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Cucker-Smale model (2007)

We study macroscopic versions of systems modeling self-organized
collective dynamics of ”agents”:


ẋi = vi,

v̇i =
λ

N

N∑
j=1

φ(|xi − xj |)(vj − vi),
(xi, vi) ∈ Ω× Rn (1)

Here, φ is a positive, bounded influence function which models the
binary interactions among agents in Ω. If φ(r)→ 0 slower than 1/r
then ”flocking” occurs in large time: max{|xi − xj |} < D, and
vi → v̄.
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Motsch-Tadmor model (2011)


ẋi = vi,

v̇i =
λ

Φi

N∑
j=1

φ(|xi − xj |)(vj − vi), Φi =

N∑
j=1

φ(|xi − xj |)

This model is equipped with adaptive normalization to compensate
for influence of massive congregation of agents at large distances.
Harder to study analytically due to lack of symmetry.
There is a body of literature on both models exploring various
aspects: regularity flocking, kinetic, macroscopic descriptions, etc.:
S.M. Ahn, H. Choi, Heesun, S.-Y. Ha, H. Lee, E. Carlen, M.
Carvalho, P. Degond, B. Wennberg, J.A. Carrillo, Y.-P. Choi, P.
Mucha, S. Peszek, E. Tadmor, C. Tan, S. Pérez, M. Fornasier, J.
Rosado, G. Toscani, P. Degond, A. Frouvelle, J.-G. Liu, V. Panferov,
T. Karper, A. Mellet, K. Trivisa, H. Levine, W.-J. Rappel, I. Cohen,
T. Vicsek, A. Zafeiris
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From microscopic to kinetic
description

S.-Y. Ha, E. Tadmor (2008): derivation of a mean-field model based
on BBGKY hierarchy, molecular chaos assumption:

∂tf + v · ∇xf + λ∇v ·Q(f, f) = 0,

where

Q(f, f)(x, v, t) =

∫
R2n

φ(|x− y|)(v∗ − v)f(x, v∗, t)dv∗dy.

T. Karper, A. Mellet and K. Trivisa (2015): kinetic version of MT
model. Flocking is shown in the sense that

S(t) = sup{|x− y| : x, y ∈ supp f}

remains of bounded diameter, and alignment occurs

V (t) = sup{|v − v′| : v, v′ ∈ supp f} → 0.
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From kinetic to macroscopic

Evolution of macroscopic density and momentum

ρ(x, t) =

∫
Rn
f(x, v, t)dv, ρu(x, t) =

∫
Rn
vf(x, v, t)dv

can be derived from kinetic formulation via a moment closure
procedure or by considering a monokinetic ansatz

f(x, v, t) = ρ(x, t)δ(v − u(x, t))

or by formal pass to a ”large crowds” limit

fN =
1

N

N∑
i=1

δxi(x)⊗ δvi(v)

S.-Y. Ha, E. Tadmor (2008), J. Carrillo, Y.-P. Choi, and S. Perez
(2017).
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We obtain the following coupled system
ρt +∇ · (ρu) = 0,

ut + u · ∇u =

∫
R
φ(|x− y|)(u(y, t)− u(x, t))ρ(y, t) dy

(x, t) : Rn × [0,∞). The velocity equation is ”Burgers with
commutator forcing”:

ut + u · ∇u = L(ρu)− L(ρ)u

where Lf = φ ∗ f in the L1-kernel case, or

Lf =

∫
R
φ(|x− y|)(f(y)− f(x))dy

in the singular case. Clearly if φ > 0 the u-equation is dissipative.
We study the system in the context of smooth φ, φ(r) = 1

rn+α , or
local L = ∆.
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1D: the ”e” quantity
Due to the commutator structure of the forcing the system in 1D has
a special quantity

e = ux + Lρ,
which is transported

et + (ue)x = 0.

In another form, ”e” satisfies the logistic equation

D

Dt
e = e(Lρ− e).

