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Multi-scale stochastic chemical kinetic systems

Genetic Regulatory Network (GRN)

1. Transcription {RNA polymerase −→ DNA}+ Nucleotides =⇒ RNA

2. Translation {Ribosome −→ MRNA}+ Amino Acids =⇒ Proteins

3. Regulation Transcription factors −→ Regulatory DNA sequences

=⇒ Activate or Repress Transcription in response to different stimuli
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Multi-scale stochastic chemical kinetic systems

Multiscale modeling of Genetic Regulatory Network (GRN)

1. GRN: Genes, proteins, small molecules within cells

LOW concentrations in SMALL volumes

2. Macro-scale model: ODE/PDE/SDE dynamics in terms of concentrations

Valid with large concentrations

3. Micro-scale model: Molecular dynamics or First principle

Numerically / Analytically intractable

4. Meso-scale model: Molecular events omitting details (position, momentum)

Stochastic dynamics / Discrete molecular numbers
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Multi-scale stochastic chemical kinetic systems

Cell cycle model of Budding Yeast (Tyson et. al. 04)

>80 reactions and >50 reacting species
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Multi-scale stochastic chemical kinetic systems

Insulin Response Model (Huang, Wu, Du, Chan and Liu, J. Theo. Bio., 14)

!
∼40 reactions and species
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Multi-scale stochastic chemical kinetic systems

More on Modeling and Simulation

1. Modularized structure — built collectively on previous models

2. Large amount of parameters and initial conditions
—expensive to do experiments

3. Logic models v.s. Kinetic models

(a) Multidimensional pathways — forward and backward feedback loops, etc

(b) Time scales and delays

(c) Crosstalks between different pathways

4. Numerical output

(a) Hypothesis test on important pathways
—IRS1 and IRS2 plays a central role in functioning of the Insulin response
network

(b) Sensitivity analysis→potential therapeutic targets
—IRS and JNK
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Multi-scale stochastic chemical kinetic systems

Molecular numbers of reacting species :

x = (x1, · · · , xd) ∈ N
d

Reaction : Rj =
(

aj(x), νj
)

reaction rate : aj(x) — probability of reaction j in unit time interval

change of the state : x −→ x+ νj

Example: S1

a1−→←−
a2

S2 2S2
a3−→ S3

ν1 = (−1, 1, 0) ν2 = (1,−1, 0) ν3 = (0,−2, 1)

(a1, a2, a3) = (c1x1, c2x2, c3x2(x2 − 1))

Forward master equation :

∂P (x, t)

∂t
=
∑

j

(

a(x− νj)P (x− νj , t)− aj(x)P (x, t)
)
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Multi-scale stochastic chemical kinetic systems

SSA (Gillespie’s algorithm, BKL, Kinetic Monte Carlo, ...)

R = (a, ν) a0(x) =
∑

j aj(x)

1. At (tn, xn), generate r1 and r2 with uniform dist. on unit internal

δtn+1 = 1
a0(xn) ln(

1
r1

)

Skip the time when no reaction happens

kn+1:
∑kn+1−1

i=1 ai(xn) < r2a0(xn) ≤
∑kn+1

i=1 ai(xn)

Pick up a reaction

2. tn+1 = tn + δtn+1, xn+1 = xn + νkn+1

Update the system
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Multi-scale stochastic chemical kinetic systems

Multiscale nature of GRNs:

1. Multiple time scales

eg. Binding of RNAP v.s. Transcription/Translation

Nested SSA (Weinan E, Di Liu and Eric Vanden-Eijnden)

2. Multiple population scales

eg. Transcription/Translation v.s. Protein-Protein reactions

Sampling invariant measures with τ -leaping method (Can Huang and Di Liu)

3. Metastability

Different sable gene expression profiles =⇒ Different phenotypic states

eg. Cell fates : proliferation, apoptosis, . . .

