
Kinetic models in information percolation and
mean-field games

Ravi Srinivasan
University of Texas at Austin

“Kinetic theory for the emergence of complex behavior in social and economic systems”
Arizona State University

February 22, 2013

1



Vast body of literature dedicated to study of information flows 
(through networks).

• “Information” = wealth, opinions, spins, disease, productivity, ...

• Finite Markov Information Exchange (FMIE) processes are 
examples of interacting particle systems on graphs.

D. Aldous, “Interacting Particle Systems as Stochastic Social Dynamics,” 
preprint (submitted to the Bernoulli).
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Components of model are

• Agents:

• Strength of relationship (i.e., rate of random matching):

• Informational state of agent i:
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i ∈ G

1

i ∈ G λij ≥ 0

1

i ∈ G λij ≥ 0 θi ∈ Θ λij
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A mean-field game model of information aggregation

Joint work with M. Sirbu (UT Austin) and I. Gamba (UT Austin)



5

Background:

• Agents are not particles!

• Each agent chooses a strategy to maximize/minimize their 
individual utility/cost, given present state.

Optimal control (or stopping)

• Solutions are Nash equilibria, which are typically not unique. Of 
interest to determine which of these are stable and Pareto optimal.
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Model setup:

• (Binary) information aggregation––prior types add to give posterior 
types

Bayesian framework:

• Consider a good with value given by a binary random variable X 
which is either H (high) or L (low)

• Assume prior probabilities of value are unbiased:

D. Duffie, G. Giroux, G. Manso, “Information percolation.” American 
Economic Journal: Microeconomics, 2010.

i ∈ G λij ≥ 0 θi ∈ Θ λij�

θi, θj
�

�→
�

θi + θj, θi + θj
�

1

based on the actions of others. This forward-backward structure forms the basis of mean-field
games (MFG) theory, as championed by J. Lasry and P-L. Lions in [?, ?]. MFG have been

used to describe a diverse set of socio-economic phenomena including global oil production,

creation of price volatility, urban planning, and the formation of ‘Mexican waves’ in stadiums.

A related model of information percolation in decentralized markets is considered in [?].

In this broader context, the PI proposes to study MFG with forward equation (4.1). The

interaction rates C(t, θ) determine agents’ propensity to engage in costly information exchange,

and are obtained from a utility maximization (i.e., HJB equation) given the mean-field µ.

Solutions to the coupled system, typically found by a fixed-point argument, are Nash equilibria.

For optimal stopping and exit from the market this yields a mean-field obstacle problem. We

will initiate this research by considering the time-independent ‘elliptic’ problem, in which case

the free-boundary is a point on the line. The corresponding ‘parabolic’ problem is tricky

and likely requires regularity estimates for the free-boundary. Previously studied models are

of drift-diffusion type, so a new theory using kinetic techniques (e.g., moment estimates) is

required. This would also yield one of the first examples of an obstacle problem in MFG theory,

setting the foundation for an new and exciting direction of research. [redo entire section]

[for MFG: aldous, mckean and shepp, global optima vs nash/MFG equilibria, cost criteria and

determination of stability of system (systemic risk?)]

4.1 A Bayesian model of information percolation

We begin with the following Bayesian framework as described by Darrell Duffie and co-authors

[DM07, DGM10]. Consider a probability space (Ω,F ,P) and a continuum of agents indexed

by space (G,G, γ) with γ a probability measure. Agents are interested in determining the

unknown outcome of a random variable X which takes one of two possible values, H (high) or

L (low). Here, X is the unknown value of an asset about which information is initially dispersed

throughout the population in the form of signals {sk}. These signals are random variables

correlated to X which are conditionally independent and identically distributed. They are

informative in the sense that the mutually absolutely continuous distributions F
X(ds) =

P(sk ∈ ds|X) are distinct for X ∈ {H,L}. Since the relative entropy DKL(FH ||FL) > 0, each

sk conveys information about the value of X. We assume that all agents start with identical

priors P(X = H) = P (X = L) = 1/2. By Bayes’ rule, the log-likelihood ratio of X given

signals {s1, . . . , sn} is then

log
P(X = H|s1, . . . , sn)
P(X = L|s1, . . . , sn)

=
n�

k=1

log
dF

H

dFL
(sk) := θ(s1, . . . , sn),

11
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• X unknown, must be estimated by agents based on acquired signals

• Signals              are conditionally iid r.v.’s given X

• Signals correlated to X (i.e., informative)

i ∈ G λij ≥ 0 θi ∈ Θ λij {sk}k∈K�

θi, θj
�

�→
�

θi + θj, θi + θj
�

1
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• Types = log-likelihoods:

• Types are additive if signal sets are disjoint

• Law of large numbers implies X is known a.s. if (countably) infinite 
number of signals are observed:

2 Derivation of the model

2.1 Bayesian setup

We begin with the following Bayesian framework as described by Duffie and co-

authors [DM07, DGM10]. Consider a probability space (Ω,F ,P) and a continuum

of agents indexed by a non-atomic probability space (G,G, γ). As is standard in

mean-field game theory, agents are indistinguishable and reside in a social space
described in Section [xxx].

Agents are interested in determining the unknown outcome of a random variable

X which takes one of two possible values, H (high) or L (low). Here, X is the

unknown value of an asset about which information is distributed throughout the

population in the form of signals {sk}. These signals are correlated to X and are

identically distributed and conditionally independent given X. They are informative
in the sense that the mutually absolutely continuous distributions F

X(ds) = P(sk ∈
ds|X) are distinct for X ∈ {H,L}. Since the relative entropy D(FH ||FL) > 0, each

sk conveys information about the value of X. We make the assumption that all

agents have identical priors P(X = H) = P(X = L) = 1/2. Then by Bayes’ rule,

the log-likelihood ratio of X given signals {s1, . . . , sn} is

log
P(X = H|s1, . . . , sn)
P(X = L|s1, . . . , sn)

=
n�

k=1

log
dF

H

dFL
(sk) := θ(s1, . . . , sn) (6)

where dF
H
/dF

L
is a Radon-Nikodym derivative. We call the additive function

θ = θ(s1, . . . , sn) the type of the signal set {s1, . . . , sn}. In particular, larger values

for θ correspond to a higher likelihood that X = H (that is, a greater posterior

probability P(X = H|s1, . . . , sn)). Since

lim
n→∞

θ(s1, . . . , sn) =

�
+∞ if X = H

−∞ if X = L
P-a.s.,

an agent learns the true value of X having observed an infinite number of signals.

