep Learning

- Deep learning has achieved remarkable success in many machine learning tasks
- Compositional structure is widely considered the essence of deep neural networks, but the mechanism stills remains mystery.
- Deep residual network (ResNet) and its variants make use of skip connection to train much deeper architectures and achieve the state-of-the-art in many applications.
- ullet composition + skip connection o dynamic system



Dynamical System Viewpoint of ResNet

Residual block

$$x_{l+1} = x_l + f(x_l, W_l)$$

Closely connected with dynamic system in discrete time

$$x_{t+1} = x_t + f(x_t, W_t) \Delta t$$

The goal is to minimize certain loss function

$$\frac{1}{N} \sum_{i=1}^{N} \Phi(x_T^i, y^i) \quad \text{or} \quad \mathbb{E}_{(x_0, y) \sim \mu} \ \Phi(x_T, y)$$

Dynamical System Viewpoint of ResNet

Residual block

$$x_{l+1} = x_l + f(x_l, W_l)$$

Closely connected with dynamic system in discrete time

$$x_{t+1} = x_t + f(x_t, W_t) \Delta t$$

The goal is to minimize certain loss function

$$\frac{1}{N} \sum_{i=1}^{N} \Phi(x_T^i, y^i) \quad \text{ or } \quad \mathbb{E}_{(x_0, y) \sim \mu} \ \Phi(x_T, y)$$

- Motivate us to consider a formulation in continuous time independent of time resolution
- Allow us to study deep learning in a new framework that has intimate connections with differential equations, numerical analysis, and optimal control theory

Mathematical Formulation

Given the data-label joint distribution $(x_0, y_0) \sim \mu$ on $\mathbb{R}^d \times \mathbb{R}^l$, we aim to solve the following population risk minimization problem (E, 2017)

$$\inf_{\boldsymbol{\theta} \in L^{\infty}([0,T],\Theta)} J(\boldsymbol{\theta}) := \mathbb{E}_{\mu} \left[\Phi(x_T,y_0) + \int_0^T L(x_t,\theta_t) dt \right],$$
 Subject to $\dot{x}_t = f(x_t,\theta_t).$

$$T>0,$$
 time length (network "depth") $f:\mathbb{R}^d imes\Theta o\mathbb{R}^d,$ feed-forward dynamics $\Phi:\mathbb{R}^d imes\mathbb{R}^l o\mathbb{R},$ terminal loss function $L:\mathbb{R}^d imes\Theta o\mathbb{R},$ regularizer

The compositional structure is explicitly taken into account as time evolution (total time \approx network depth)

Related Work

- Early work: continuous-time analogs of deep neural networks (E, 2017, Haber and Ruthotto, 2017)
- Most work on the dynamical systems viewpoint of deep learning mainly focused on designing
 - new optimization algorithms: maximum principle based (Li et al., 2017, Li and Hao, 2018), neural ODE (Chen et al., 2018), layer-parallel training (Günther et al., 2018)
 - new network structures: stable structure (Haber and Ruthotto, 2017), multi-level structure (Lu et al., 2017, Chang et al., 2017), reversible structure (Chang et al., 2018)

However, the mathematical aspects has not been explored yet

 Mean-field optimal control itself is still an active area of research

Two Sides of the Same Coin: Optimal Control

Maximum principle (Pontrayagin, 1950s): – local characterization of optimal solution in terms of ODEs of state and co-state variables, giving necessary condition

Dynamic programming (Bellman, 1950s) – global characterization of the value function in terms of PDE (HJB equation), giving necessary and sufficient condition / later made rigorous by the development of viscosity solution by Crandall and Lions (1980s)

Intimately connected through the method of characteristics in Hamiltonian mechanics

Table of Contents

1. Introduction

2. Mean-Field Pontrayagin's Maximum Principle

3. Mean-Field Dynamic Programming Principle

4. Summary

Mean-Field Pontrayagin's Maximum Principle

We assume:

- (A1) The function f is bounded; f, L are continuous in θ ; and f, L, Φ are continuously differentiable with respect to x.
- (A2) The distribution μ has bounded support in $\mathbb{R}^d \times \mathbb{R}^l$.

