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Motivation

2

v Comprehensive mathematical models
ØComplex dynamical system
ØMicroscopic mechanism, detailed interactions, many variables, etc.
ØApplications: growing interest in nanoscale devices and structures

v Challenges
ØLarge number of degrees of freedom

Ømultiple time scales

Øoverwhelming computational cost

Large dimensional system
(full dynamics)

Reduced model for certain quantities
of interest

v Question: how to find alternative reduced models with fewer variables?



Outline

3

I. Projection formalism

1. Conventional projection formalism

2. Systematic approximations and parameter estimation

II. Connection to Galerkin projections

1. Reduced-order techniques

2. Subspace projections.

III. Applications to heat conduction models in molecular dynamics

1. Energy transport example

2. A new projection formalism – oblique projection

3. Connections to stochastic PDEs

IV. Summary



Part I. Projection Formalism

NAKAJIMA 1958, MORI 1965, ZWANZIG 1973, CHORIN 1998, …
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Time evolution of observables
Nonlinear dynamical system: !′ = $ ! , ! 0 = !'.

Observable ( ), !' ≔ + ! ) , dim ( ≪ dim(!)

Time derivative 23( ), !' = 45 6 3
46 $ ! ) = 45 6 3

46
46 3
467

$ !' = 45 6 3
467

$ !'
Notation ( ) ≔ ( ), !' , ( ≔ ( 0, !' = + !'
Liouville operator 8 ≔ $ !' ⋅ :67 (independent of time)

Dynamics of ( ) 23( ) = 8( )
Time evolution ( ) = ;3<( 0
The equations are not closed. We will use projections.
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Choices of coarse-grain variables

Coarse-grain variables ! = #(%):
§ dim(a) ≪ dim(x).
§ representative of the overall dynamics.  

Specific choices:
§ % = %(, %*,⋯ , %,, %,-(,⋯%. = %̅, 0% . ! = %̅. (Chorin et al. 2002)

§ Fourier or generalized Fourier modes % = ∑3 4353 + ∑3 73 83 . ! = 4. (Chorin et al. 1998)

§ center of mass. 9: = ∑3∈<= >3%3 . ?: is a subset of atoms. 

§ reaction coordinates (collective variables, such as dihedral angles). 

§ local energy (Chu and Li 2018) @: = ∑3∈<=
(
*>3%̇3* + B3 % .

§ Local density, ∑3 C % − 43 E C(F − F3 E ) or correlation (Akcasu&Duderstadt 1969, Boley 1974) 

§ A self-adjoint operator G.
§ Density matrix: HI = EJKH.
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Choices of projection operators

q Neglecting fine-scale components: !" # = !" #̅, '# = " #̅ , 0 . (Chorin et al. 2002)

q Conditional expectation: !" # = * " # + # = , =
∫. / 0 1 / 23 4 / 5/

∫ 0 1 / 23 4 / 5/
. (Zwanzig 1961)

q !6 = 789 6 ⊗ ;9. Lindblad formalism.

q Orthogonal projection: !" # = ", +
<
+, +

< 2=
+. (Mori 1965)

§ Correlation: ", >
<
?@ = ∫ "? # >@ # ; # A#, or B2= ∫

C

D
78 ;EF" GH > 0 AH.

q Oblique projection: !" # = ", I
<
I, I

< 2=
I. (Chu & Li 2018, Lei & Li 2019)

§ dim I = dim(+)

§ I = −PQ(+)

q Projection of the flux (Chu & Li 2018)
§ Conservation law RS+ + P ⋅ V # = 0

§ Apply projection to V 7 → Generalized constitutive relation
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The general Mori-Zwanzig equation

q Define ! = # − %.
q Dyson’s formula '() = ∫+

( ' (,- )%.'-/)01 + '(/).
q We start with 3(4 5 = .4 5 = '().4 = '()%.4 + '()!.4.
q Orthogonal dynamics equation:

3(4 5 = '()%.4 + 6
+

(
' (,- )%.'-/)!.4 01 + '(/)!.4

q The first two terms are in principle functions of 4 1 , 0 ≤ 1 ≤ 5.
q The last term : 5 = '(/)!.4 is often regarded as random noise.

q The actual form will depend on the specific choice of the projection operator.
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Zwanzig’s projection (Zwanzig 1961, 1973)
Projection !" # = % " # & # = ' = (

)(+) ∫ " # . # / & # − ' 1# .