Theorem (Carillo, Choi, Tadmor, Tan, 2014, 2016)
Case of smooth φ > 0. If e0(x0) < 0, then the solution blows up in
finite time. If e0 ≥ 0, then there exists a classical global solution
(u, ρ) ∈W 1,∞ × L∞ and, provided

∫
R φ(x) dx =∞, the system

flocks with fast alignment:

diamx supp ρ(·, t) ≤ D∞ <∞,
V (t) = maxu(t)−minu(t) ≤ Ce−δt.
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Theorem (Tadmor, RS, 2017)
Let inf φ > 0 on T or R. For any initial conditions
(u0, ρ0) ∈W 2,∞ × (W 1,∞ ∩ L1) with e0 > 0, the global solution
flocks in a strong sense: there exist ū = const, and ρ∞ ∈W 1,∞ ∩ L1

such that

|u(t)− ū|∞ + |ux(t)|∞ + |uxx(t)|∞ + |ρ(t)− ρ̄(t)|Cβ ≤ Ce−δt,

for all t > 0 and β < 1, and where ρ̄(t) = ρ∞(x− tū).
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Singular kernel, φ = 1
r1+α

The case is interesting since it models strong influence of local
interactions among agents, and weak but not zero long range
interactions.

ρt + (ρu)x = 0,

ut + uux =

∫
R
ρ(y, t)

u(y, t)− u(x, t)

|x− y|1+α
dy = [Λα, u]ρ

Λα = −(−∂xx)α/2. At α = 1 the u-equation becomes critical, like
Burgers, but with inhomogeneous dissipation controlled by the
density. Such control is impossible on R due to finite mass

M =

∫
ρ(t, x) dx.

So, we restrict ourselves to T and assume no vacuum ρ0 > 0.
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Theorem (E. Tadmor, RS, 2016-2017)
Let 1 ≤ α < 2 on the periodic torus T. For any initial condition
(u0, ρ0) ∈ H3 ×H2+α away from the vacuum there exists a unique
global solution (ρ, u) ∈ L∞([0,∞);H3 ×H2+α). Moreover, there
exists C, δ > 0 such that

|u(t)− ū|∞ + |ux(t)|∞ + |uxx(t)|∞ + |uxxx(t)|2 ≤ Ce−δt, (2)

and there is exponential strong flocking towards (ū, ρ̄), where
ū = Momentum/Mass and ρ̄ = ρ∞(x− tū) ∈ H3,

|ρ(t)− ρ̄(t)|Hs ≤ Ce−δt, t > 0. (3)

Theorem (T. Do, A. Kiselev, L. Ryzhik, and C. Tan, 2017)
Global existence for all 0 < α < 1 with fast alignment of velocity:

|u(t)− ū|∞ < Ce−δt.
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Fundamentals

• u satisfies maximum (minimum) principle.

• The e-quantity
e = ux + Λαρ,

relates higher order terms while itself being of lower order.
Indeed,

D

Dt

e

ρ
= 0.

So, |e| ≤ Cρ. One can lift this to higher order |e(k)| ≤ C|ρ(k)|.
• If 0 < α < 2, the density remains bounded above and below

uniformly in time.
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Replacing ux = e− Λαρ in the mass equation

ρt + uρx + uxρ = 0,

we rewrite it as
ρt + uρx + eρ = ρΛαρ.

Recall, that |e| ≤ ρ, so the equation is of advection-diffusion type
with bounded forcing. Equation for momentum m = uρ shares
similar structure

mt + umx + em = ρΛαm.
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Both blend into a general class of forced fractional parabolic
equations with a rough drift

vt + b · ∇xv =

∫
K(x, h, t)(u(x+ h)− u(x))dh+ f

where

K(x, h, t) = ρ(x)
1

|h|1+α
.

Using lower bound on the density the kernel falls under the
assumptions of Schwab and Silverstre, 2016, provided α ≥ 1. Hence,
there exists an γ > 0 such that

|ρ|Cγ(T×[t+1,t+2)) ≤ C(|ρ|L∞(t,t+2) + |ρe|L∞(t,t+2))

|m|Cγ(T×[t+1,t+2)) ≤ C(|m|L∞(t,t+2) + |me|L∞(t,t+2))

|u|Cγ(T×[t+1,t+2)) ≤ C(|u|L∞(t,t+2), |ρ|L∞(t,t+2)),

But, no Schauder estimates are known for these equations! H. Dong,
T. Jin: no drift or force; H. Chang: b = const; L. Silvestre: bounded
drift and force, but pure fractional Laplacian Λα; Imbert-Jin-RS:
non-symmetric kernel but no drift.
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Elements of the proof, α = 1

First we establish control over ρ′:

∂t|ρ′|2 + e′ρρ′ + 2e|ρ′|2 = −2|ρ′|2Λρ− ρρ′Λρ′.