2.2 Dynamics

The dynamics of the model take place in a market in which agents interact. An

agent i ∈ G stays in the market for an exogenous duration Ti. We take the Ti ∼
Exponential(β) with parameter β > 0, independent across agents. Upon leaving,

she is instantaneously replaced by another agent who enters the market assuming

her index i ∈ G. We denote by ti ≥ 0 the calendar time of an agent started upon

entrance to the market. Let FX

i
(ti) be the right-continuous filtration generated from

signals seen up to time ti, conditional on X. The agent’s state is fully described by

her conditional posterior probability that X = H:

p
X

i (ti) = P
�
X = H|FX

i (ti)
�
. (7)
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Dynamics:

• (Uncountably) infinite number of agents

• Initial condition:  Agents given disjoint subsets                              
of total signal set

• Randomly matched with others according to Poisson process with 
common rate    across agents.

Note: Matched agents have non-intersecting interaction trees up to time of 
meeting (a.s.).  Requires construction of random matching mechanism on 
appropriate probability space.

• At meetings, agents share all of their acquired signals exactly

i ∈ G λij ≥ 0 θi ∈ Θ λij {sk}k∈K
Si ⊂ S = {sk}k∈K�

θi, θj
�

�→
�

θi + θj, θi + θj
�

1

i ∈ G λij ≥ 0 θi ∈ Θ λij {sk}k∈K
Si ⊂ S = {sk}k∈K�

θi, θj
�

�→
�

θi + θj, θi + θj
�

λ

1
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Type of agent i at time t:
Proportion of agents with type in dw at time t:

• Without further modeling, complete description given by simple 
aggregation equation

• More complicated interactions lead to interesting kinetic equations 
(derived from Kac-type models), which we do not discuss here.

Information acquisition in an economic/financial context is costly. 
What does this imply?

5.2 A mean-field game of optimal stopping

From an economic perspective, is it significantly more realistic to presume that information
acquisition is costly. Agents are considered rational and choose strategies that minimize their
individual costs based on their current state and by anticipating the behavior of others in
the market. This naturally yields the mean-field game described below, which the PI has
developed in collaboration with Mihai Sirbu (UT Austin). The PI is actively investigating
this model, which is a rich source of problems for ongoing and future research (discussed in
Section 3).

Let us consider the following model of optimal stopping. Each agent in the market meets others
with constant meeting rate λ > 0. At any time t ≥ 0, an agent has the choice to either continue
searching for information or to stop. Upon stopping, agents use their accumulated information
to purchase a contract based on X. Individuals must balance the cost of remaining active in the
market to better their information quality with the possibility of ultimately making a wrong
decision based on bad information. This is specified as follows. Let Fi(t) be the filtration
generated by signals obtained by agent i up to time t. Furthermore, let θi(t) = θ(Fi(t)) be his
type and

pi(t) = P(X = H|Fi(t)) =
e
θi(t)

1 + eθi(t)

his posterior probability that X = H at time t. We consider expected exit costs of the form
E
�
h
���pi(t)− 1{X=H}

����, where h ∈ C
2([0, 1]), h(0) = 0, and h(p) is increasing. This penalizes

an incorrect assessment of the value of X upon stopping. Adding a running cost c ≥ 0 and
discounting rate γ ≥ 0, we arrive at the total expected cost

Ci(τ) = E
�ˆ τ

0
e
−γs

c(s)ds+ e
−γτ

g (θi(τ))

�
,

where τ is the stopping time and the symmetric obstacle g ∈ C
2(R) is given by

g(θ) := ph (1− p) + (1− p)h(p), p = e
θ
/

�
1 + e

θ
�
.

Note that the expectation in () is with respect to the total probability P—that is, not condi-
tional on X—so it penalizes uncertainty in the estimated value of X (i.e., the state θ = 0) for
a large class of exit costs. Unlike classical optimal stopping problems, the true exit cost for a
fixed realization of X is actually unknown to agents since they do not X but can only infer
its value. We say more about this in Section [xxx].

As with all mean-field games, we assume that agents are indistinguishable and therefore employ
identical strategies depending on their current type. Allowing for only Markovian policies, this

13

implies that agent i has Fi-stopping time

τi = argmin
τ≥0

Ci(τ) = argmin
τ≥0

{θi(τ) /∈ R(τ)} ,

where R(t) ∈ B([0,∞);R) is the continuation region—that is, the region of type-space in
which agents continue to remain active. We determine R(t) as follows. Let µX(t, dw) be the
distribution of types among active agents (those that have yet to stop), conditional on X:

µX(t, dw) := γ
��

i ∈ G : θXi (t) ∈ dw, θXi (s) ∈ R(s) for all 0 ≤ s ≤ t
��

.

The generator LX
µ of the pure-jump Markov process θX

i
(t) given X is defined by its action on

test functions ϕ ∈ C∞
c (R) by

LX

µ ϕ(w) = λ

ˆ
R
(ϕ(w + η)− ϕ(w))µX(t, dη).

This is obtained directly from the SDE for θX
i
(t) and simply expresses how an individual’s

type changes upon being randomly matched with an agent that continues to be active. Let
L̄µ = 1

2L
H
µ + 1

2L
L
µ be the generator of θi(t) under the total probability measure. The problem

of optimal stopping then reduces to an obstacle problem for the value function v = v(t, w)

and determines the continuation region as the region where v < g:

max
�
∂tv − L̄µv + γv − c, v − g

�
= 0, R(t) = supp(v(t, ·)− g(·)).

It still remains to be seen how one generates the mean-field µX given {R(t)}
t≥0. In fact, this

can be determined from the conditional distribution

PX

i (t, dw) = P(θXi (t) ∈ dw, θXi (s) ∈ R(s) for all 0 ≤ s ≤ t)

of an active agent’s type. Note that supp
�
PX

i
(t)

�
⊆ R(t) for every t ≥ 0. Since µX = PX

i
by

the law of large numbers (in the number of agents), the forward Kolmogorov equation for PX

i

implies that
�

∂tµX =
�
LX
µ

�†
µX = λ

�
µX � µX − µX (R(t))µX

�
in R(t)

µX(t = 0) = µX

0

, supp
�
µX(t)

�
⊆ R(t) for all t ≥ 0.