Mean-Field Pontrayagin's Maximum Principle

We assume:

- (A1) The function f is bounded; f, L are continuous in θ ; and f, L, Φ are continuously differentiable with respect to x.
- (A2) The distribution μ has bounded support in $\mathbb{R}^d \times \mathbb{R}^l$.

Theorem (Mean-field PMP)

Let (A1), (A2) be satisfied and $\theta^* \in L^{\infty}([0,T],\Theta)$ be a solution of mean-field optimal control problem. Then, there exists absolutely continuous μ -a.s. stochastic processes x^* , p^* such that

$$\begin{split} \dot{x}_t^* &= f(x_t^*, \theta_t^*), & x_0^* &= x_0, \\ \dot{p}_t^* &= -\nabla_x H(x_t^*, p_t^*, \theta_t^*), & p_T^* &= -\nabla_x \Phi(x_T^*, y_0), \\ \mathbb{E}_\mu H(x_t^*, p_t^*, \theta_t^*) &= \max_{\theta \in \Theta} \mathbb{E}_\mu H(x_t^*, p_t^*, \theta), & a.e. \ t \in [0, T], \end{split}$$

where the Hamiltonian function $H:\mathbb{R}^d\times\mathbb{R}^d\times\Theta\to\mathbb{R}$ is given by $H(x,p,\theta)=p\cdot f(x,\theta)-L(x,\theta).$

Discussion of Mean-Field PMP

- It is a necessary condition for optimality
- What's new compared to classical PMP: the expectation over μ in the Hamiltonian maximization condition
- It includes, as a special case, the necessary conditions for the optimality of the sampled optimal control problem (by considering the empirical measure $\mu_N := \frac{1}{N} \sum_{i=1}^N \delta_{(x_0^i, y_0^i)}$)

$$\begin{split} \min_{\pmb{\theta} \in L^{\infty}([0,T],\Theta)} J_N(\pmb{\theta}) &:= \frac{1}{N} \sum_{i=1}^N \left[\Phi(x_T^i,y_0^i) + \int_0^T L(x_t^i,\theta_t) dt \right], \\ \text{subject to} \qquad \dot{x}_t^i &= f(x_t^i,\theta_t), \qquad i = 1,\dots,N. \end{split}$$

Small-Time Uniqueness

Uniqueness + existence: necessary condition becomes sufficient

In the sequel, assume

• (A1') f is bounded; f, L, Φ are twice continuously differentiable with respect to both x, θ , with bounded and Lipschitz partial derivatives.

Small-Time Uniqueness

Uniqueness + existence: necessary condition becomes sufficient

In the sequel, assume

• (A1') f is bounded; f, L, Φ are twice continuously differentiable with respect to both x, θ , with bounded and Lipschitz partial derivatives.

Theorem (Small-time uniqueness)

Suppose that $H(x,p,\theta)$ is strongly concave in θ , uniformly in $x,p\in\mathbb{R}^d$, i.e. $H(x,p,\theta)+\lambda_0I\preceq 0$ for some $\lambda_0>0$. Then, for sufficiently small T, the solution of the PMP is unique.

Remark

- The strong concavity of the Hamiltonian does not imply that the loss function J is strongly convex, or even convex: $f(x,\theta) = \theta \sigma(x), L(x) = \frac{1}{2} \lambda ||\theta||^2.$
- ullet small T o low capacity model (the number of parameters is still infinite)

From Mean-Field PMP to Sampled PMP

Goal:

From Mean-Field PMP to Sampled PMP

Goal:

Strategy: Denote

$$\dot{x}_t^{\theta} = f(x_t^{\theta}, \theta_t), \qquad x_0^{\theta} = x_0,
\dot{p}_t^{\theta} = -\nabla_x H(x_t^{\theta}, p_t^{\theta}, \theta_t), \qquad p_T^{\theta} = -\nabla_x \Phi(x_T^{\theta}, y_0).$$

