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Motivation

¢ Comprehensive mathematical models
» Complex dynamical system

» Microscopic mechanism, detailed interactions, many variables, etc.

» Applications: growing interest in nanoscale devices and structures

¢ Challenges

» Large number of degrees of freedom
»multiple time scales

»overwhelming computational cost

¢ Question: how to find alternative reduced models with fewer variables?

Large dimensional system Reduced model for certain quantities
(full dynamics) of interest ‘
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Outline

I. Projection formalism
1. Conventional projection formalism
2. Systematic approximations and parameter estimation
II. Connection to Galerkin projections
1. Reduced-order techniques
2. Subspace projections.
II1. Applications to heat conduction models in molecular dynamics
1. Energy transport example
2. Anew projection formalism — oblique projection
3. Connections to stochastic PDEs

[V. Summary
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Part 1. Projection Formalism

NAKAJIMA 1958, MORI 1965, ZWANZIG 1973, CHORIN 1998, ..
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Time evolution of observables

(%

Nonlinear dynamical system: x'= f(x), x(0) = x,.

Observable a(t,xg) == go(x(t)), dim(a) < dim(x)

Time derivative  d.a(t,x) = a<p§;(t)) fx(®)) = a(p(gz(t)) ax(t)f (x0) = a<p(x(t))f (Xo)
Notation a(t) = a(t, xp), a = a(0,xy) = @(xp)

Liouville operator L= f(xo) - Vg, (independent of time)

Dynamics of a(t) dia(t) = La(t)

Time evolution a(t) = etla(0)

The equations are not closed. We will use projections.
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Choices of coarse-grain variables

Coarse-grain variables a = @ (x):
* dim(a) < dim(x).
= representative of the overall dynamics.
Specific choices:
= x = (X, %X, , Xp, Xna1, - Xy) = (X,X). a = X. (Chorin et al. 2002)
= Fourier or generalized Fourier modes x = )}; q;¢; + ;& ¥; . a = q. (Chorin et al. 1998)

m centerofmass. M, = ) ..« m;x;.S, 1s a subset of atoms.
a (€S, Mt - Pa

= reaction coordinates (collective variables, such as dihedral angles).
" local energy (Chu and Li 2018) E, = X;cs %mifciz + Vi (x).

= Local density, }; § (x — q;(£))8(p — p;(£)) or correlation (Akcasu&Duderstadt 1969, Boley 1974)
= A self-adjoint operator A.

" Density matrix: pg = trgp.
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Choices of projection operators

O Neglecting fine-scale components: Pg(x) = Pg(x, %) = g(x,0). (Chorin et al. 2002)

O Conditional expectation: Pg(x) = E[g(x)|a(x) = A] = / gf(zzzg)(?_fl—);l)(z)(zidx

. (Zwanzig 1961)

O PX = trg(X) & pg. Lindblad formalism.
O Orthogonal projection: Pg(x) = (g, a’ }{a,a’ )" *a. (Mori 1965)

= Correlation: (g, f7);; = | g;(x)f;(x)p(x) dx, or B~ foﬁ tr (pqu(iit)f(O)) da.

3 Oblique projection: Pg(x) = (g, b" (b, b")"h. (Chu & Li 2018, Lei & Li 2019)
= dim(b) = dim(a)
= b=-VS5(a)

U Projection of the flux (Chu & Li 2018)

= Conservation law d,a +V -q(x) =0

=  Apply projection to q(t) — Generalized constitutive relation
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The general Mori-Zwanzig equation

O Define Q =1 — P.

O Dyson’s formula e = fot e(t=)pLeselgs 4 otQL,

0 We start with d,a(t) = La(t) = e*La = e**PLa + e*“(QLa.

O Orthogonal dynamics equation:
t

0.a(t) = e*PLa + j et=ILpLeselolads + e™@LQLa
0

 The first two terms are in principle functions of a(s),0 < s < t.
O The last term F(t) = e®“LQLa is often regarded as random noise.

[ The actual form will depend on the specific choice of the projection operator.
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Zwanzig’s projection (Zwanzig 1961, 1973)

(%

Projection Pg(x) = E[g()[o(x) = a] = 5~ )f gx)p(x)é(p(x) —a) dx.

The Generalized Langevin Equation (for Hamiltonian systems, Hijon et al 2009):

dea(t) = v(a(t)) — Jot O(a(t —s), S)aaS(a(t — S))ds + kp jOtGQQ(a(t —5),s)ds + F(t)

Markovian term v(a(t)) = e“PLa = E[Lp(x)|@(x) = a(t)].
Entropy S(a) = kg InQ(a)
Noise F(t) = e'?LQLa
Kernel function 6 (a, t) = ki E[F()FT(0)|o(x) = a]
B
Implementation difficulties (Chorin & Stinis 2007, Espanol et al. 2010)
= conditional expectations v(-) and dS(+) -- constrained MD
» Markovian approximation 6 (a,t) = 6r(a)d(t)
= Higher order approximations are non-trivial
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Mori’s projection (Mori. 1965)

(%

Projection operator: Pg(x) = (g,a’ }{a,a’) *a.
The Generalized Langevin Equation (GLE): a'(t) = Qa(t) — |, Ot O(s)a(t — s)ds + F(t).
Markovian term: e‘“PLa = (La,a”Y{a,a”) ta(t) =: Qa(t).

