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Kuramoto model

Aim: Model synchronisation behaviour of
oscillators

Describe each oscillator by a phase
angle ✓

i

and intrinsic frequency !
i

Note that we can take out a global
rotation (drift) by setting !

i

� !̄

Add a simple global coupling (strength
K )

@
t

✓
i

= !
i

+
K

N

NX

j=1

sin(✓
j

� ✓
i

)

When does this coupling synchronise the
system?
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Mean-field limit

We study the mean-field (continuum) limit as N ! 1:
Describe the state by the probability density ⇢(t, ·, ·), i.e.

⇢(t,!, ✓)d!d✓

is the proportion of oscillators at time t with natural frequency within
[!,! + d!] and phase angle within [✓, ✓ + d✓].
Evolution is given by the PDE
(
@
t

⇢(t, ✓,!) + @✓
h⇣

! + K

2i (⌘(t) e�i✓ � ⌘(t) ei✓)
⌘
⇢(t, ✓,!)

i
= 0,

⌘(t) =
R 2⇡
✓=0 ei✓ R

R ⇢(t, ✓,!)d!d✓,

where ⌘(t) is the order parameter.
As kinetic equation ✓ is the position and ! is the velocity.
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Homogeneous state

A spatial homogeneous state ⇢(✓,!) = (2⇡)�1g(!) is a stationary solution
with order parameter ⌘ = 0.

Questions
Is it stable?
How is the phase transition as the order parameter increases?

Helge Dietert (Paris 7 – Diderot) Mixing in the Kuramoto model Duke, 29 November 2016 4 / 21



Inhomogeneous state

If we look at a stationary solution with order parameter ⌘ 6= 0:
Oscillators with |!|  K |⌘| are trapped
Oscillators with |!| > K |⌘| are moving around with varying velocity

These states are called partially locked states and we ask again whether
they are stable.

�K |⌘| 0 K |⌘|
�⇡

�⇡/2

0

⇡/2

⇡

!

✓

Question
When are these states stable?
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Intuitive picture

Two competing mechanisms

Averaging through the free transport @
t

⇢+ @✓[!⇢] = 0: The
heterogeneity of the natural frequencies ! mixes the distribution in
phase space

✓0 2⇡

!

0

1
t = 0

✓0 2⇡

!

0

1
t = 4.4

✓0 2⇡

!

0

1
t = 16

✓0 2⇡

!

0

1
t = 79

After integrating over ! the system spreads out: ⌘ ! 0
Coupling term concentrates the phase angles.

Challenge
Find norms that capture the spreading of the free transport
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Capturing Landau damping

Idea
Capture Landau damping by focusing on macroscopic quantities ⌘.

Here ⌘ is just the order paramter. For the Vlasov–Poisson equation take
the modes of the electric field.

Linearised behaviour
A perturbation u of a stationary state has the linear evolution operator
L = L1 + L2 with

L1 is the transport operator under the stationary state.
L2 is a bounded operator depending only on ⌘[u] and models the
interaction of the perturbation on the background state.
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Volterra equation

By Duhamel’s principle we find

u(t) = etL1uin +

Z
t

0
e(t�s)L1L2u(s)ds.

Computing ⌘ from u gives that ⌘(t) = ⌘[u(t)] satisfies the Volterra
equation

⌘(t) +

Z
t

0
k(t � s)⌘(s)ds = F (t),

where
k is the interaction kernel,
F is the forcing.
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Resolvent

The solution to the Volterra equation

⌘(t) +

Z
t

0
k(t � s)⌘(s)ds = F (t),

can be expressed with the resolvent r as

⌘(t) = F (t)� (r ⇤ F )(t).

The resolvent is the unique solution to

r = k � k ⇤ r = k � r ⇤ k .

Stability (Paley-Wiener, Gel’fand)
The resolvent r has the same weighted integrability as k apart from
eigenmodes with eigenvalue z solving

(Lk)(z) =
Z 1

0
k(t)e�tzdt = �K

2

Z 1

0
ĝ(t)e�tzdt = �1.
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Localise energy in Fourier

Observations
The spatial mode l = 0 is the distribution of the natural frequencies
and constant
The positive modes l � 1 decouple from the negative modes l  �1

Take the Fourier transformation ✓ ! l and ! ! ⇠. The transform ⇢ ! u
evolves by

@
t

u(t, 1, ⇠) = @⇠u(t, 1, ⇠) +
K

2

h
⌘(t) ĝ(⇠)� ⌘(t) u(t, 2, ⇠)

i

and for l � 2

@
t

u(t, l , ⇠) = l@⇠u(t, l , ⇠) +
Kl

2

h
⌘(t) u(t, l � 1, ⇠)� ⌘(t) u(t, l + 1, ⇠)

i

and the coupling is modulated by the order parameter ⌘(t) = u(t, 1, 0)
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Global stability result of the homogeneous state

Theorem (Global stability)
Let

K
ec

=
2R1

⇠=0 |ĝ(⇠)|d⇠
.

Then if K < K
ec

, the evolution is stable in the sense thatR1
0 |⌘(s)|2ds < 1.