Assume the solution of mean-field PMP satisfies

$$F(\theta^*)_t := \mathbb{E}\nabla_{\theta}H(x_t^{\theta^*}, p_t^{\theta^*}, \theta_t^*) = 0.$$

We wish to find the solution $heta^N$ (random variable) of the random equation

$$F_N(\boldsymbol{\theta}^N)_t := \frac{1}{N} \sum_{i=1}^N \nabla_{\theta} H(x_t^{\boldsymbol{\theta}^N,i}, p_t^{\boldsymbol{\theta}^N,i}, \theta_t^N) = 0.$$

This can be done through a contraction mapping

$$G_N(\boldsymbol{\theta}) := \boldsymbol{\theta} - DF_N(\boldsymbol{\theta}^*)^{-1}F_N(\boldsymbol{\theta}).$$

Definition

For $\rho>0$ and $x\in U$, define $S_{\rho}(x):=\{y\in U:\|x-y\|\leq\rho\}$. We say that the mapping F is stable on $S_{\rho}(x)$ if there exists a constant $K_{\rho}>0$ such that for all $y,z\in S_{\rho}(x)$,

$$||y-z|| \le K_{\rho}||F(y)-F(z)||.$$

Definition

For $\rho>0$ and $x\in U$, define $S_{\rho}(x):=\{y\in U:\|x-y\|\leq \rho\}$. We say that the mapping F is stable on $S_{\rho}(x)$ if there exists a constant $K_{\rho}>0$ such that for all $y,z\in S_{\rho}(x)$,

$$||y-z|| \le K_{\rho} ||F(y)-F(z)||.$$

Theorem (Neighboring solution for sampled PMP)

Let θ^* be a solution F = 0, which is stable on $S_{\rho}(\theta^*)$ for some $\rho > 0$. Then, there exists positive constants s_0, C, K_1, K_2 and $\rho_1 < \rho$ and a random variable $\theta^N \in S_{\rho_1}(\theta^*) \subset L^{\infty}([0,T],\Theta)$, such that

$$\mu[\|\boldsymbol{\theta} - \boldsymbol{\theta}^N\|_{L^{\infty}} \ge Cs] \le 4 \exp\left(-\frac{Ns^2}{K_1 + K_2s}\right), \qquad s \in (0, s_0],$$
$$\mu[\boldsymbol{F}_N(\boldsymbol{\theta}^N) \ne 0] \le 4 \exp\left(-\frac{Ns_0^2}{K_1 + K_2s_0}\right).$$

In particular, ${m heta}^N o {m heta}^*$ and ${m F}_N({m heta}^N) o 0$ in probability.

Theorem

Let θ^* be a solution of the mean-filed PMP such that there exists $\lambda_0>0$ satisfying that for a.e. $t\in[0,T]$, $\mathbb{E}\nabla^2_{\theta\theta}H(x^{\theta^*}_t,p^{\theta^*}_t,p^*_t)+\lambda_0I\preceq 0$. Then the random variable θ^N defined previously satisfies, with probability at least $1-6\exp\left[-(N\lambda_0^2)/(K_1+K_2\lambda_0)\right]$, that θ^N_t is a strict local maximum of sampled Hamiltonian $\frac{1}{N}\sum_{i=1}^N H(x^{\theta^N,i}_t,p^{\theta^N,i}_t,\theta)$. In particular, if the finite-sampled Hamiltonian has a unique local maximizer, then θ^N is a solution of the finite-sampled PMP with the same high probability.

Theorem

Let θ^* be a solution of the mean-filed PMP such that there exists $\lambda_0>0$ satisfying that for a.e. $t\in[0,T]$, $\mathbb{E}\nabla^2_{\theta\theta}H(x^{\theta^*}_t,p^{\theta^*}_t,\theta^*_t)+\lambda_0I\preceq 0$. Then the random variable θ^N defined previously satisfies, with probability at least $1-6\exp\left[-(N\lambda_0^2)/(K_1+K_2\lambda_0)\right]$, that θ^N_t is a strict local maximum of sampled Hamiltonian $\frac{1}{N}\sum_{i=1}^N H(x^{\theta^N,i}_t,p^{\theta^N,i}_t,\theta)$. In particular, if the finite-sampled Hamiltonian has a unique local maximizer, then θ^N is a solution of the finite-sampled PMP with the same high probability.