The memory term: a convolution

t
f e=SLpLF(s)ds = j
0

0

t

eEILLF(s), aXa,a”) ta ds =: — J O(s)a(t — s)ds.

0

t
The memory term becomes a linear convolution, with memory kernel,

0(t) = —(LF(t),a" Xa,a")™" = (F(t),QLa)a,a") ™" =(F (1), F(0)"Xa,a")™*
The second fluctuation-dissipation theorem (Kubo 1966): (F(t), F(0)") = 0(t){a, a’)
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Zwanzig’'s example

(%

A particle connected to harmonic springs
1

1 1 2
H=§mv2+U(x)+2§p] + = a)z(qj ij)

The generalized Langevin equation
t

mx" = -U"(x) — j O(t — t)x'(r)dt + F(¢).
0

The kernel function ,

Y
o(t) = —2 cos wjt.
W°
j Jj
F(t) is a stationary Gaussian process. (F(t + s), F(s)T) = kgT0(¢t)
Extension to crystalline solids: (L1 and E, 2007, L1 2010).
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Example: 1D chain i 2010, chu and Li 2018

no__

Consider a linear ODE system x""=—Ax, x € RV.

Define the CG variable a = ®”x (linear displacements)

Projection operator as matrix projection, i.e. Pg(x) = g(®®Tx).

Let ¥ = [®, W] be an orthonormal matrix where ® € RV*", W € RVXWN-1) 1 « N = nK.

Piecewise constant averaging Piecewise linear averaging
f 1 —
-K ( K K -K K K 3K
GLE dpea(t) = —Ka(t) — [ 6(t — s)a(s) ds + F(t)

Kernel function 0(t) = @TAY cos(Qt)N?PTAD , 0% = PT AW,
Second fluctuation—dissipation theorem (F (t)FT (t")) = kgTO(t — t').
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Approximation of the memory term

Averaged equation  a(t) = Qa(t) — 6(t) » a(t) + noise

Extended dynamics of the memory 2z =60 xa

400

Laplace transform of the kernel function ©(1) = | 0 0(t)e t/dt

. L kp Y\ 1 k
Rational approximation Ry (1) = (I —ABy — - — A Bk) (AO + A4+ -+ A Ak)
Approximation: Z(4) = Ry, (A)a(4)

Extended dynamics of auxiliary variables

(a4 =0a—z4

21 = Ala + Blzl + Zy

s Zp = Aa + Byzy +z3 — Approximate GLEs {

a=0a—elz

Zz=Aa + Bz

\Z.k = Aza + Bkzl
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Examples of low order approximations

O Zeroth order model O First order model
a(t) =Ta(t) + F(t) a(t) = Qa(t) — z(t)
A Equivalent approximation 6 (t) ~ I'6(t) z(t) = Aa(t) + Bz(t) + F(t)
[ Equivalent approximation 0 (t) ~ e”t4
J How to determine I'? Sum of exponentials (including cosine and sine)
= Standard maximum likelihood function from [ How to determine A, B?
Girsanov theorem gives I' = 0 = Green-Kubo type formula

= Green-Kubo type formula (Hijon et al 2006) = Matching (a, a) and (a, a)
+00 —1 " A= (Cl, d)((l, a>_1
['={(a,a’) U (a(t), a>dt] »B=—Ar"1!
0
Questions:

= How to generalize the parameter estimation approach to higher order models?

= How to relate these parameters to the time series of a?
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Parameter Estimation

Existing methods
= Kalman filter (Fricks et al 2009, Harlim and Li 2015)
» NARMAX (Chorin and Lu, 2015)
= Linear response (Zhang, Harlim and Li 2019)

=  Machine learning?
Two-point Padé approximation

* Long-time statistics = As A goes to infinity,
+00
fim, Ricge(4) = lim ©(4) O(+e0) = lim j 6(t)e~stdt
s=04+ J,

= Short-time statistics = Asl~0,, 8(1) = 10(0) + A20'(0) + A30'(0) + ---

Ry x(0) = 0(0) 0(0)=0
Ry 1 (0) = ©'(0) 0'(0) = 6(0) =(a,a)Xa,a)™*
Ry . (0) = ©"(0) 0"(0) = 20" = ......
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Approximation with Gaussian additive noise