The equation above is to be interpreted in weak form for measure-valued solutions µX(t) ∈
P([0,∞);R). No boundary conditions are prescribed or necessary in (). Putting this mean-
field equation together with the obstacle problem, we arrive at:

Definition 4.
�
R, µX

�
∈ B([0,∞);R)×P([0,∞);R) is a Nash/MFG equilibrium of the system
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where dF
H
/dF

L is a Radon-Nikodym derivative. We call the additive function θ(s1, . . . , sn)

the type of the signal set {s1, . . . , sn}. In particular, larger values for θ correspond to a higher

likelihood that X = H (that is, a larger posterior probability P(X = H|s1, . . . , sn)). We may

assume without loss of generality that every agent is initially endowed with one informative

signal.

The dynamics of the model are prescribed as follows. Each agent meets others according to a

random matching process with common matching rate λ > 0 (these rates may also be taken

to be random or controlled, as we discuss in Section []). The existence of such a process is

discussed at length in []. At each meeting, agents share all of their signals with those present

so all involved leave with the same enlarged signal set (and therefore, the same type). Such

interactions can be justified by market games in which agents have incentive to fully reveal

their types while placing bids for a contract based on X. For large times, the law of large

numbers dictates that every agent becomes completely informed and learns the value of X

with probability one.

Now let θX
i
(t) be the type of agent i ∈ G, conditional on X, at time t ≥ 0. Our goal is to

study the evolution of the cross-sectional distribution of beliefs

µ
X(t, B) := γ({i : θXi (t) ∈ B})

describing the proportion of agents with type in B ∈ B(R) at time t. As constructed, this

simple model implies that µ
X satisfies the aggregation equation

∂tµ
X = λ

�
µ
X � µX − µ

X
�

with initial condition µ
X(t = 0) = µ

X

0 given by the initial distribution of types in the pop-

ulation. The kinetic equation () is easily solved for using Fourier methods []. While this is

entirely straightforward, it is nontrivial to determine self-similar asymptotics for () and models

with more general agent interactions. This leads to work completed by the PI in [], which we

discuss in greater detail in Section [xxx].

5 Previous work by the PI

5.1 Self-similar asymptotics in social dynamics models

[xxx Self-similarity in maxwell-type models, depends on spectral function determined from

specifics of maxwell-type interaction.]

12
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Costly information aggregation:

• Agents participate in information market, in which they have an 
opportunity to acquire information from others.  After leaving 
market, agents purchase contract based on their estimate of X.

• Individuals must balance the cost of acquiring additional 
information with the cost of having a wrong estimate of X.

Cost for agent i:

Note: Cost function is given by expectation under total probability (i.e., not 
conditional on X).

5.2 A mean-field game of optimal stopping

From an economic perspective, is it significantly more realistic to presume that information
acquisition is costly. Agents are considered rational and choose strategies that minimize their
individual costs based on their current state and by anticipating the behavior of others in
the market. This naturally yields the mean-field game described below, which the PI has
developed in collaboration with Mihai Sirbu (UT Austin). The PI is actively investigating
this model, which is a rich source of problems for ongoing and future research (discussed in
Section 3).

Let us consider the following model of optimal stopping. Each agent in the market meets others
with constant meeting rate λ > 0. At any time t ≥ 0, an agent has the choice to either continue
searching for information or to stop. Upon stopping, agents use their accumulated information
to purchase a contract based on X. Individuals must balance the cost of remaining active in the
market to better their information quality with the possibility of ultimately making a wrong
decision based on bad information. This is specified as follows. Let Fi(t) be the filtration
generated by signals obtained by agent i up to time t. Furthermore, let θi(t) = θ(Fi(t)) be his
type and

pi(t) = P(X = H|Fi(t)) =
e
θi(t)

1 + eθi(t)

his posterior probability that X = H at time t. We consider expected exit costs of the form
E
�
h
���pi(t)− 1{X=H}

����, where h ∈ C
2([0, 1]), h(0) = 0, and h(p) is increasing. This penalizes

an incorrect assessment of the value of X upon stopping. Adding a running cost c ≥ 0 and
discounting rate γ ≥ 0, we arrive at the total expected cost

Ci(τ) = E
�ˆ τ

0
e
−γs

c(s)ds+ e
−γτ

g (θi(τ))

�
,

where τ is the stopping time and the symmetric obstacle g ∈ C
2(R) is given by

g(θ) := ph (1− p) + (1− p)h(p), p = e
θ
/

�
1 + e

θ
�
.

Note that the expectation in () is with respect to the total probability P—that is, not condi-
tional on X—so it penalizes uncertainty in the estimated value of X (i.e., the state θ = 0) for
a large class of exit costs. Unlike classical optimal stopping problems, the true exit cost for a
fixed realization of X is actually unknown to agents since they do not X but can only infer
its value. We say more about this in Section [xxx].

As with all mean-field games, we assume that agents are indistinguishable and therefore employ
identical strategies depending on their current type. Allowing for only Markovian policies, this

13
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• Agents choose their individual stopping times    in order to 
minimize their total expected cost         .

• Given X,          is a pure-jump (compound Poisson) Markov process 
with jump size distribution             .

• Generator of process given X:

• The unconditional process has generator

matching mechanism which has been rigorously constructed in [DS]. At each such
meeting agents share their signal sets with their counterparty. Equivalently, since
signals are conditionally independent and agents see any given signal at most once P-
a.s. because (G,G, γ) is non-atomic, agents simply add their types upon interaction.
We note that the complete sharing of information at meetings can be justified by
market games with an appropriate auction structure (see [DM]).

Without further assumptions on the model, the equation for the cross-sectional
distribution () can easily be determined as follows. While in the market, an agent’s
type evolves according to a pure-jump Markov process. Since agents are randomly
matched to others, the jump measure is given by νX . Therefore,

�
θXi (ti) : 0 ≤ ti ≤ Ti

�

has generator whose action on finite measures η is given by

�
LX
ν η,φ

�
=

ˆ
R
φ(v)

�
λ

ˆ
R
(η(dv + w)− η(dv))νX(dw)

�
(11)

with φ ∈ Cc(R). At independent exponential times the type process is reset to a
value sampled from πX . Therefore, the one-point distribution

PX
i (B) = P(θXi (t) ∈ B), B ∈ B(R) (12)

of
�
θXi (t) : t ∈ R

�
is stationary and satisfies the weak form of the forward Kol-

mogorov equation
0 = LX†

ν PX
i + β(πX − PX

i ). (13)

In addition, the law of large numbers (in the number of agents) implies

lim
N→∞

1

N

N�

i=1

PX
i = νX P-a.s. (14)

Combining () and () and using νX(R) = 1 shows that νX solves the simple equation

0 = λ
�
νX ∗ νX − νX

�
+ β(πX − νX). (15)

[xxx Here, we have considered
�
θXi (t) : t ∈ R

�
not as the conditional type process

of one agent, but of the a.s. infinite sequence of agents who take index i ∈ G. In
this case, θXi is a renewal-like process with a stationary one-point distribution. To
be consistent we must use the same approach in next subsection. Or we can rewrite
all of the above (1) with the same approach, expect using the time-dependent model
and then take the stationary limit, or (2) not using the forward equation of the type
process and writing everything explicitly.]