The Generalized Langevin Equation (for Hamiltonian systems, Hijon et al 2009):

34' 5 = 6 ' 5 − 7
8

4
9 ' 5 − : , : 3+< ' 5 − : 1: + >? 7

8

4
3+9 ' 5 − : , : 1: + @ 5

Markovian term 6 ' 5 ≔ B4C!D' = %[D& # |& # = '(5)].
Entropy <(') = >? lnΩ(')
Noise @ 5 = B4KCLD'
Kernel function 9 ', 5 = (

MN
% @ 5 @O 0 & # = '

Implementation difficulties (Chorin & Stinis 2007, Español et al. 2010)
§ conditional expectations 6(⋅) and 3< ⋅ -- constrained MD
§ Markovian approximation 9 ', 5 ≈ 9O ' /(5)
§ Higher order approximations are non-trivial
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Mori’s projection (Mori. 1965)

Projection operator: !" # = ", &' &, &' ()&.
The Generalized Langevin Equation (GLE): &′(-) = /&(-) − ∫2

3 4 5 & - − 5 65 + 8(-).
Markovian term: 93:!;& = ;&, &' &, &' ()& - =:Ω& - .
The memory term: a convolution

>
2

3
9 3(? :!;8 5 65 =>

2

3
9 3(? : ;8 5 , & &, &' ()& 65 =:−>

2

3
4 5 &(- − 5)65 .

The memory term becomes a linear convolution, with memory kernel,

4 - = − ;8 - , &' &, &' () = 8 - , @;& &, &' () = 8 - , 8 0 ' &, &' ()

The second fluctuation-dissipation theorem (Kubo 1966): 8 - , 8 0 ' = 4(-) &, &'
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Zwanzig’s example

A particle connected to harmonic springs

! = 1
2%&

' + ) * ++
,

1
2-,

' + 12.,
' /, − 1,*

'

The generalized Langevin equation

%*22 = −)2 * − 3
4

5
6 7 − 8 *2 8 98 + :(7).

The kernel function

6 7 =+
,

1,'
.,'

cos.,7.

: 7 is a stationary Gaussian process. : 7 + A , : A C = DEF6(7)
Extension to crystalline solids: (Li and E, 2007, Li 2010).
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Example: 1D chain (Li 2010, Chu and Li 2018).

Consider a linear ODE system !′′ = −%!, ! ∈ ℝ).
Define the CG variable * = +,! (linear displacements)
Projection operator as matrix projection, i.e. -. ! = .(++,!).
Let Σ = [Φ,Ψ] be an orthonormal matrix where Φ ∈ ℝ)×8, Ψ ∈ ℝ)× )98 , : ≪ < = =>.
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Piecewise constant averaging Piecewise linear averaging

GLE ?@@* A = −B* A − ∫D
@ E A − F * F GF + I A

Kernel function E A = +,%J KLF MA M9NJ,%+ , ΩN = Ψ,%Ψ.
Second fluctuation–dissipation theorem I A I,(A′) = PQRE A − AS .



Approximation of the memory term
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Averaged equation "̇ # = %" # − ' # ⋆ " # + *+,-.

Extended dynamics of the memory / = ' ⋆ "

Laplace transform of the kernel function Θ 1 = ∫
3

45
' # .67/9:#

Rational approximation ;<,< 1 = > − 1?@ − ⋯− 1<?<
6@

B3 + 1B@ + ⋯+ 1<B<

Approximation: /̃ 1 ≈ ;<,< 1 E" 1

Extended dynamics of auxiliary variables

"̇ = %" − /@
̇/@ = B@" + ?@/@ + /F
̇/F = BF" + ?F/@ + /G

⋯⋯

̇/< = BF" + ?</@

⟶ Approximate GLEs W
"̇ = Ω" − .Y/

/̇ = Z" + [/



Examples of low order approximations
q Zeroth order model

"̇ # = Γ" # + '(#)
q Equivalent approximation * # ≈ Γ, #

q How to determine Γ?
§ Standard maximum likelihood function from

Girsanov theorem gives Γ = 0
§ Green-Kubo type formula (Hijon et al 2006)

Γ = ⟨", "0⟩ 2
3

45
" # , " 6#

78

q First order model
"̇ # = Ω" # − ; #
;̇ # = <" # + =; # + '(#)

q Equivalent approximation * # ≈ >?@<
Sum of exponentials (including cosine and sine)
q How to determine <, =?
§ Green-Kubo type formula
§ Matching "̇, "̇ and ", "
§ < = "̇, "̇ ", " 78

§ = = −<Γ78
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Questions:

§ How to generalize the parameter estimation approach to higher order models?
§ How to relate these parameters to the time series of "?