We can bound the term on the l.h.s. by quadratic

|e′ρρ′ + 2e|ρ′|2| ≤ C|ρ′|2.

So, ρρ′Λρ′ fights |ρ′|2Λρ (both originating from dissipation!)

ρρ′Λρ′ ≥ cDρ′(x) = c

∫
R

|ρ′(x)− ρ′(x+ z)|2

|z|2
dz.

Λρ(x) =

∫
|z|<r

ρ′(x+ z)− ρ′(x)

z
dz −

∫
r<|z|<2π

ρ(x+ z)− ρ(x)

|z|2
dz

−
∫
2π<|z|

ρ(x+ z)− ρ(x)

|z|2
dz.
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Optimizing we arrive at

d

dt
|ρ′|2 ≤ c1 + c2|ρ′|2+γ − c3Dρ′(x),

Using the nonlinear maximum bound from Constantin-Vicol, 2012:

Dρ′(x) ≥ c4
|ρ′(x)|3

|ρ|∞
≥ c5|ρ′(x)|3,

we can further hide the quadratic term into dissipation to obtain

d

dt
|ρ′|2 ≤ c1 + c2|ρ′|2+γ − c3|ρ′|3, (4)

This implies control over u′, then u′′, then u′′′, then e′′, then ρ′′′.
Hence global existence.
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Strong Flocking

The velocity alignment goes to its natural limit ū = P/M . Denote
ρ̃(x, t) := ρ(x+ tū, t). Then ρ̃ satisfies

ρ̃t + (u− ū)ρ̃x + uxρ̃ = 0.

We have |u− ū|∞ < e−δt, and |ρ| < C. We need

|ux|∞ < e−δt.

If we have that, then |ρ̃t|∞ < Ce−δt. This proves that ρ̃(t) is Cauchy
as t→∞, and hence there exists a unique limiting state, ρ∞(x),
such that

|ρ̃(·, t)− ρ∞(·)|∞ < C1e
−δt.

Shifting x this can be expressed in terms of ρ and
ρ̄(·, t) = ρ∞(x− tū)

|ρ(·, t)− ρ̄(·, t)|∞ < C1e
−δt.
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d

dt
|u′|2 ≤ c2|u′|3 + c6|u′|2 − c7Du′(x).

Lemma (Enhancement of dissipation by small amplitudes)
Let u ∈ C1(T) be a given function with variation

V = maxu−minu.

There is an absolute constant c1 > 0 such that the following
pointwise estimate holds

Du′(x) ≥ c1
|u′(x)|3

V
. (5)

In addition, there is an absolute constant c2 > 0 such that for all
B > 0 one has

Du′(x) ≥ B|u′(x)|2 − c2B3V 2. (6)

Done.
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Case 0 < α < 1

Recall that e is of lower order. Let us assume that e = 0. Then

ux = −Λαρ

So, the drift is more regular

u ∼ ∂α−1x ρ ∈ C1−α.

Hence, the density equation

ρt + uρx = ρΛαρ

is critical for all 0 < α < 1! DKRT result is based on construction of
modulus of continuity as previously for other critical equations such
as Burgers, SQG. Our argument is based on nonlinear maximum
principle of Constantin-Vicol adopted to nonlinear dissipation. The
latter gives quantitative estimates on long time behavior → strong
flocking. Strong flocking remains open in the range 0 < α < 1.
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P.G. Lemarié & F. Lelievre model

ut + u · ∇u+∇p = 0.

P.G. Lemarié & F. Lelievre looked into scalar model replacing ∇ with
Λ and p with u:

ut − u|∇|u+ |∇|(u2) = ν∆u.

Even the inviscid model is dissipative ”at small scales”

ut = u|∇|u− |∇|(u2) =

∫
R
u(y, t)

u(y, t)− u(x, t)

|x− y|2
dy.

Theorem (C.Imbert, F.Vigneron, RS, 2015)
For u0 > 0 with u0 ∈ L∞(T) there exists a global self-regularizing
solution u ∈ C∞t,x((ε,∞)× T). For u0 < 0 there is a finite time
blowup.

Symmetrization of the kernel → DiGiorgi via Caffarelli-Chang-Vasseur
→ Schauder (Imbert-Jin-RS) → Bootstrap.
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Thank you!