Theorem

Let θ^N be the random variable defined previously. Then there exist constants K_1, K_2 such that,

$$\mathbb{P}[|J(\boldsymbol{\theta}^N) - J(\boldsymbol{\theta}^*)| \ge s] \le 4 \exp\left(-\frac{Ns^2}{K_1 + K_2s}\right), \quad s \in (0, s_0].$$

Table of Contents

1. Introduction

- 2. Mean-Field Pontrayagin's Maximum Principle
- 3. Mean-Field Dynamic Programming Principle
- 4. Summary

Mean-Field Dynamic Programming Principle

Key idea: take the joint distribution of (x_t, y_0) as state variable in Wasserstein space and consider the associated value function as solution of an infinite-dimensional Hamilton-Jacobi-Bellman (HJB) equation. Finally obtain uniqueness, regardless of time length.

Mean-Field Dynamic Programming Principle

Key idea: take the joint distribution of (x_t,y_0) as state variable in Wasserstein space and consider the associated value function as solution of an infinite-dimensional Hamilton-Jacobi-Bellman (HJB) equation. Finally obtain uniqueness, regardless of time length.

Notation:

w	concatenation of (x,y) as $(d+l)$ -dimensional variable
$(\Omega, \mathcal{F}, \mathbb{P})$	fixed probability space, ${\mathcal F}$ is the Borel $\sigma-$ algebra of ${\mathbb R}^{d+l}$
$L^2(\mathcal{F}; \mathbb{R}^{d+l})$	the space of square-integrable random variables with L^2 metric $% \left({{{\cal L}_{\rm s}}} \right)$
$\mathcal{P}_2(\mathbb{R}^{d+l})$	the space of square-integrable measures with 2-Wasserstein metric $$

$$W \in L^2(\mathcal{F}; \mathbb{R}^{d+l}) \iff \mathbb{P}_W \in \mathcal{P}_2(\mathbb{R}^{d+l})$$

We use $\bar{f}(w,\theta), \bar{L}(w,\theta), \bar{\Phi}(w)$ to denote corresponding functions in the extended (d+l)-dimensional space (e.g. $\bar{\Phi}(w) := \Phi(x,y)$).

Notation (cont.)

Given $\xi \in L^2(\mathcal{F}, \mathbb{R}^{d+l})$ and a control process $\theta \in L^\infty([0,T],\Theta)$, we consider the following dynamic system for $t \leq s \leq T$:

$$W_s^{t,\xi,\theta} = \xi + \int_t^s \bar{f}(W_\tau^{t,\xi,\theta},\theta_\tau) d\tau.$$

Let $\mu=\mathbb{P}_{\xi}\in\mathcal{P}_2(\mathbb{R}^{d+l})$, we denote the law of $W^{t,\xi,\pmb{\theta}}_s$ for simplicity by

$$\mathbb{P}_{s}^{t,\mu,\pmb{\theta}}\coloneqq\mathbb{P}_{W_{s}^{t,\xi,\pmb{\theta}}}.$$

Notation (cont.)

Given $\xi \in L^2(\mathcal{F}, \mathbb{R}^{d+l})$ and a control process $\theta \in L^\infty([0,T],\Theta)$, we consider the following dynamic system for $t \leq s \leq T$:

$$W_s^{t,\xi,\theta} = \xi + \int_t^s \bar{f}(W_\tau^{t,\xi,\theta},\theta_\tau) d\tau.$$

Let $\mu=\mathbb{P}_{\xi}\in\mathcal{P}_2(\mathbb{R}^{d+l})$, we denote the law of $W^{t,\xi,\pmb{\theta}}_s$ for simplicity by

$$\mathbb{P}^{t,\mu,oldsymbol{ heta}}_s\coloneqq\mathbb{P}_{W^{t,\xi,oldsymbol{ heta}}_s}.$$

In the sequel, we assume

- (A1") f, L, Φ is bounded; f, L, Φ are Lipschitz continuous with respect to x, and the Lipschitz constants of f and L are independent of θ .
- (A2") $\mu \in \mathcal{P}_2(\mathbb{R}^{d+l})$.

