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Simple Model - Neutron Transport Equation

We consider the steady homogeneous isotropic one-speed neutron
transport equation in a two-dimensional unit plate. We denote the space
variables as ~x = (x1, x2) and the velocity variables as ~v = (v1, v2). In the
space domain Ω = {~x :

∣∣∣~x ∣∣∣ ≤ 1} and the velocity domain Σ = {~v : ~v ∈ S1},
the neutron density uε(~x, ~v) satisfies{

ε~v · ∇xuε + uε − ūε = 0 for ~x ∈ Ω,

uε(~x0, ~v) = g(~x0, ~v) for ~v · ~n < 0 and ~x0 ∈ ∂Ω,
(1)

where

ūε(~x) =
1
2π

∫
S1

uε(~x, ~v)d~v ,

with the Knudsen number 0 < ε << 1 as a parameter. We want to study
the behavior of uε as ε → 0.
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Features of the Equation

Half boundary condition:
v · ∂xu = h(x, v) for x ∈ [0, 1],

u(0, v) = g1(v) for v ∈ (0, 1],

u(1, v) = g2(v) for v ∈ [−1, 0).

Non-local operator:

K [u](~v) =

∫
S1

u(~v∗)k(~v , ~v∗)d~v∗,

with ∫
S1

k(~v , ~v∗)d~v∗ = 1.
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Complex Model - Boltzmann Equation near Maxwellian

We consider stationary Boltzmann equation for probability density F ε(~x, ~v)
in a two-dimensional unit plate Ω = {~x = (x1, x2) :

∣∣∣~x ∣∣∣ ≤ 1} with velocity
Σ = {~v = (v1, v2) ∈ R2} as{

ε~v · ∇xF ε = Q[F ε ,F ε ] in Ω × R2,

F ε(~x0, ~v) = Bε(~x0, ~v) for ~x0 ∈ ∂Ω and ~n(~x0) · ~v < 0,

where ~n(~x0) is the outward normal vector at ~x0 and the Knudsen number ε
satisfies 0 < ε << 1. Here we have

Q[F ,G] =

∫
R2

∫
S1

q(~ω,
∣∣∣~u − ~v ∣∣∣)(F(~u∗)G(~v∗) − F(~u)G(~v)

)
d~ωd~u,

with ~u∗ = ~u+ ~ω

(
(~v − ~u) · ~ω

)
, ~v∗ = ~v − ~ω

(
(~v − ~u) · ~ω

)
, and the hard-sphere

collision kernel q(~ω,
∣∣∣~u − ~v ∣∣∣) = q0

∣∣∣~u − ~v ∣∣∣ |cos φ|, for positive constant q0

related to the size of ball, ~ω · (~v − ~u) =
∣∣∣~v − ~u∣∣∣ cos φ and 0 ≤ φ ≤ π/2. We

intend to study the behavior of F ε as ε → 0.
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Complex Model - Boltzmann Equation (Cont.)

We assume that the boundary data is as Bε(~x0, ~v) = µ + εµ
1
2 b(~x0, ~v),

where µ(~v) is the standard Maxwellian µ(~v) =
1
2π

exp

−
∣∣∣~v ∣∣∣2
2

. Then we

haveF ε(~x, ~v) = µ + εµ
1
2 f ε(~x, ~v), where f ε satisfies the equation{

ε~v · ∇x f ε +L[f ε ] = Γ[f ε , f ε ],
f ε(~x0, ~v) = b(~x0, ~v) for ~n · ~v < 0 and ~x0 ∈ ∂Ω,

for

Γ[f ε , f ε ] = µ−
1
2 Q[µ

1
2 f ε , µ

1
2 f ε ],

L[f ε ] = −2µ−
1
2 Q[µ, µ

1
2 f ε ] = ν(~v)f ε − K [f ε ],

ν(~v) =

∫
R2

∫
S1

q(~v − ~u, ~ω)µ(~u)d~ωd~u

K [f ε ](~v) =

∫
R2

k(~u, ~v)f ε(~u)d~u
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Background

Spacial Domain: Rn or periodic, bounded;

Temporal Domain: steady, unsteady

Solution: strong(smooth), weak(renormalized), weighted.