2.3 Costly information aggregation

There has been no stochastic control aspect to the model introduced to this point.
We now obtain a mean-field game structure by presuming that acquiring information
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Using this with () and adding the running cost yields (). The expected cost can be
simplified further by integrating out the exponential time Ti. This transforms the
finite horizon problem to an infinite horizon one. To begin,

E0

�ˆ τ∧Ti

0
e−γscds+ e−γ(τ∧Ti)g

�
θ̂i(τ ∧ Ti)

��

= E0

�ˆ ∞

0
βe−βu

�ˆ ∞

0
1{s≤τ∧u}e

−γscds+ e−γ(τ∧u)g(θ̂i(τ ∧ u))

�
du

�
.

Since ˆ ∞

0
βe−βu1{s≤τ∧u}du =

ˆ ∞

s
βe−βu1{s≤τ}du = e−βs1{s≤τ}

ˆ ∞

0
βe−βue−γ(τ∧u)g(θ̂i(τ ∧ u))du =

ˆ τ

0
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we have that

Ci(τ) = E0

�ˆ τ

0
e−(γ+β)s

�
c+ βg(θ̂i(s))

�
ds+ e−(γ+β)τg(θ̂i(τ))

�
. (19)

2.3.1 Optimal stopping problem of an individual agent

The problem of importance now is to determine an agent’s optimal stopping time
τi. Allowing only Markovian strategies, this F̂i-stopping time takes the form

τi = argmin
τ≥0

Ci(τ) = argmin
τ≥0

�
θ̂i(τ) /∈ R

�
, (20)

with continuation region R ∈ B(R) the subset of social space in which agents con-
tinue to remain active. We determine R as follows. Define

ν̂X(B) = γ
��

i ∈ G : θ̂Xi (t) ∈ B
��

, B ∈ B(R) (21)

and let
µX(B) := ν̂X(B ∩R) (22)

be the cross-sectional distribution of conditional types among active agents. Now
let θ̂Xi (t) be the process θ̂i(t) conditional on X. Fixing R, the generator LX

µ of�
θ̂Xi (ti) : 0 ≤ ti ≤ Ti

�
satisfies

�
LX
µ η

�
(t, v) = λ

ˆ
R
(η(v + w)− η(v))µX(t, dw) (23)

for finite measures η and φ ∈ Cc(R). This is obtained directly from the fact that an
active agent’s type only changes upon being randomly matched with another active
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agent. Given F̂i(0−), the process
�
θ̂i(t) : t ≥ 0

�
satisfies θ̂i(t) = 1

2 θ̂
H

i
(t) + 1

2 θ̂
L

i
(t)

and has generator
L̄µ =

1

2
LH

µ +
1

2
LL

µ . (24)

The problem of optimal stopping then reduces to an obstacle problem for the value
function v = v(w) and yields R as the region where v < g:

max
�
−L̄µv + (γ + β) v − (c+ βg) , v − g

�
= 0, R = supp(v − g). (25)

2.3.2 Cross-sectional distribution of active agents

It still remains to be seen what equation µX satisfies given R. This can be derived
by the same argument used in Section [xxx]. The stationary one-point distribution

P̂X

i (B) = P(θ̂Xi (t) ∈ B), B ∈ B(R) (26)

of
�
θ̂X
i
(t) : t ∈ R

�
satisfies the forward equation

0 = LX†
µ P̂X

i + β(πX − P̂X

i ). (27)

Since by the law of large numbers

lim
N→∞

1

N

N�

i=1

P̂X

i = ν̂X P-a.s., (28)

we have that

0 = λ
�
µX ∗

�
1w∈Rν̂

X
�
− µX(R)1w∈Rν̂

X
�
+ β(πX − ν̂X). (29)

Noticing that 1w∈Rν̂X(dw) = µX(dw) and that µX is supported in R, this implies
that µX solves

0 = λ
�
µX ∗ µX − µX(R)µX

�
+ β(πX − µX) in R, supp(µX) ⊆ R. (30)

In addition, this yields the cross-sectional distribution of inactive agents:

λ
�
µX ∗ µX

�
1w∈Rc + βπX1w∈Rc . (31)

2.4 Nash-MFG equilibria

We now define solutions to the mean-field game as fixed points (µH , µL,R) to the
mapping

R (?)�→
�
µX(πX)

�
X∈{H,L}

(?)�→ L̄µ

(?)�→ v (g)
(?)�→ R∗. (32)

To simplify matters we will assume that the pair
�
πH ,πL

�
is symmetric, in that

πL(B) = πH(−B) for all B ∈ B(R). Then
�
µH , µL

�
is symmetric so we only need

to study µH . For the remainder of the article we denote π = πH , µ = µH , and
µ̄ = 1

2µ
H + 1

2µ
L.
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5.2 A mean-field game of optimal stopping

From an economic perspective, is it significantly more realistic to presume that information
acquisition is costly. Agents are considered rational and choose strategies that minimize their
individual costs based on their current state and by anticipating the behavior of others in
the market. This naturally yields the mean-field game described below, which the PI has
developed in collaboration with Mihai Sirbu (UT Austin). The PI is actively investigating
this model, which is a rich source of problems for ongoing and future research (discussed in
Section 3).