Continuity of Value Function and Mean-Field DPP

We rewrite the time-dependent objective functional and value function as

$$J(t, \mu, \boldsymbol{\theta}) = \langle \bar{\Phi}(.), \mathbb{P}_{T}^{t,\mu,\boldsymbol{\theta}} \rangle + \int_{t}^{T} \langle \bar{L}(., \boldsymbol{\theta}_{s}), \mathbb{P}_{s}^{t,\mu,\boldsymbol{\theta}} \rangle ds,$$
$$v^{*}(t, \mu) = \inf_{\boldsymbol{\theta} \in L^{\infty}([0,T],\Theta)} J(t, \mu, \boldsymbol{\theta}).$$

Continuity of Value Function and Mean-Field DPP

We rewrite the time-dependent objective functional and value function as

$$J(t, \mu, \boldsymbol{\theta}) = \langle \bar{\Phi}(.), \mathbb{P}_{T}^{t,\mu,\boldsymbol{\theta}} \rangle + \int_{t}^{T} \langle \bar{L}(., \boldsymbol{\theta}_{s}), \mathbb{P}_{s}^{t,\mu,\boldsymbol{\theta}} \rangle ds,$$
$$v^{*}(t, \mu) = \inf_{\boldsymbol{\theta} \in L^{\infty}([0,T],\Theta)} J(t, \mu, \boldsymbol{\theta}).$$

Theorem (Lipschitz continuity of value function)

The function $(t,\mu) \mapsto J(t,\mu,\boldsymbol{\theta})$ is Lipschitz continuous on $[0,T] \times \mathcal{P}_2(\mathbb{R}^{d+l})$, uniformly with respect to $\boldsymbol{\theta}$, and the value function $v^*(t,\mu)$ is Lipschitz continuous on $[0,T] \times \mathcal{P}_2(\mathbb{R}^{d+l})$.

Continuity of Value Function and Mean-Field DPP

We rewrite the time-dependent objective functional and value function as

$$J(t, \mu, \boldsymbol{\theta}) = \langle \bar{\Phi}(.), \mathbb{P}_{T}^{t,\mu,\boldsymbol{\theta}} \rangle + \int_{t}^{T} \langle \bar{L}(., \boldsymbol{\theta}_{s}), \mathbb{P}_{s}^{t,\mu,\boldsymbol{\theta}} \rangle ds,$$
$$v^{*}(t, \mu) = \inf_{\boldsymbol{\theta} \in L^{\infty}([0,T],\Theta)} J(t, \mu, \boldsymbol{\theta}).$$

Theorem (Lipschitz continuity of value function)

The function $(t,\mu) \mapsto J(t,\mu,\theta)$ is Lipschitz continuous on $[0,T] \times \mathcal{P}_2(\mathbb{R}^{d+l})$, uniformly with respect to θ , and the value function $v^*(t,\mu)$ is Lipschitz continuous on $[0,T] \times \mathcal{P}_2(\mathbb{R}^{d+l})$.

Theorem (Mean-field DPP)

For all $0 \le t \le \hat{t} \le T$, $\mu \in \mathcal{P}_2(\mathbb{R}^{d+l})$, we have

$$v^*(t,\mu) = \inf_{\boldsymbol{\theta} \in L^{\infty}([0,T],\Theta)} \left[\int_t^{\hat{t}} \langle \bar{L}(.,\boldsymbol{\theta}_s), \mathbb{P}_s^{t,\mu,\boldsymbol{\theta}} \rangle \, ds + v^*(\hat{t}, \mathbb{P}_{\hat{t}}^{t,\mu,\boldsymbol{\theta}}) \right].$$

Derivative in Wasserstein Space

To define derivative w.r.t. measure, we lift function $u:\mathcal{P}_2(\mathbb{R}^{d+l})\to\mathbb{R}$ into its "extension" $U:L^2(\mathcal{F};\mathbb{R}^{d+l})\to\mathbb{R}$ by

$$U[X] = u(\mathbb{P}_X), \quad \forall X \in L^2(\mathcal{F}; \mathbb{R}^{d+l}).$$

If U is Fréchet differentiable, we can define

$$\partial_{\mu}u(\mathbb{P}_X)(X) = DU(X),$$

for some function $\partial_{\mu}u(\mathbb{P}_X):\mathbb{R}^{d+l}\to\mathbb{R}^{d+l}$.