1950s - 1970s: Case K. M., Zweifel P. F. and Larsen, E; 1D explicit
solution; spectral analysis of kinetic operators; formal asymptotic
expansion;

1979: Bensoussan, Alain, Lions, Jacques-L. and Papanicolaou, George C.;
Boundary layers and homogenization of transport processes. Publ.
Res. Inst. Math. Sci. 15 (1979), no. 1, 53-157.

1984: Bardos, C., Santos, R. and Sentis, R.; Diffusion approximation
and computation of the critical size. Trans. Amer. Math. Soc. 284
(1984), no. 2, 617-649.

2002: Sone, Y; Kinetic theory and fluid dynamics. Birkhäuser Boston,
Inc., Boston, MA.
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Asymptotic Analysis - Perturbation Theory

The main goal is to study the behavior of parameterized problems as the
parameter goes to a limit.

Algebraic Equations:
Regular: (xε)2 + εxε − 1 = 0.
Singular: ε(xε)2 + xε − 1 = 0.

Differential Equations:
Regular: (yε)′′ + ε(yε)′ + yε = 1 with yε(0) = 0 and yε(1) = 1.
Singular: ε(yε)′′ + (yε)′ + yε = 1 with yε(0) = 0 and yε(1) = 1.

Ingredients: interior solution; boundary layer; decay; cut-off function in 1D
and 2D.

7



Hilbert Expansion

The classical method is to introduce a power series in ε:
1 Define the formal expansion

xε ∼
∞∑

k=0

εk xk , yε(t) ∼
∞∑

k=0

εk yk (t),

where xk and yk (t) are independent of ε.
2 Then plugging this expansion into the original equations, we obtain a

series of relations for xk and yk (t), which can be solved or estimated
directly.

3 Finally, we can estimate the remainder

RN[x] = xε −
N∑

k=0

εk xk , RN[y] = yε(t) −
N∑

k=0

εk yk (t).
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Hilbert Expansion(Cont.)

This method can be used to analyzed both the interior solution and
boundary(initial) layer.

The convergence here is different from that of power series.

Not all asymptotic relations can be expressed in power series with
respect to the parameter.

Hilbert expansion is not the only expansion to analyze asymptotic
behaviors.

This procedure is ideal. We may encounter difficulties in each step.
Sometimes a trade-off is inevitable.
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Interior Solution

We define the interior expansion as follows:

U(~x, ~v) ∼
∞∑

k=0

εk Uk (~x, ~v),

where Uk can be defined by comparing the order of ε via plugging this
expansion into the neutron transport equation. Thus, we have

U0 − Ū0 = 0,

U1 − Ū1 = −~v · ∇xU0,

U2 − Ū2 = −~v · ∇xU1,

. . .

Uk − Ūk = −~v · ∇xUk−1.
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Interior Solution (Cont.)

We can show U0(~x, ~v) satisfies the equation{
U0(~x, ~v) = Ū0(~x),

∆xŪ0 = 0.

Similarly, we can derive Uk (~x, ~v) for k ≥ 1 satisfies{
Uk = Ūk − ~v · ∇xUk−1,

∆xŪk = 0.

We need to determine the boundary data of Uk .
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Boundary Layer

The boundary layer can be constructed as follows:

Polar coordinates: (x1, x2)→ (r , θ).

Boundary layer scaling: η = (1 − r)/ε.

We define the boundary layer expansion as follows:

U (η, θ, ~v) ∼
∞∑

k=0

εkUk (η, θ, ~v),

which satisfies

(~v · ~n)
∂U

∂η
+ (~v · ~τ)

ε

1 − εη
∂U

∂θ
+ U − Ū = 0,

where ~n is the outer normal vector and ~τ is the tangential vector.
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Boundary Layer(cont.)