Parameter Estimation
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Existing methods
§ Kalman filter (Fricks et al 2009, Harlim and Li 2015)
§ NARMAX (Chorin and Lu, 2015)

§ Linear response (Zhang, Harlim and Li 2019)
§ Machine learning?

Two-point Padé approximation
§ Long-time statistics

lim$→&'(,( * = lim$→&Θ *
§ Short-time statistics

'(,( 0 = Θ(0)
'(,(0 0 = Θ0(0)
'(,(00 0 = Θ00(0)

⋯⋯

§ As * goes to infinity,

Θ +∞ = lim4→56
7
5

8&
9 : ;<4=>:

§ As * ≈ 08 , Θ * = *9 0 + *@90 0 + *A90 0 + ⋯
Θ 0 = 0
Θ0 0 = 9 0 = Ċ, Ċ C, C <D

Θ00 0 = 290 5 = ⋯⋯



Approximation with Gaussian additive noise
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Markovian embedding of the GLE
4567 = Ω7 − ;<=
56= = >7 + @= + AB

B C is the standard Gaussian white noise 

Stability condition -- Lyapunov equation

Zeroth order approximation:

567 C = Γ7 C + AB C ,

Covariance of 7 isM

Γ= ⟨7, 7G⟩ ∫J
KL 7 C , 7 MC

NO
≈ QRST

ΓU +UΓ + AGA = 0

First order approximation:

567 C = Ω7 C − = C
56= C = >O7 C + @O= C + AB C

Parameters from Padé approximation
§ >O = 7̇, 7̇ 7, 7 NO

§ @O = −>OΓNO
§ @O>O + >O@OG + AGA = 0



Part II. Connections to Galerkin-
Petrov projection
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A reduced-order viewpoint 

The full dynamics (Langevin): 
!" = $, $" = &! − ($ + *+′(.)

A partition of the degrees of freedom: ! = Φ1 +Ψ3, $ = Φ4 +Ψ5
◦ Φ and Ψ: orthogonal matrices
◦ 1 and 4: Linear CG variables
◦ A GLE can also be derived (Ma, Li and Liu 2017).

The partitioned Langevin dynamics (Sweet et al 2008) 
3" = 5, 5" = −&663 − &671 − Γ674 + 96′(.)

We write it as :" = &: + ;< . + = . .
◦ Low dimensional input: < = 1, 4
◦ Low dimensional output: ?76 = −&763
◦ Reduced-order methods?
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Subspace projections (Ma, Li and Liu, 2019).

Stochastic reduced-order problem: !" = $! − &' + ) * , , * = -.!, /01.
Galerkin projection: ! ∈ &4567 8 , s.t., !" − $! + &' − ) * ⊥ &4567 : .
The projection yields an approximate kernel function and an approximate noise.

Question: Would the second fluctuation-dissipation theorem be satisfied automatically? 

Yes, if 8 = &, $&, $;&,⋯ , $ℓ& and : = $>.-, -, $.-,⋯ , $ℓ>?.- .
Computationally, the block Lanczos algorithm provides biorthogonal basis.  
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Galerkin and Mori’s projection of nonlinear dynamics 
A Hamiltonian system of ODEs: !" = $%& ! , ! = (), *)

Project , - onto a set of projection bases ./ /01
2 by: 

, - ≈ 4,(-): = ∑/01
2 7/ - ./(89)

Determine 7/ /01
2 by a set of test bases :/ /01

2

<̇=, :/ = 〈?4,, :/〉,          A = 1, … ,D
ĖF GH = EFGI ,    EF ≔ [71, 7L,…,72]   GH /M = ./, :M , GI /M = ?./, :M

Theorem (H Lei and X. Li). By choosing projection bases ./ /01
L = ,, ?, and test bases :/ /01

L =
?N1,, , , the Galerkin projection yields the same approximation of the memory function as the two-point 

Pade approximation. 