Derivative in Wasserstein Space

To define derivative w.r.t. measure, we lift function $u:\mathcal{P}_2(\mathbb{R}^{d+l})\to\mathbb{R}$ into its "extension" $U:L^2(\mathcal{F};\mathbb{R}^{d+l})\to\mathbb{R}$ by

$$U[X] = u(\mathbb{P}_X), \quad \forall X \in L^2(\mathcal{F}; \mathbb{R}^{d+l}).$$

If U is Fréchet differentiable, we can define

$$\partial_{\mu}u(\mathbb{P}_X)(X) = DU(X),$$

for some function $\partial_{\mu}u(\mathbb{P}_X):\mathbb{R}^{d+l}\to\mathbb{R}^{d+l}$.

Given a smooth $u:\mathcal{P}_2(\mathbb{R}^{d+l})\to\mathbb{R}$ and the following dynamic system,

$$W_t = \xi + \int_0^t \bar{f}(W_s) ds, \quad \xi \in L^2(\mathcal{F}; \mathbb{R}^{d+l}),$$

we have the chain rule

$$u(\mathbb{P}_{W_t}) = u(\mathbb{P}_{W_0}) + \int_0^t \langle \partial_{\mu} u(\mathbb{P}_{W_s})(.) \cdot \bar{f}(.), \, \mathbb{P}_{W_s} \rangle \, ds.$$

Infinite-Dimensional HJB Equation

Now we can write down the HJB equation, with $v(t,\mu)$ being the unknown solution,

$$\begin{cases} \frac{\partial v}{\partial t} + \inf_{\theta_t \in \Theta} \left\langle \partial_{\mu} v(t, \mu)(.) \cdot \bar{f}(., \theta_t) + \bar{L}(., \theta_t), \, \mu \right\rangle = 0, & \text{on } [0, T) \times \mathcal{P}_2(\mathbb{R}^{d+l}), \\ v(T, \mu) = \langle \bar{\Phi}(.), \mu \rangle, & \text{on } \mathcal{P}_2(\mathbb{R}^{d+l}). \end{cases}$$
(1)

Infinite-Dimensional HJB Equation

Now we can write down the HJB equation, with $v(t,\mu)$ being the unknown solution,

$$\begin{cases} \frac{\partial v}{\partial t} + \inf_{\theta_t \in \Theta} \left\langle \partial_{\mu} v(t, \mu)(.) \cdot \bar{f}(., \theta_t) + \bar{L}(., \theta_t), \, \mu \right\rangle = 0, & \text{on } [0, T) \times \mathcal{P}_2(\mathbb{R}^{d+l}), \\ v(T, \mu) = \langle \bar{\Phi}(.), \mu \rangle, & \text{on } \mathcal{P}_2(\mathbb{R}^{d+l}). \end{cases}$$
(1)

Theorem (Verification theorem)

Let v be function in $C^{1,1}([0,T]\times \mathcal{P}_2(\mathbb{R}^{d+l}))$. If v is a solution to (1) and there exists $\theta^*(t,\mu)$, a mapping $(t,\mu)\mapsto \theta$ attaining the infimum in (1), then $v(t,\mu)=v^*(t,\mu)$, and θ^* is the optimal feedback control.