(%

Markovian embedding of the GLE

d,a=Qa—elz

0:z = Aa + Bz + ¢
& (t) is the standard Gaussian white noise

Stability condition -- Lyapunov equation . o
First order approximation:

Zeroth order approximation: d.a(t) = Qa(t) — z(t)
0.a(t) = Ta(t) + g& (), 0:z(t) = Aja(t) + Byz(t) + o€ (¢)

Covariance of a 1s M

T\ [ T -1 2
=(a,a”) [fo (a(2), a)dt] ~ YV
TM4+MI+06Tc=0

Parameters from Padé approximation
= A; =(a,aNa,a)?
= By =—-AT71
= B/A,+ABf +0'6 =0
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Part II. Connections to Galerkin-
Petrov projection
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A reduced-order viewpoint

(%

The full dynamics (Langevin):
x'=v,v' =Ax —yv+ acW'(t)
A partition of the degrees of freedom: x = &q + V¢, v = Op + Wn
o @ and W: orthogonal matrices

o q and p: Linear CG variables
o A GLE can also be derived (Ma, Li and Liu 2017).

The partitioned Langevin dynamics (Sweet et al 2008)
§&'=nn" = =428 —Aq —T1p + (1)
We write itas y' = Ay + Ru(t) + g(t).

> Low dimensional input: u = (q, p)
o Low dimensional output: f1, = —A1,¢
o Reduced-order methods?
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Subspace projections (Ma, Li and Liu, 2019).

(%

Stochastic reduced-order problem: y' = Ay — Rp + {(t),w(t) = L'y, FDT.
Galerkin projection: y € Range(V), s.t.,y' — Ay + Rp — {(t) L Range(W).
The projection yields an approximate kernel function and an approximate noise.

Question: Would the second fluctuation-dissipation theorem be satisfied automatically?

Yes, if V = [R, AR, A?R, -, A’R] and W = [A"TL, L, ATL, -, A*" L.

Computationally, the block Lanczos algorithm provides biorthogonal basis.
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Galerkin and Mori’s projection of nonlinear dynamics

(%

A Hamiltonian system of ODEs: y' = JVH(y),y = (q,p)
Project a(t) onto a set of projection bases {1;}}~, by:
a(t) ~ a(t): = XiL; c;(OPi(Xo)
Determine {c;}}~by a set of test bases {¢h;}}~,
(a,¢;) = (L&, ¢;), i=1,..,M
CM=CR, €= ey, comenl [M], =W d)[R], = L))
Theorem (H Lei and X. Li). By choosing projection bases {1;}:—; = {a, La} and test bases {¢;}i—, =

{L™1a, a}, the Galerkin projection yields the same approximation of the memory function as the two-point

Pade approximation.

The noise has to be introduced separately.

In pﬁa%tice, the algorithms are more robust if the basis functions are orthogonalized, e.g., by the Lanczos
method.
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umerical example: diffusion process

(Lei and Li, 2019, Lei, Baker and Li, 2017)

5 .l.,..-.t 3 :;-_s."’ 'e :,-' o -,g‘e-.. .
» A tagged particle interacts with solvent particles AT M AT

F.o— {&(10 — rij/rc)eij, 7“7;]' < Te, ”?.'..!:’,Ea‘ e st ::
’L E— Vv .

St el .
0, Tij > Te, :.i';'"".-:- el L)
i:; Tun ® I o, {f‘_.' '--" ". .':.&"c
_ _ _ AP SO0 & IS
where Tij = T — T, Tij = 75| and €ij = Tij/rij.  [LEReliE et il
mhey ‘._'f_'o?:'-‘:f': % '_.:"_‘ "3
* Governed generalized Langevin equation
65 L L L L L
q p/ ’ i — — — Brownian motion

6 — MD i

p= —B/O O(t — s)v(s)ds + R(1).

A

* Markovian approximation (Einstein’s theory)

/OtH(t—s)v(s)ds% [/Oooﬁ(s)ds] v(t). 1 T |

®(A) obtained from MD data
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Construction of memory kernel

)

7 [ T T 1 T L T T L r r 7 100 é : I | I | |
E " ~ — 4 — Rational
Rational - 2nd® i 3 = ~ o Ere — 4 — Projection |
ational - 2n _ i N
Rational - 2nd® ] - B -
Projection - 2nd ] oL } -l ]
MD i = L T
] & :
] “@ L Com .
] S :
- us
i W,
N IR B s g \ \ \
6 8 10 10°— L " 3
order
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g Prediction of time-correlation function for protein dynamics
(Chen, Li and Liu, J Chem Phys. 2014))

RTB basis: each residue of the protein is represented by a rigid body

—— 04, (approximated) 251

) ~0 = 04,(approximated) —&— 0,4, (approximated)