The noise has to be introduced separately.
In practice, the algorithms are more robust if the basis functions are orthogonalized, e.g., by the Lanczos
method. 
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Numerical example: diffusion process 
(Lei and Li, 2019, Lei, Baker and Li, 2017)
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• A tagged particle interacts with solvent particles

Fij =

(
a(1.0� rij/rc)eij , rij < rc,

0, rij > rc,

where rij = ri � rj , rij = |rij | and eij = rij/rij .

• Governed generalized Langevin equation

v := q̇ = p/m,

ṗ = ��

Z t

0
✓(t� s)v(s)ds+R(t).

• Markovian approximation (Einstein’s theory)

Z t

0
✓(t� s)v(s)ds ⇡

Z 1

0
✓(s)ds

�
v(t).

! " obtained from MD data

Tag parGcle in solvent



Construction of memory kernel
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Prediction of time-correlation function for protein dynamics 
(Chen, Li and Liu, J Chem Phys. 2014))

April 1, 201923

064112-8 Chen, Li, and Liu J. Chem. Phys. 141, 064112 (2014)

the trajectories are computed. Then, the eigenvectors
associated with the first 540 eigenvalues are selected.
These basis may not be localized. Nonetheless, we still
choose this subspace due to its importance in dimen-
sion reduction.

For Subspace-I and Subspace-II, the specific formula of
the RTB basis is as follows. Suppose we have the equilibrium
state x0, and the whole protein is divided into blocks. For the
kth block, the corresponding RTB basis are the six columns
of the following matrix:

⎡

⎢⎢⎢⎢⎢⎢⎣

T1 R1

T2 R2

...
...

TM
k

RM
k

⎤

⎥⎥⎥⎥⎥⎥⎦
, (57)

where

Ti =

⎡

⎢⎢⎣

√
mi 0 0

0
√

mi 0

0 0
√

mi

⎤

⎥⎥⎦ , (58)

Ri =

⎡

⎢⎢⎣

0 −√
miz

0
i

√
miy

0
i

√
miz

0
i 0 −√

mix
0
i

−√
miy

0
i

√
mix

0
i 0

⎤

⎥⎥⎦ . (59)

Mk is the number of atoms in the block, (x0
i , y

0
i , z

0
i ), mi are,

respectively, the equilibrium coordinates and mass of the ith
atom in the block.

For each selection scheme, we use the Krylov subspace
method and compute the approximate memory functions in
(54). For comparison, we also computed the exact memory
function (35) using brutal force. The kernel functions have
the unit of eV/Å2.

In Figs. 2–6, we show the profiles of the entries θ11(t),
θ12(t) and θ44(t), θ45(t) of the kernel function θ (t) within a

FIG. 2. Profiles of the kernels function for subspace-I: The first two entries
θ11(t) and θ12(t) of the exact kernel function (lines without markers) pro-
duced by brutal-force computation according to (35) and approximated ker-
nel (54) using the Krylov space method (lines with markers) with order 4.
These two entries are corresponding to the correlations of the noises in the
first two translational modes of the first rigid block.

FIG. 3. Profiles of the kernels function for subspace-II: The first two entries
of the exact kernel function (lines without markers) produced by direct
computation according to (35) and the approximated kernel (54) using
the Krylov space method and subspace-II (lines with markers). These two
entries are corresponding to the correlations of the noises in the first two
translational modes of the first rigid block. The order of the Krylov space is 4.

FIG. 4. Profiles of the kernels function for subspace-I: The first two entries
of the exact kernel function (lines without markers) produced by brutal-force
computation and the approximated kernel (54) using Krylov space method
(lines with markers) with order 4. These two entries are corresponding to the
correlations of the noises in the first two rotational modes of the first rigid
block.

FIG. 5. Profiles of the kernels function for subspace-II: Two entries of the
kernel function (lines without markers) produced by direct computation and
the approximated kernel using Krylov space method (lines with markers).
These two entries are corresponding to the correlations of the noises in the
first two rotational modes of the first rigid block. The order of the Krylov
space is 4.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:  71.58.210.2
On: Wed, 13 Aug 2014 22:11:31
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Translational modes Rota7onal modes

RTB basis: each residue of the protein is represented by a rigid body



Part IV. Applications to transport problems
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Motivation

q Fourier’s Law ! = −$%& breaks down at small scales 10)*~10),m
q Observations of heat pulses -- heat can travel like waves (Both, et al. 2015)

q Thermal conductivity depends on the system size (Győry & Márkus, 2014)

q Thermal fluctuation effects become important at small scales
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Coarse-grain variables for heat conduction
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Let ! and " be the position and velocity of atoms, !, " ∈ % = ℝ().
Full dynamics: molecular dynamics (Newton’s 2nd Law)

+
!′ = ", ! 0 = !,.