By comparing the order of ε, we have the relation

(~v · ~n)
∂U0

∂η
+ U0 − Ū0 = 0,

(~v · ~n)
∂U1

∂η
+ U1 − Ū1 = −(~v · ~τ)

1
1 − εη

∂U0

∂θ
,

. . .

(~v · ~n)
∂Uk

∂η
+ Uk − Ūk = −(~v · ~τ)

1
1 − εη

∂Uk−1

∂θ
,

in a neighborhood of the boundary.
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Matching of Interior Solution and Boundary Layer

We define the boundary layer U0 as
U0 = f0(η, θ, ~v) − f0(∞, θ)

(~v · ~n)
∂f0
∂η

+ f0 − f̄0 = 0,

f0(0, θ, ~v) = g(θ, ~v) for ~n · ~v < 0,
limη→∞ f0(η, θ, ~v) = f0(∞, θ),

and the interior solution U0 as
U0(~x, ~v) = Ū0(~x),

∆xŪ0 = 0,
Ū0(~x0) = f0(∞, θ).
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Good Results

In 1979’s and 1984’s papers, the author showed that both the interior and
boundary layer expansion can be constructed to higher order and then
proved the following theorem:

Theorem

Assume g(~x0, ~v) is sufficiently smooth. Then for the steady neutron
transport equation, the unique solution uε(~x, ~v) ∈ L∞(Ω × S1) satisfies∥∥∥uε − U0 −U0

∥∥∥
L∞ = O(ε).

This is a remarkable result!
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Think about it

The proof is based on the following key theorem:

Theorem
Consider the Milne problem

(~v · ~n)
∂f
∂η

+ f − f̄ = S(η, θ, ~v),

f(0, θ, ~v) = h(θ, ~v) for ~n · ~v < 0,
limη→∞ f(η, θ, ~v) = f∞(θ),

with ∥∥∥eβ0ηS
∥∥∥

L∞L∞ ≤ C , ‖h‖L∞ ≤ C .

Then for β > 0 sufficiently small, there exists a unique solution
f(η, θ, ~v) ∈ L∞ satisfying∥∥∥eβη(f − f∞)

∥∥∥
L∞L∞ ≤ C .
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Think about it(Cont.)

In the proof of 1979’s and 1984’s papers, we have to go to U1 and U1 at
least. In all the known results, in order to show the L∞ well-posedness of
Milne problem, we need the source term is in L∞ and exponentially
decays. Thus in order to show the well-posedness of U1, we need

(~v · ~τ)
1

1 − εη
∂U0

∂θ
∈ L∞([0,∞) × [−π, π) × S1),

which further needs

(~v ·
∂~τ

∂θ
)
∂U0

∂η
∈ L∞([0,∞) × [−π, π) × S1).

This is not always true. We have counterexamples to illustrate this fact.
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Counterexample

Lemma
For the Milne problem

sin(θ + ξ)
∂f
∂η

+ f − f̄ = 0,

f(0, θ, ξ) = g(θ, ξ) for sin(θ + ξ) > 0,
limη→∞ f(η, θ, ξ) = f(∞, θ),

if g(θ, ξ) = cos(3(θ + ξ)), then we have

∂f
∂η
< L∞([0,∞) × [−π, π) × [−π, π)).
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Counterexample (Cont.)

The central idea of the proof is by contradiction:
1 By maximum principle, we have f(0, θ, ξ) ≤ 1 for sin(θ + ξ) < 0. Then

this implies

f̄(0, θ) ≤
1
2
.

2 We can obtain ∂ηf(0, θ, ξ) ∈ L∞[−π, π) × [−π, π) is a.e. well-defined
and satisfies the formula

∂ηf(0, θ, ξ) =
f̄(0, θ) − f(0, θ, ξ)

sin(θ + ξ)
.

3 Finally, we can directly estimate

lim
ξ→−θ+

∂f
∂η

(0, θ, ξ) = −∞.

which is a contradiction.
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Boundary Layer with Geometric Correction

Polar coordinates: (x1, x2)→ (r , θ).