4+ — - 0§, (@pproximated)
\ 011 20* 45

_0“

—0— p45

Translational modes Rotational modes
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Part IV. Applications to transport problems
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Motivation
A Fourier’s Law g = —kVT breaks down at small scales 1076~10""m

] Observations of heat pulses -- heat can travel like waves (Both, et al. 2015)
1 Thermal conductivity depends on the system size (Gydry & Markus, 2014)

 Thermal fluctuation effects become important at small scales

TL’ VL TR’ VR
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Coarse-grain variables for heat conduction

Let x and v be the position and velocity of atoms, (x,v) € I' = R?".
Full dynamics: molecular dynamics (Newton’s 2" Law)

x' =, x(0) = x°
, oV (x) . (%%~ py.
mvz—ax,v(O)zv,

Nearest neighbor interaction V(x) = X% %qb(xi_l —x;) + %cp(xiﬂ — X;).

Local energy (pairwise. Multi-body interactions: Wu and Li 2015)

N 1 5 1 1
Ei'(t) = z —mv{ + o1 —x;) + 541 — x;).
iESIZ 2 2

Let the coarse-grain variable be shifted local energy:
a(t) = E"(t) — (Eh)
El Eq
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Approximation with Gaussian additive noise

(%

In zeroth order approximation: d;a(t) = —T'a(t) + o&(t),
[~ —kVF + uVy + -
Conventional Mort’s projection with Gaussian additive noise
= Zeroth order d:a(t) = kVia(t) + oé(t)
convergence 0.a(t) = kV?a(t) + V- &(t) (Du & Zhang 2002, Gyongy 1999)
= First order drra(t) +yora(t) = c?Via(t) + o&(t)
= Second order Orera(t) + y10ia(t) + y20:a(t) = c2ViEa(t) + c2VEd a(t) + oé(t)
= Higher order models ......

By additive noise approximation, a(t) is expected to be Gaussian.
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Experiments of local energy transport in nanotube

(%

True distribution and numerical True correlation and numerical
results from additive noise results by additive noise

al VS addictive noise

= Normalized histogram of ai
= = = Addictive noise

0.08 -

0.06 -

time correlation

0.04 -

0.02 -

time

Correlation 1s well-captured but the PDF is not!
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Experiments of local energy in nanotube system

1d chain example PDF of local energy Equilibrium density in the form of Gamma

distribution
1 R
p(a) = P (a; — py)*e Fildimi),

Parameters can be determined from data

Symmetric FPU potential

O Histogram |
Gamma

0.8}
0.6

0.4}

7 *  Maximum likelihood
. = Fitting statistics

0.2F

Question

= How to construct reduced models that are
able to recover the non-Gaussian PDF?
= Multiplicative noise (Chu and Li, 2018).
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Oblique pI‘OjeCtiOn (Chu and Li, preprint, 2019)

(%

Oblique projection: P -= (-,bT){b,bT) 1.
GLE: 0,a(t) = Qb(t) — [, 0(t — s)b(s)ds + F(¢).

Choices of b

1. Conventional Mori’s projection b = a  d,a(t) = Qa(t) — [ Ot 0(t —s)a(s)ds + F(t).

6S(a)

2. Driving force b = — .

potential of mean force (PMF)
= Givendataa ~ pg,(a), S(a) = —Inp,,(a).

= Recover the PDF p,,(a) = E5t exp(—=S(a)).
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Oblique projection (Cont’d)

" pegla) = Egt exp(—S(a)) is known (from the data or empirical experiments)
= Define b = — 65(a) :
éa

" peq(a) is the stationary solution of the Fokker-Planck equations of the following

reduced models.

Zeroth order approximation First order approximation
dea(t) = -T =2 + 0E (1) halt) =z “
S(a
Stochastic phase-field crystal model 0p2(t) = —4 sa T Bz + ¢ (t)
(Elder & Grant 2004) oo’ = BA+ ABT
gol =T +TT peq(a, z) = = exp l—S(a) — %ZTA_lz]
E1
1
Peq (a) = o exp[—S(a)]
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Numerical results of oblique projection

(%

Energy transport in Carbon nanotube, a — local energy

The recovery of the non-Gaussian statistics The prediction of auto-correlation
1.2 S :
True correlation
1l True 0.03 Ny | e Zeroth order
- = =Zeroth ' :
o | = = Hirst order
O First —-=-Second order

067 0.02
04 r
0.2t 001 | i

0 © el
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Summary

» A projection formalism to derive reduced models from a complex dynamical system.
» An oblique projection to obtain nonlinear dynamics and non-Gaussian PDF

» A Markovian embedding scheme to approximate the memory function.

» The connections to Galerkin projection.

» Application to dynamics of bio-molecules and generalized diffusion processes.
Open issues

» Selection of reduced variables

» State-dependent kernel functions

»More general approximation of the random noise