/"′ = − 12 3
13

, " 0 = ".,
!., ". ∼ 5.. 

Nearest neighbor interaction 6 ! = ∑89:;< :
(
= !8>: − !8 + :

(
= !8@: − !8 .

Local energy (pairwise. Multi-body interactions: Wu and Li 2015)

ABC D =E
8∈FG

1
2/"8

( +
1
2J !8>: − !8 +

1
2J !8@: − !8 .

Let the coarse-grain variable be shifted local energy:

K D = AC D − AC

A:C ABCA(C A<C

ℎ

… … … …



Approximation with Gaussian additive noise

In zeroth order approximation: !"# $ = −Γ# $ + )* $ ,

Γ ≈ −,-./ + 0-.1 + ⋯
Conventional Mori’s projection with Gaussian additive noise

§ Zeroth order !"# $ = ,-./# $ + )* $
convergence !"# $ = ,-/# $ + - ⋅ *($) (Du & Zhang 2002, Gyöngy 1999)

§ First order !""# $ + 6!"# $ = 7/-./# $ + )* $
§ Second order !"""# $ + 68!""# $ + 6/!"# $ = 78/-./# $ + 7//-./!"# $ + )* $
§ Higher order models ……

By additive noise approximation, # $ is expected to be Gaussian.
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Experiments of local energy transport in nanotube
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True distribution and numerical
results from additive noise

−15 −10 −5 0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12
a1 VS addictive noise

 

 
Normalized histogram of a1
Addictive noise

True correlation and numerical
results by additive noise

Correlation is well-captured but the PDF is not!



Experiments of local energy in nanotube system
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Histogram
Gamma

1d chain example PDF of local energy Equilibrium density in the form of Gamma
distribution

! " = $
%∏'($

) "' − +' ,-./0-(2-/3-).
Parameters can be determined from data

§ Maximum likelihood
§ Fitting statistics

Question
§ How to construct reduced models that are

able to recover the non-Gaussian PDF?
§ Multiplicative noise (Chu and Li, 2018).
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Oblique projection (Chu and Li, preprint, 2019)

Oblique projection: ! ⋅ = ⋅ , %& %, %& '(%.
GLE: *+, - = Ω% - − ∫1

+ 2 - − 3 % 3 43 + 6 - .

Choices of b

1. Conventional Mori’s projection % = , *+, - = Ω, - − ∫1
+ 2 - − 3 , 3 43 + 6 - .

2. Driving force % = −78 9
79 potential of mean force (PMF)

§ Given data , ∼ ;<= , , > , = − ln ;<=(,).
§ Recover the PDF ;<= , = Ξ1'( DEF −> , .
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Oblique projection (Cont’d)
§ !"# $ = Ξ'() *+, −. $ is known (from the data or empirical experiments)

§ Define / = −01 2
02 .

§ !"# $ is the stationary solution of the Fokker-Planck equations of the following
reduced models.
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Zeroth order approximation

34$ 5 = −Γ 01 2
02 + 89 5

Stochastic phase-field crystal model
(Elder & Grant 2004)

88: = Γ + Γ:

!"# $ = )
;<
*+, −. $

First order approximation

=
34$ 5 = >
34> 5 = −? 01 2

02 + @> + 89 5
88: = @? + ?@:
!"# $, > = )

;B
*+, −. $ − )

C >
:?()>



Numerical results of oblique projection
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Summary

ØA projection formalism to derive reduced models from a complex dynamical system.

ØAn oblique projection to obtain nonlinear dynamics and non-Gaussian PDF

ØA Markovian embedding scheme to approximate the memory function.

ØThe connections to Galerkin projection.

ØApplication to dynamics of bio-molecules and generalized diffusion processes.

Open issues

ØSelection of reduced variables

ØState-dependent kernel functions

ØMore general approximation of the random noise
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