Boundary layer scaling: η = (1 − r)/ε.

Change of Variables: vn = ~v · ~n and vτ = ~v · ~τ.

We define the boundary layer expansion as follows:

U ε(η, θ, vn, vτ) ∼
∞∑

k=0

εkU ε
k (η, θ, vn, vτ),

which satisfies

vn
∂U ε

∂η
+

ε

1 − εη

(
− vτ

∂U ε

∂θ
+ v2

τ

∂U ε

∂vn
− vnvτ

∂U ε

∂vτ

)
+ U ε − Ū ε = 0
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Where is the Singularity?

The singular term is decomposed into three terms

vτ
∂U ε

0

∂θ
− v2

τ

∂U ε
0

∂vn
+ vnvτ

∂U ε
0

∂vτ
.

By comparing the order of ε, we have the relation

vn
∂U ε

0

∂η
+ U ε

0 − Ū ε
0 = 0,

vn
∂U ε

1

∂η
+ U ε

1 − Ū ε
1 =

1
1 − εη

(
vτ
∂U ε

0

∂θ
− v2

τ

∂U ε
0

∂vn
+ vnvτ

∂U ε
0

∂vτ

)
,

. . .

vn
∂U ε

k

∂η
+ U ε

k − Ū ε
k =

1
1 − εη

(
vτ
∂U ε

k−1

∂θ
− v2

τ

∂U ε
k−1

∂vn
+ vnvτ

∂U ε
k−1

∂vτ

)
,

in a neighborhood of the boundary.
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Boundary Layer with Geometric Correction(cont.)

Putting the singular terms together, we have the relation

vn
∂U ε

0

∂η
+

ε

1 − εη

(
v2
τ

∂U ε
0

∂vn
− vnvτ

∂U ε
0

∂vτ

)
+ U ε

0 − Ū ε
0 = 0,

vn
∂U ε

1

∂η
+

ε

1 − εη

(
v2
τ

∂U ε
1

∂vn
− vnvτ

∂U ε
1

∂vτ

)
+ U ε

1 − Ū ε
1 =

1
1 − εη

vτ
∂U ε

0

∂θ
,

. . .

vn
∂U ε

k

∂η
+

ε

1 − εη

(
v2
τ

∂U ε
k

∂vn
− vnvτ

∂U ε
k

∂vτ

)
+ U ε

k − Ū ε
k =

1
1 − εη

vτ
∂U ε

k−1

∂θ
,

in a neighborhood of the boundary.
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ε-Milne Problem with Geometric Correction

Consider the substitution vn = sin φ and vτ = cos φ. The construction of
the boundary layer depends on the properties of the Milne problem for
f ε(η, θ, φ) in the domain (η, θ, φ) ∈ [0,∞) × [−π, π) × [−π, π)

sin φ
∂f ε

∂η
+ F(ε; η) cos φ

∂f ε

∂φ
+ f ε − f̄ ε = Sε(η, θ, φ),

f ε(0, θ, φ) = hε(θ, φ) for sin φ > 0,
limη→∞ f ε(η, θ, φ) = f ε∞(θ).

where

F(ε; η) = −
εψ(εη)

1 − εη
, ψ(µ) =

{
1 0 ≤ µ ≤ 1/2,
0 3/4 ≤ µ ≤ ∞,

and ∣∣∣hε(θ, φ)
∣∣∣ ≤ C ,

∣∣∣Sε(η, θ, φ)
∣∣∣ ≤ Ce−β0η,

for C and β0 uniform in ε and θ.
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ε-Milne Problem with Geometric Correction (Cont.)

Theorem
For β > 0 sufficiently small, there exists a unique solution f ε(η, θ, φ) ∈ L∞

to the ε-Milne problem satisfying∥∥∥eβη(f ε − f ε∞)
∥∥∥

L∞L∞ ≤ C ,

where C depends on the data hε and Sε .