Let us consider the following model of optimal stopping. Each agent in the market meets others
with constant meeting rate λ > 0. At any time t ≥ 0, an agent has the choice to either continue
searching for information or to stop. Upon stopping, agents use their accumulated information
to purchase a contract based on X. Individuals must balance the cost of remaining active in the
market to better their information quality with the possibility of ultimately making a wrong
decision based on bad information. This is specified as follows. Let Fi(t) be the filtration
generated by signals obtained by agent i up to time t. Furthermore, let θi(t) = θ(Fi(t)) be his
type and

pi(t) = P(X = H|Fi(t)) =
e
θi(t)

1 + eθi(t)

his posterior probability that X = H at time t. We consider expected exit costs of the form
E
�
h
���pi(t)− 1{X=H}

����, where h ∈ C
2([0, 1]), h(0) = 0, and h(p) is increasing. This penalizes

an incorrect assessment of the value of X upon stopping. Adding a running cost c ≥ 0 and
discounting rate γ ≥ 0, we arrive at the total expected cost

Ci(τ) = E
�ˆ τ

0
e
−γs

c(s)ds+ e
−γτ

g (θi(τ))

�
,

where τ is the stopping time and the symmetric obstacle g ∈ C
2(R) is given by

g(θ) := ph (1− p) + (1− p)h(p), p = e
θ
/

�
1 + e

θ
�
.

Note that the expectation in () is with respect to the total probability P—that is, not condi-
tional on X—so it penalizes uncertainty in the estimated value of X (i.e., the state θ = 0) for
a large class of exit costs. Unlike classical optimal stopping problems, the true exit cost for a
fixed realization of X is actually unknown to agents since they do not X but can only infer
its value. We say more about this in Section [xxx].

As with all mean-field games, we assume that agents are indistinguishable and therefore employ
identical strategies depending on their current type. Allowing for only Markovian policies, this
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Obstacle problem determines stopping region:

where we are solving for the value function 

This allow us to find the continuation region                               
(the part of the state space in which agents remain active).

agent. Given F̂i(0−), the process
�
θ̂i(t) : t ≥ 0

�
satisfies θ̂i(t) = 1

2 θ̂
H

i
(t) + 1

2 θ̂
L

i
(t)

and has generator
L̄µ =

1

2
LH

µ +
1

2
LL

µ . (24)

The problem of optimal stopping then reduces to an obstacle problem for the value
function v = v(w) and yields R as the region where v < g:

max
�
∂tv − L̄µv + γv − c, v − g

�
= 0 (25)

2.3.2 Cross-sectional distribution of active agents

It still remains to be seen what equation µX satisfies given R. This can be derived
by the same argument used in Section [xxx]. The stationary one-point distribution
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X
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X
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matching mechanism which has been rigorously constructed in [DS]. At each such
meeting agents share their signal sets with their counterparty. Equivalently, since
signals are conditionally independent and agents see any given signal at most once P-
a.s. because (G,G, γ) is non-atomic, agents simply add their types upon interaction.
We note that the complete sharing of information at meetings can be justified by
market games with an appropriate auction structure (see [DM]).

Without further assumptions on the model, the equation for the cross-sectional
distribution () can easily be determined as follows. While in the market, an agent’s
type evolves according to a pure-jump Markov process. Since agents are randomly
matched to others, the jump measure is given by νX . Therefore,

�
θXi (ti) : 0 ≤ ti ≤ Ti

�

has generator whose action on finite measures η is given by

�
LX
ν η,φ

�
=

ˆ
R
φ(v)

�
λ

ˆ
R
(η(dv + w)− η(dv))νX(dw)

�
(11)

with φ ∈ Cc(R). At independent exponential times the type process is reset to a
value sampled from πX . Therefore, the one-point distribution

PX
i (t, dw) = P(θXi (t) ∈ dw|X) (12)

of
�
θXi (t) : t ∈ R

�
is stationary and satisfies the weak form of the forward Kol-

mogorov equation

∂tP
X
i =

�
LX
µ

�†
PX
i in Rt, supp

�
PX
i

�
⊆ Rt, Rt = supp(v − g) (13)

In addition, the law of large numbers (in the number of agents) implies

lim
N→∞

1

N

N�

i=1

PX
i = νX P-a.s. (14)

Combining () and () and using νX(R) = 1 shows that νX solves the simple equation

0 = λ
�
νX ∗ νX − νX

�
+ β(πX − νX). (15)

[xxx Here, we have considered
�
θXi (t) : t ∈ R

�
not as the conditional type process

of one agent, but of the a.s. infinite sequence of agents who take index i ∈ G. In
this case, θXi is a renewal-like process with a stationary one-point distribution. To
be consistent we must use the same approach in next subsection. Or we can rewrite
all of the above (1) with the same approach, expect using the time-dependent model
and then take the stationary limit, or (2) not using the forward equation of the type
process and writing everything explicitly.]
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Forward Kolmogorov equation determines evolution of mean-field:

• Law of large numbers (in number of agents) implies

• This is an aggregation model on a bounded domain:
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In summary:

• Nash/MFG equilibria are fixed points of this map!
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meeting agents share their signal sets with their counterparty. Equivalently, since
signals are conditionally independent and agents see any given signal at most once P-
a.s. because (G,G, γ) is non-atomic, agents simply add their types upon interaction.
We note that the complete sharing of information at meetings can be justified by
market games with an appropriate auction structure (see [DM]).

Without further assumptions on the model, the equation for the cross-sectional
distribution () can easily be determined as follows. While in the market, an agent’s
type evolves according to a pure-jump Markov process. Since agents are randomly
matched to others, the jump measure is given by νX . Therefore,

�
θXi (ti) : 0 ≤ ti ≤ Ti

�

has generator whose action on finite measures η is given by

�
LX
ν η,φ

�
=

ˆ
R
φ(v)

�
λ

ˆ
R
(η(dv + w)− η(dv))νX(dw)

�
(11)

with φ ∈ Cc(R). At independent exponential times the type process is reset to a
value sampled from πX . Therefore, the one-point distribution

PX
i (t, dw) = P(θXi (t) ∈ dw|X) (12)

of
�
θXi (t) : t ∈ R

�
is stationary and satisfies the weak form of the forward Kol-

mogorov equation

∂tµ
X =

�
LX
µ

�†
µX in Rt, supp

�
µX

�
⊆ Rt (13)

In addition, the law of large numbers (in the number of agents) implies

lim
N→∞

1

N

N�

i=1

PX
i = νX P-a.s. (14)

Combining () and () and using νX(R) = 1 shows that νX solves the simple equation

∂tµ
X = λ

�
µX � µX − µX (Rt)µ

X
�

in Rt (15)

[xxx Here, we have considered
�
θXi (t) : t ∈ R

�
not as the conditional type process

of one agent, but of the a.s. infinite sequence of agents who take index i ∈ G. In
this case, θXi is a renewal-like process with a stationary one-point distribution. To
be consistent we must use the same approach in next subsection. Or we can rewrite
all of the above (1) with the same approach, expect using the time-dependent model
and then take the stationary limit, or (2) not using the forward equation of the type
process and writing everything explicitly.]