Lifted HJB Equation

For convenience, we define the Hamiltonian

$$H(\mu,p):\mathcal{P}^2(\mathbb{R}^{d+l}) imes L^2_{\mu}(\mathbb{R}^{d+l}) o\mathbb{R}$$
 as

$$H(\mu, p) \coloneqq \inf_{\theta \in \Theta} \left\langle p(.) \cdot \bar{f}(., \theta) + \bar{L}(., \theta), \, \mu \right\rangle.$$

Lifted HJB Equation

For convenience, we define the Hamiltonian

$$H(\mu,p): \mathcal{P}^2(\mathbb{R}^{d+l}) imes L^2_{\mu}(\mathbb{R}^{d+l}) o \mathbb{R}$$
 as

$$H(\mu,p) \coloneqq \inf_{\theta \in \Theta} \left\langle p(.) \cdot \bar{f}(.,\theta) + \bar{L}(.,\theta), \, \mu \right\rangle.$$

Then the original HJB can be rewritten as

$$\begin{cases} \frac{\partial v}{\partial t} + H(\mu, \partial_{\mu} v(t, \mu)) = 0, & \text{on } [0, T) \times \mathcal{P}_2(\mathbb{R}^{d+l}), \\ v(T, \mu) = \langle \bar{\Phi}(.), \mu \rangle, & \text{on } \mathcal{P}_2(\mathbb{R}^{d+l}). \end{cases}$$

The "lifted" Bellman equation is formally like above except that the state space is enlarged

$$\begin{cases} \frac{\partial V}{\partial t} + \mathcal{H}(\xi, DV(t, \xi)) = 0, & \text{on } [0, T) \times L^2(\mathcal{F}; \mathbb{R}^{d+l}), \\ V(T, \xi) = \mathbb{E}[\bar{\Phi}(\xi)], & \text{on } L^2(\mathcal{F}; \mathbb{R}^{d+l}). \end{cases}$$

Viscosity Solution: Weak Solution of PDE

Intuition: use monotonicity of the value function and sidestep non-differentiability through the test function

Definition

We say that a bounded, uniformly continuous function u is a viscosity subsolution (supersolution) to the original HJB equation (1) if the lifted function U defined by $U(t,\xi)=u(t,\mathbb{P}_\xi)$ is a viscosity subsolution (supersolution) to the lifted Bellman equation, that is

$$U(T,\xi) \le (\ge) \mathbb{E}[\bar{\Phi}(\xi)],$$

and for any test function $\psi \in C^{1,1}([0,T] \times L^2(\mathcal{F};\mathbb{R}^{d+l}))$ such that the map $U-\psi$ has a local maximum (minimum) at $(t_0,\xi_0) \in [0,T) \times L^2(\mathcal{F};\mathbb{R}^{d+l})$, one has

$$\partial_t \psi(t_0, \xi_0) + \mathcal{H}(\xi_0, D\psi(t_0, \xi_0)) \ge (\le)0.$$

Existence and Uniqueness

Theorem (Existence)

The value function $v^*(t,\mu)$ is a viscosity solution to the HJB equation (1).

Existence and Uniqueness

Theorem (Existence)

The value function $v^*(t,\mu)$ is a viscosity solution to the HJB equation (1).

Theorem (Uniqueness)

Let u_1 and u_2 be viscosity subsolution and supersolution to (1) respectively. Then $u_1 \leq u_2$. Consequently, the value function $v^*(t,\mu)$ is the unique viscosity solution to the HJB equation (1). In particular, if the Hamiltonian $H(\mu,p)$ is defined on a unique minimizer θ^* , then the optimal control process θ^* is also unique.

Table of Contents

1. Introduction

- 2. Mean-Field Pontrayagin's Maximum Principle
- 3. Mean-Field Dynamic Programming Principle
- 4. Summary

Summary

- 1. We introduced the mathematical formulation of the population risk minimization problem of continuous-time deep learning in the context of mean-field optimal control.
- Mean-field Pontrayagin's maximum principle and mean-field dynamic programming principle (HJB equation) provide us new perspectives towards theoretical understanding of deep learning: uniqueness, generalization estimates in finite-sample case with explicit rate, etc. More to be developed.
- These results serve to establish a mathematical foundation for investigating the theoretical and algorithmic connections between optimal control and deep learning.

Thank you for your attention!