Theorem
The solution f ε(η, θ, φ) to the ε-Milne problem with Sε = 0 satisfies the
maximum principle, i.e.

min
sin φ>0

hε(θ, φ) ≤ f ε(η, θ, φ) ≤ max
sin φ>0

hε(θ, φ).
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ε-Milne Problem with Geometric Correction (Cont.)

Basic ideas: penalized finite slab→ finite slab→ infinite slab;
homogeneous→ inhomogeneous.

1 Using energy estimate to define f ε∞ and show∥∥∥f ε − f ε∞)
∥∥∥

L2L2 ≤ C .

2 Using the characteristics to get∥∥∥f ε − f ε∞)
∥∥∥

L∞L∞ ≤ C + C
∥∥∥f ε − f ε∞)

∥∥∥
L2L2 .

3 Applying the similar techniques to the equation satisfied by
F ε = eβηf ε .
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Remainder Estimate

Theorem
Assume f(~x, ~v) ∈ L∞(Ω × S1) and g(x0, ~v) ∈ L∞(Γ−). Then for the
remainder equation{

ε ~w · ∇xR + R − R̄ = f(~x, ~v) in Ω,

R(~x0, ~w) = g(~x0, ~w) for ~x0 ∈ ∂Ω and ~v · ~n < 0,

there exists a unique solution R(~x, ~v) ∈ L∞(Ω × S1) satisfying

‖R‖L∞(Ω×S1) ≤ C(Ω)

(
1
ε5/2 ‖

f‖L∞(Ω×S1) + ‖g‖L∞(Γ−)

)
.
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Main Theorem

Theorem
Assume g(~x0, ~v) ∈ C2(Γ−). Then for the steady neutron transport equation
(1), the unique solution uε(~x, ~v) ∈ L∞(Ω × S1) satisfies∥∥∥uε − Uε

0 −U ε
0

∥∥∥
L∞ = O(ε)

Moreover, if g(θ, vn, vτ) = vτ, then there exists a C > 0 such that∥∥∥uε − U0 −U0
∥∥∥

L∞ ≥ C > 0

when ε is sufficiently small.

Remark
The comparison of Lp and L∞ result.
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Main Theorem (Cont.)

Proof of ‖uε − U0 −U0‖L∞ ≥ C > 0 is as follows:
1 The problem can be simplified into the estimate of solutions u in Milne

problem and U in ε-Milne problems with exactly the same boundary
data vτ + 2.

2 Rewriting the solution along the characteristics, we can obtain the
estimate at point (η, φ) = (nε, ε) as

u(nε, ε) = ū(0) + e−n(−ū(0) + 3) + o(ε),

U(nε, ε) = Ū(0) + e1−
√

1+2n(−Ū(0) + 3) + o(ε).

3 We can derive limε→0
∥∥∥(−ū(0) + 3) − (−Ū(0) + 3)

∥∥∥
L∞ = 0. and

−ū(0) + 3 = O(1) with −Ū(0) + 3 = O(1). Due to the smallness of ε,
we can obtain ∣∣∣U(nε, ε) − u(nε, ε)

∣∣∣ = O(1).
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Unsteady Neutron Transport Equation

We consider a homogeneous isotropic unsteady neutron transport
equation in a two-dimensional unit disk Ω = {~x = (x1, x2) :

∣∣∣~x ∣∣∣ ≤ 1} with
one-speed velocity Σ = {~v = (v1, v2) : ~v ∈ S1} as

(2)
ε2∂tuε + ε~v · ∇xuε + uε − ūε = 0 in [0,∞) × Ω,

uε(0, ~x, ~v) = h(~x, ~v) in Ω

uε(t , ~x0, ~v) = g(t , ~x0, ~v) for ~v · ~n < 0 and ~x0 ∈ ∂Ω,

where

ūε(t , ~x) =
1
2π

∫
S1

uε(t , ~x, ~v)d~v .

and ~n is the outward normal vector on ∂Ω, with the Knudsen number
0 < ε << 1. The initial and boundary data satisfy the compatibility
condition

h(~x0, ~v) = g(0, ~x0, ~v) for ~v · ~n < 0 and ~x0 ∈ ∂Ω.
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Remainder Estimate