4

agent. Given F̂i(0−), the process
�
θ̂i(t) : t ≥ 0

�
satisfies θ̂i(t) = 1

2 θ̂
H

i
(t) + 1

2 θ̂
L

i
(t)

and has generator
L̄µ =

1

2
LH

µ +
1

2
LL

µ . (24)

The problem of optimal stopping then reduces to an obstacle problem for the value
function v = v(w) and yields R as the region where v < g:

max
�
∂tv − L̄µv + γv − c, v − g

�
= 0 (25)

2.3.2 Cross-sectional distribution of active agents

It still remains to be seen what equation µX satisfies given R. This can be derived
by the same argument used in Section [xxx]. The stationary one-point distribution

P̂X

i (B) = P(θ̂Xi (t) ∈ B), B ∈ B(R) (26)

of
�
θ̂X
i
(t) : t ∈ R

�
satisfies the forward equation

0 = LX†
µ P̂X

i + β(πX − P̂X

i ). (27)

Since by the law of large numbers

lim
N→∞

1

N

N�

i=1

P̂X

i = ν̂X P-a.s., (28)

we have that

0 = λ
�
µX ∗

�
1w∈Rν̂

X
�
− µX(R)1w∈Rν̂

X
�
+ β(πX − ν̂X). (29)

Noticing that 1w∈Rν̂X(dw) = µX(dw) and that µX is supported in R, this implies
that µX solves

0 = λ
�
µX ∗ µX − µX(R)µX

�
+ β(πX − µX) in R, supp(µX) ⊆ R. (30)

In addition, this yields the cross-sectional distribution of inactive agents:

λ
�
µX ∗ µX

�
1w∈Rc + βπX1w∈Rc . (31)

2.4 Nash-MFG equilibria

We now define solutions to the mean-field game as fixed points (µH , µL,R) to the
mapping

R (?)�→
�
µX(πX)

�
X∈{H,L}

(?)�→ L̄µ

(?)�→ v (g)
(?)�→ R∗. (32)

To simplify matters we will assume that the pair
�
πH ,πL

�
is symmetric, in that

πL(B) = πH(−B) for all B ∈ B(R). Then
�
µH , µL

�
is symmetric so we only need

to study µH . For the remainder of the article we denote π = πH , µ = µH , and
µ̄ = 1

2µ
H + 1

2µ
L.

7
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1 Introduction

[xxx previous work, point of current article]
Let π ∈ P be a given probability measure and g an obstacle. We show existence

of solutions to the system

0 = L†
µµ+ β(π − µ) in R, supp(µ) ⊆ R (1)

max {−Lµ̄v + (γ + β) v − (c+ βg) , v − g} = 0, R = supp(v − g) (2)

where the operator Lµ takes the form

Lµϕ(y) = λ

ˆ
R
(ϕ(y + w)− ϕ(y))1{y∈R}µ(dw), ϕ ∈ Cc(R) (3)

0 = K†
µµ = −∇ ·

�
µH

�(∇v)
�
+

1

2
σ2∆µ (4)

−ν∇2
m− div

�
∂H

∂p
(x,∇u)m

�
= 0

−ν∇2
u+H(x,∇u) + λ = V (x,m)

where
Kµϕ = H

�(∇v)∇ · ϕ+
1

2
σ2∆ϕ.

∗Department of Mathematics, The University of Texas at Austin. Corresponding e-mail:
rav@math.utexas.edu
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Stationary problem:

• Agent i replaced with new agent drawn from entrance distribution
                   after exponentially distributed time (we assume these 
distributions are symmetric w.r.t. X)

Nash/MFG equilibria:

for finite measures η and φ ∈ Cc(R). This is obtained directly from the fact that an
active agent’s type only changes upon being randomly matched with another active
agent. Given F̂i(0−), the process

�
θ̂i(t) : t ≥ 0

�
satisfies θ̂i(t) = 1

2 θ̂
H

i
(t) + 1

2 θ̂
L

i
(t)

and has generator
L̄µ =

1

2
LH

µ +
1

2
LL

µ . (23)

The problem of optimal stopping then reduces to an obstacle problem for the value
function v(t, w) and yields R as the region where v < g:

max
�
−L̄µv + (γ + β)v − (c+ βg), v − g

�
= 0 =⇒ R = supp(v − g) (24)

0 = λ
�
µX ∗ µX − µX(R)µX

�
+ β(πX − µX) in R, supp(µX) ⊆ R. (25)

τi ∼ Exp(β)

2.3.2 Cross-sectional distribution of active agents

It still remains to be seen what equation µX satisfies given R. This can be derived
by the same argument used in Section [xxx]. The stationary one-point distribution

P̂X

i (B) = P(θ̂Xi (t) ∈ B), B ∈ B(R) (26)

of
�
θ̂X
i
(t) : t ∈ R

�
satisfies the forward equation

0 = LX†
µ P̂X

i + β(πX − P̂X

i ). (27)

Since by the law of large numbers

lim
N→∞

1

N

N�

i=1

P̂X

i = ν̂X P-a.s., (28)

we have that

0 = λ
�
µX ∗

�
1w∈Rν̂

X
�
− µX(R)1w∈Rν̂

X
�
+ β(πX − ν̂X). (29)

Noticing that 1w∈Rν̂X(dw) = µX(dw) and that µX is supported in R, this implies
that µX solves

0 = λ
�
µX ∗ µX − µX(R)µX

�
+ β(πX − µX) in R, supp(µX) ⊆ R. (30)

In addition, this yields the cross-sectional distribution of inactive agents:

λ
�
µX ∗ µX

�
1w∈Rc + βπX1w∈Rc . (31)
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Stationary problem:

•                       is a trivial equilibrium (sometimes stable!)

• This means that to find nontrivial Nash/MFG equilibria (particularly 
the Pareto optimal one) we need to establish more than well-
posedness.  This is typically difficult, but becomes more tractable if 
we have some monotonicity in the system.