Remark: For a Gaussian distribution K
ec

= K
c

Proof: Use energy functional

I (t) =

Z 1

⇠=0

X

l�1

1
l
|u(t, l , ⇠)|2�(⇠)d⇠,

where � is increasing. Under this most coupling terms vanish due to the
skew-symmetry.
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Linearised system of the homogeneous state

In the linear setting only the first mode is interesting:

@
t

u(t, 1, ⇠) = @⇠u(t, 1, ⇠) +
K

2
⌘(t) ĝ(⇠)

Here ĝ(⇠) is the constant u(0, ⇠) function.
For ⌘(t) = u(t, 1, 0), find the Volterra equation (Duhamel’s principle)

⌘(t) + (k ⇤ ⌘)(t) = u
in

(1, t)

with the convolution kernel

k(t) = �K

2
ĝ(t)

Stability (Paley-Wiener)
If k is sufficiently decaying, the Volterra equation is stable iff

(Lk)(z) =
Z 1

0
k(t)e�tzdt = �K

2

Z 1

0
ĝ(t)e�tzdt 6= �1 8<z � 0.
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Stability of incoherent state

Linear stability
If the linear stability condition is satisfied, then we have decay as expected
from the linear transport:

If |u(1, ⇠)|  e�ax , then ⌘ decays as e�at

If |u(1, ⇠)|  (1 + t)�k , then ⌘ decays as (1 + t)�k

Nonlinear stability
Can propagate control in

sup
l�1

sup
⇠2R

|u(t, l , ⇠)|ea(⇠+tl/2)

and

sup
l�1

sup
⇠2R+

|u(t, l , ⇠)| (1 + ⇠ + t)b

(1 + t)↵(l�1) .
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Center-manifold reduction

Eigenmodes
In the case the linear stability condition is violated, we have discrete
eigenmodes, while the remainder decays as the free transport.
Aim: Reduce the dynamics to these eigenmodes for

understanding the bifurcation behaviour
(later) handle the rotation invariance of the partially locked states

Center manifold reduction
Can reduce the dynamics to the amplitude along the eigenvector with
nonlinear correction around the bifurcation.
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Stability of the partially inhomogeneous states

We now study the stability of partially locked states.
Partially locked states have a rotation symmetry and thus we cannot
expect decay to the same state.

Theorem (Stability)
If a partially locked states is linearly stable, then perturbed initial data will

converge to the initial data up to a possible small rotation.
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Duhamel reduction

Recall the evolution equation
(
@
t

⇢(t, ✓,!) + @✓
h⇣

! + K

2i (⌘(t) e�i✓ � ⌘(t) ei✓)
⌘
⇢(t, ✓,!)

i
= 0,

⌘(t) =
R 2⇡
✓=0 ei✓ R

R ⇢(t, ✓,!)d!d✓

or in Fourier

@
t

u(t, l , ⇠) = l@⇠u(t, l , ⇠) +
Kl

2

h
⌘(t) u(t, l � 1, ⇠)� ⌘(t) u(t, l + 1, ⇠)

i
.

The modes are not decoupled anymore, however, the reduction to a
Volterra equation still works!
In order to find a complex linear equation, consider ⌘ and ⌘ as
independent. We then find a matrix Volterra equation

✓
⌘
⌘

◆
+ k ⇤

✓
⌘
⌘

◆
= F .
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Linear stability

The kernel k(t) consists of entries like
Z 2⇡

0

Z

R

h
etL1@✓(fste±i✓)

i
(✓,!)e±i✓d✓d!.

Can be explicitly expressed using integrals!

Eigenmodes z at
det [1 + (Lk)(z)] = 0.

Helge Dietert (Paris 7 – Diderot) Mixing in the Kuramoto model Duke, 29 November 2016 17 / 21



Linear stability

The kernel k(t) consists of entries like
Z 2⇡

0

Z

R

h
etL1@✓(fste±i✓)

i
(✓,!)e±i✓d✓d!.

Can be explicitly expressed using integrals!
Eigenmodes z at

det [1 + (Lk)(z)] = 0.

Helge Dietert (Paris 7 – Diderot) Mixing in the Kuramoto model Duke, 29 November 2016 17 / 21



Linear analysis (analytic regularity)

For the perturbation u in Fourier space show decay in norms like

kuk
a,k =

 
X

l2N

Z

R
e2a⇠ l2k

�
|u

l

(⇠)|2 + |@⇠ul(⇠)|2
�
d⇠

!1/2

.

Strategy
Split the linear evolution operator L = L1 + L2 where

L1 is the transport term under a fixed external forcing (matching the

free transport operator)

L2 is the finite-rank operator corresponding to the coupling

For L1 replace the explicit solution formula with resolvent estimates in
suitable Hilbert spaces
For L2 add a complexification by treating ⌘ as independent variable.
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Nonlinear stability

Remove eigenmode from rotation symmetry
Express the solution as

f = R⇥(fst + u)

where R is the rotation and the angle ⇥ is continuously chosen such that u
is in the stable subspace. Then

@
t

u = Lu + P
s

Q 0u where Q 0u = Qu � 2<hQu, u⇤i
a,0

1 + 2<hDR̂u, u⇤i
a,0

DR̂u.

Close the estimate
Using the regularisation effect of the linear evolution between k · k

a,�1 and
k · k

a,0, we can close the estimates.
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Sobolev regularity

Want to extend the stability result to Sobolev regularity.

Problem
The Fourier weight is (1 + ⇠)k and a derivative looses one power in k .
Hence the regularisation in k looses regularity in l .

Cannot control the nonlinearity as before.

Solution
Adapt the splitting and perturb the Volterra equation.
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Finally

Thank you for listening!
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