Theorem
Assume f(t , ~x, ~v) ∈ L∞([0,∞) × Ω × S1), h(~x, ~v) ∈ L∞(Ω × S1) and
g(t , x0, ~v) ∈ L∞([0,∞) × Γ−). Then for the remainder equation
ε2∂tR + ε~v · ∇xR + R − R̄ = f(t , ~x, ~v) in [0,∞) × Ω,

R(0, ~x, ~v) = h(~x, ~v) in Ω

R(t , ~x0, ~v) = g(t , ~x0, ~v) for ~v · ~n < 0 and ~x0 ∈ ∂Ω,

there exists a unique solution R(t , ~x, ~v) ∈ L∞([0,∞) × Ω × S1) satisfying

‖R‖L∞([0,∞)×Ω×S1)

≤ C(Ω)

(
1
ε5/2 ‖

f‖L∞([0,∞)×Ω×S1) + ‖h‖L∞(Ω×S1) + ‖g‖L∞([0,∞)×Γ−)

)
.
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Diffusive Limit

Theorem

Assume g(t , ~x0, ~v) ∈ C2([0,∞) × Γ−) and h(~x, ~v) ∈ C2(Ω × S1). Then for
the unsteady neutron transport equation (2), the unique solution
uε(t , ~x, ~v) ∈ L∞([0,∞) × Ω × S1) satisfies∥∥∥uε − Uε

0 −U ε
I,0 −U ε

B ,0

∥∥∥
L∞

= O(ε),

for the interior solution Uε
0, the initial layer U ε

I,0, and the boundary layer
U ε

B ,0.
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Boltzmann Equation near Maxwellian

We turn back to the stationary Boltzmann equation{
ε~v · ∇xF ε = Q[F ε ,F ε ] in Ω × R2,

F ε(~x0, ~v) = Bε(~x0, ~v) for ~x0 ∈ ∂Ω and ~n(~x0) · ~v < 0,

and

F ε(~x, ~v) = µ + εµ
1
2 f ε(~x, ~v),

where f ε satisfies the equation{
ε~v · ∇x f ε +L[f ε ] = Γ[f ε , f ε ],

f ε(~x0, ~v) = b(~x0, ~v) for ~n · ~v < 0 and ~x0 ∈ ∂Ω,
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Hydrodynamic Limit of Stationary Boltzmann Equation

Theorem
For given b(~x0, ~v) sufficiently small and 0 < ε << 1, there exists a unique
positive solution F ε = µ + εµ

1
2 f ε to the stationary Boltzmann equation,

where

f ε = ε3RN +

( N∑
k=1

εkF ε
k

)
+

( N∑
k=1

εkF ε
k

)
,

for N ≥ 3, RN satisfies the remainder equation, F ε
k and F ε

k are interior
solution and boundary layer. Also, there exists a C > 0 such that f ε

satisfies ∥∥∥∥〈~v〉ϑeζ|~v|
2

f ε
∥∥∥∥

L∞
≤ C ,

for any ϑ > 2, 0 ≤ ζ ≤ 1/4.
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Steady Navier-Stokes-Fourier System

In particular, the leading order interior solution satisfies

F ε
1 =

√
µ

(
ρε1 + uε1,1v1 + uε1,2v2 + θε1

( ∣∣∣~v ∣∣∣2 − 2

2

))
,

with 
∇x(ρε1 + θε1) = 0,

~uε1 · ∇x~uε1 − γ1∆x~uε1 + ∇xPε
2 = 0,

∇x · ~uε1 = 0,
~uε1 · ∇xθ

ε
1 − γ2∆xθ

ε
1 = 0,

and suitable Dirichlet-type boundary conditions.
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Ongoing and Future Work

Steady problem in smooth domain(general smooth convex domain,
annulus).

Detailed structure of boundary layer(How does U ε depend on ε?).

Higher dimensional problems.

Boltzmann equation with time.
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Thank you for your attention!
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