• Nontrivial equilibria depend on rates, costs, and entrance measure

Can we numerically compute Nash/MFG equilibria:?
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2 θ̂
H

i
(t) + 1

2 θ̂
L

i
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and has generator
L̄µ =
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2
LH

µ +
1

2
LL

µ . (23)
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R, µH

�
= (Ø, 0)
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2.3 Costly information aggregation

There has been no stochastic control aspect to the model introduced to this point.
We now obtain a mean-field game structure by presuming that acquiring information
is costly. While in the market an agent’s type evolves in a random fashion through
interactions with the mean-field. To distinguish this from the case without control,
we add hats in the notation to all quantities of interest. Let F̂i(ti) be the filtration of
signals seen by agent i ∈ G until time ti. At every 0 ≤ ti ≤ Ti, the agent chooses to
either continue searching for information or to irreversibly stop searching and remain
inactive based on information in F̂i(ti). Active agents only change their types upon
meeting other active agents. As in () and (), define

p̂i(ti) = P
�
X = H|F̂i(ti)

�
, θ̂i(ti) = log

�
p̂i(ti)

1− p̂i(ti)

�
. (15)

Upon leaving the market agents purchase a contract based on X. An exit cost
penalizing an incorrect estimate of the value of X is incurred. Agents work within
a rational expectations framework and choose stopping strategies to minimize their
individual costs by anticipating the behavior of others.

For simplicity, assume that agents pay constant running cost c per unit time of
searching. To penalize an incorrect assessment of X upon stopping, we consider exit
costs of the form h

���p̂i(ti)− 1{X=H}
��� where h ∈ C

2([0, 1]) is a nonnegative, convex
function with h(0) = 0. With a (possible negative) common discounting rate γ, the
expected lifetime cost at exit is

Ci(τ) = E0

�ˆ τ∧Ti

0
e
−γs

cds+ e
−γ(τ∧Ti)g

�
θ̂i(τ ∧ Ti)

��
, (16)

where τ is the exit time and g ∈ C
2(R) is the symmetric obstacle given by

g(θ) := ph (1− p) + (1− p)h(p), pi =
e
θi

1 + eθi
. (17)

The conditional expectation E0 here is with respect to F̂i(0−), in which the only
information available is the prior distribution on X. Since the expectation is not
conditional on X, it penalizes uncertainty in the estimated value of X (i.e., the state
θ = 0) for a large class of exit costs. In particular, this is true for the quadratic
cost h(p) = p

2. Unlike classical optimal stopping problems, the actual exit cost for a
fixed realization is unknown to agents since they can only infer X and do not know
its true state. We say more about this later [xxx where?].

The cost functional () can be derived as follows. At any time τ the value of X is
unknown and must be estimated for the exit cost. Since the conditional probabilities

5

20

• One idea:  Derive exit cost by putting quadratic cost for wrong 
guess for X (in terms of posterior probabilities, not posterior types!)
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A MFG model of economic growth due to innovation diffusion

R. Lucas, B. Moll, “Knowledge growth and the allocation of time,” preprint.



30

Main idea: Should agents devote their time to production or learning 
(for improved future production)?

• State of the economy completely described by distribution of 
productivity levels. More easily described in terms of cost level 
distribution:

immediate implication of non-rivalry is that under perfect competition no one would invest in

knowledge creation. In our setup, in contrast, knowledge is “rival” at least in the short-run,

and if people want to access better knowledge they have to exert effort and have the good luck

to run into the right people. Agents exert positive search effort even under perfect competition

because the search friction precludes the immediate diffusion of existing knowledge. This seems

to us a step toward descriptive realism. (Of course, to say that the private return to search is

positive is not to say that it equals the social return.)

2 A Model Economy

There is a constant population of infinitely-lived agents of measure one. We identify each person

at each date as a realization of a draw z̃ from a cost distribution, described by its cdf

F (z, t) = Pr{z̃ ≤ z at date t},

or equivalently by its density function f(z, t). This function f(·, t) fully describes the state of

the economy at t. A person with cost draw z̃ can produce ã = z̃−θ units of a single consumption

good, where θ ∈ (0, 1).6

We will formulate the equilibrium and planning problems of this economy in terms of this

cost distribution but of course we could instead do this in terms of the productivity distribution

G(a, t):

G(a, t) = Pr{z̃−θ ≤ a} = Pr{z̃ ≥ a−1/θ} = 1 − F (a−1/θ, t).

For some purposes the economic interpretations seem clearer in this form, but algorithmically

the cost formulation is more convenient. We will find it useful to use both of them on occasion.

Here we continue with the cost formulation.

Every person has one unit of labor per year. He allocates his time between a fraction

1− s(z, t) devoted to goods production and s(z, t) devoted to improving his production-related

knowledge. His goods production is

[1 − s(z, t)] z−θ. (1)

the survey by Jones (2005) and references therein.
6We will show in Lemma 1 below that under our assumptions the productivity distribution has a Pareto tail

with tail parameter 1/θ. The parameter restriction θ < 1 therefore ensures that the tail parameter 1/θ > 1
implying that the productivity distribution has a finite mean.

6
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• Agent allocates fraction of time for goods production, and other 
time for improving knowledge (by searching for more productive 
agents):
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knowledge. His goods production is

[1 − s(z, t)] z−θ. (1)

the survey by Jones (2005) and references therein.
6We will show in Lemma 1 below that under our assumptions the productivity distribution has a Pareto tail

with tail parameter 1/θ. The parameter restriction θ < 1 therefore ensures that the tail parameter 1/θ > 1
implying that the productivity distribution has a finite mean.

6

Per-capita production in the economy is

Y (t) =

∫ ∞

0

[1 − s(z, t)] z−θf(z, t)dz.

Individual preferences are

V (z, t) = Et

{
∫ ∞

t

e−ρ(τ−t) [1 − s(z̃(τ), τ)] z̃(τ)−θdτ

∣

∣

∣

∣

z̃(t) = z

}

. (2)

We model the evolution of the distribution f(z, t) as a process of individuals meeting others

from the same economy, comparing ideas, improving their own productivity. The details of

this meeting and learning process are as follows.7 A person z allocating the fraction s(z, t) to

learning observes the cost z′ of one other person with probability α [s(z, t)] ∆ over an interval

(t, t + ∆) , where α is a given function. He compares his own cost level z with the cost z′ of

the person he meets, and leaves the meeting with the best of the two costs, min(z, z′). (These

meetings are not assumed to be symmetric: z learns from and perhaps imitates z′ but z′ does

not learn from z and in fact he may not be searching himself at all.)

We assume that everyone in the economy behaves in this way, though the search effort

s(z, t) varies over time and across individuals at a point in time. Thinking of F (z, t) as the

fraction of people with cost below z at date t, this behavior results in a law of motion for F as

follows:

1 − F (z, t + ∆) = Pr{cost above z at t and no lower cost found in [t, t + ∆)}

=

∫ ∞

z

f(y, t) Pr{no lower cost found in [t, t + ∆)}dy

=

∫ ∞

z

f(y, t) [1 − α(s(y, t))F (z, t)∆] dy

= 1 − F (z, t) − F (z, t)

∫ ∞

z

α(s(y, t))f(y, t)∆dy.

Then
F (z, t + ∆) − F (z, t)

∆
= F (z, t)

∫ ∞

z

α(s(y, t))f(y, t)dy

and letting ∆ → 0 gives

∂F (z, t)

∂t
= F (z, t)

∫ ∞

z

α(s(y, t))f(y, t)dy.

7The process assumed here is an adaptation of ideas in Kortum (1997), Eaton and Kortum (1999), Alvarez,
Buera and Lucas (2008), and Lucas (2009).
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• Agent learns by meeting another who is more knowledgeable 
(asymmetric interaction):
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• Therefore, forward equation is

• HJB (backward) equation is

Differentiating with respect to z we obtain

∂f(z, t)

∂t
= −α(s(z, t))f(z, t)

∫ z

0

f(y, t)dy + f(z, t)

∫ ∞

z

α(s(y, t))f(y, t)dy. (3)

Equation (3) can also be motivated by considering the evolution of the density at z directly,

as follows. Some agents who have cost z will adopt a lower cost y ≤ z and so there will be an

outflow of these agents. Other agents who have cost y ≥ z will adopt cost z and there will be

an inflow of these agents. Hence we can write

∂f(z, t)

∂t
=

∂f(z, t)

∂t

∣

∣

∣

∣

out
+

∂f(z, t)

∂t

∣

∣

∣

∣

in
.

Consider first the outflow. The f(z, t) agents at z have meetings at the rate α(s(z, t))f(z, t).

A fraction F (z, t) =
∫ z

0 f(y, t)dy of these draws satisfy y < z and these agents leave z. Hence

∂f(z, t)

∂t

∣

∣

∣

∣

out
= −α(s(z, t))

∫ z

0

f(y, t)dyf(z, t).

Next, consider the inflow. Agents with cost y ≥ z have meetings at the rate α(s(y, t))f(y, t).

Each of these meetings yields a draw z with probability f(z, t). Hence

∂f(z, t)

∂t

∣

∣

∣

∣

in
= f(z, t)

∫ ∞

z

α(s(y, t))f(y, t)dy.

Combining, we obtain (3). This type of equation is known in physics as a Boltzmann equation.

Now consider the behavior of a single agent with current cost z, acting in an environment

characterized by a given density path f(z, t), all z, t ≥ 0. The agent wants to choose a policy

s(z, t) so as to maximize the discounted, expected value of his earnings stream, expression (2).

The Bellman equation for this problem is8

ρV (z, t) = max
s∈[0,1]

{

(1 − s)z−θ +
∂V (z, t)

∂t
+ α(s)

∫ z

0

[V (y, t) − V (z, t)]f(y, t)dy

}

. (4)

The system (3) and (4) is an instance of what Lasry and Lions (2007) have called a “mean-field

game.” We summarize our discussion of the economy in the

Definition: An equilibrium, given the initial distribution f(z, 0), is a triple (f, s, V ) of

functions on R2
+ such that (i) given s, f satisfies (3) for all (z, t), (ii) given f , V satisfies (4),

8See Appendix A for a derivation of this continuous time Bellman equation as a limit of the corresponding
discrete time version.
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• Self-similar solutions are “balanced growth paths” (states of the 
economy where total production grows at a constant rate):

and (iii) s(z, t) attains the maximum for all (z, t) .

As is well known, there do not exist anything like general existence and uniqueness theorems

for systems of PDE’s and we do not attempt to prove these properties here. Furthermore, a

complete analysis of this economy would require the ability to calculate solutions for all initial

distributions. This would be an economically useful project to carry out, but we limit ourselves

in this paper to the analysis of a set of particular solutions on which the growth rate and the

distribution of relative costs are both constant over time.

Definition: A balanced growth path (BGP) is a number γ and a triple of functions (φ, σ, v)

on R+ such that

f(z, t) = eγtφ(zeγt), (5)

V (z, t) = eθγtv(zeγt), (6)

and

s(z, t) = σ(zeγt) (7)

for all (z, t) , and (f, s, V ) is an equilibrium with the initial condition f(z, 0) = φ (z) .

Intuitively, a BGP is simply a path for the distribution function along which all cost quantiles

shrink at the same rate γ (and hence all quantiles of productivity, z−θ, grow at rate θγ). That

is, on a BGP the cost cdf satisfies F (z, t) = Φ(zeγt) and therefore the qth quantile, zq(t),

satisfies Φ(zq(t)eγt) = q or

zq(t) = e−γtΦ−1(q).

That the value and policy functions take the forms in (6) and (7) is then immediately implied.

The analysis of balanced growth is facilitated by restating (3) and (4) in terms of relative

costs x = zeγt. From (5), we have

∂f(z, t)

∂t
= γeγtφ(zeγt) + eγtφ′(zeγt)γzeγt

which from (3) and (7) implies

φ(x)γ + φ′(x)γx = φ(x)

∫ ∞

x

α(σ(y))φ(y)dy − α(σ(x))φ(x)

∫ x

0

φ(y)dy. (8)

Evaluating at x = 0, we have

φ(0)γ = φ(0)

∫ ∞

0

α(σ(y))φ(y)dy. (9)
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• The “stationary” MFG:

• No analytical results (all numerical)! Can one prove existence of 
Nash equilibria and classify Pareto optimal ones?

Balanced Growth Path

• Restate (BE), (LM) for BGP only. Use x = zeγt

(ρ− θγ) v(x)−v ′(x)γx = max
σ∈[0,1]

{

(1− σ)x−θ + α(σ)

∫ x

0
[v(y) − v(x)]φ (y) dy

}

φ(x)γ + φ′(x)γx = φ(x)

∫

∞

x

α(σ(y))φ(y)dy − α(σ(x))φ(x)

∫ x

0
φ(y)dy .

• Growth rate?

φ(0)γ = φ(0)

∫ ∞

0
α(σ(y))φ(y)dy .

γ =

∫

∞

0
α(σ(y))φ(y)dy

32 / 44