Minimum Action Method for Chemical Kinetic Systems (Di Liu)
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Nested stochastic simulation algorithm

Example: S1

a1−→←−
a2

S2 S2
a3−→ S3

ν1 = (−1, 1, 0) ν2 = (1,−1, 0) ν3 = (0,−1, 1)

Time-scale separation due to the separation of the reaction rates

(a1, a2, a3) = (
1

ϵ
x1,

1

ϵ
x2, x2)
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Nested stochastic simulation algorithm

Effective dynamics on slow time-scale

R = (Rs, Rf )

Rs =
(

asj(x), ν
s
j

)

Rf =
(1

ϵ
afj (x), ν

f
j

)

Assuming an equilibrium distribution P for the fast reactions

Effective dynamics for the slow variables: (Principle of Averaging)

R̄j =
(

āsj(x), ν
s) āsj(x) = Pasj(x)

— Singular perturbation for the backward equation
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Nested stochastic simulation algorithm

Example revisited:

S1

a1−→←−
a2

S2 S2
a3−→ S3

Fast reaction (Birth-Death process)

S1

a1−→←−
a2

S2

Equilibrium distribution: p(x) = p(x2 = x) = (N−x3)!
x!(N−x3−x)! q

x(1− q)N−x3−x

Effective dynamics in terms of the slow variable x3:

R̄ =
(

Px2, (0,−1, 1)
)

=
(1

2
(N − x3), (0,−1, 1)

)

— One direction Birth-Death process.
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Nested stochastic simulation algorithm

Identification of the slow variables:

S1

a1−→←−
a2

S2 S2

a3−→←−
a4

S3 S3

a5−→←−
a6

S4

(a1, a2, a3, a4, a5, a6) =
(x1

ϵ
,
x2

ϵ
, x2, x3,

x3

ϵ
,
x4

ϵ

)

Every variable is involved in one fast reaction

R̄1 = (
1

2
(x1 + x2), (0,−1, 1, 0) ) R̄2 = (

1

2
(x3 + x4), (0, 1,−1, 0) )

Slow variables : Conversed linear functions in fast reactions
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Nested stochastic simulation algorithm

(W. E, Liu and Vanden-Eijnden, J. Chem. Phys., 05; J. Comp. Phys., 07):

R̄j =
(

āsj(x), ν
s)

1. Inner SSA: Direct SSA for fast reactions Rf = (af , νf )

xk(t), k = 1, . . . , N

N — ensemble number (parallel implementation)

2. Estimate the macro data (time-ensemble average)

āsi (x) ≈ ãsi (x) =
1

N

N
∑

j=1

1

Tf

∫ Tf

0
as(xk(t))dt

Tf — time for averaging

3. Outer SSA Direct SSA for slow reactions with modified rates:

R̃s = (ãs, νs)
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Nested stochastic simulation algorithm

Exponential mixing for fast reactions:

| Ef(yt)− Pf | ≤ Re−αt/ϵ

Error Estimate: Weak (E, Liu and Vanden-Eijnden, 05, 07)
Strong (Huang and Liu, Comm. Comp. Phys., 14)

E
∣

∣xt − x̃t
∣

∣ ≤ C

(

ϵ+
1

1 + Tf/ϵ
+

1
√

N(1 + Tf/ϵ)

)

Principle of averaging + Relaxation + Sampling

Designing: Given error tolerance λ, choose the parameters such that

Error ≤ λ

Computational cost: O
(

1
λ2

)

when ϵ≪ λ
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Nested stochastic simulation algorithm

Reiterated Averaging

R = (Rs,
1

ϵ
Rf ,

1

ϵ2
Ruf )

Rs = (as, νs) Rf = (
1

ϵ
af , νf ) auf = (auf ,

1

ϵ2
νuf )

Suppose the following is ergodic:

R̃f = (Paf , νf )

P equilibrium of Ruf

Effective dynamics:

R̄s = (QPas, νs)

Q equilibrium of R̃f
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Nested stochastic simulation algorithm

S1

a1−→←−
a2

S2, S2

a3−→←−
a4

S3, S3

a5−→←−
a6

S4.

(a1, a2, a3, a4, a5, a6) =
(2x1

ϵ2
,
x2

ϵ2
,
x2

ϵ
,
2x3

ϵ
, x3, x4

)
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Nested stochastic simulation algorithm

Adaptivity

S1

a1−→←−
a2

S2, S2

a3−→←−
a4

S3, 2S2 + S3

a5−→←−
a6

3S4.

(a1, a2) =
(

x1, x2
)

(a3, a4) =
(

104x2, 104x3
)

(a5, a6) =
(

2x2(x2 − 1)x3, 2x4(x4 − 1)(x4 − 2)
)
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Cell cycle model of budding yeast

Time scale separation is O(103).
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Cell cycle model of budding yeast

(Liu, Comm. Comp. Phys., 11)
NSSA is 4 times faster with only .02% relative error in the averaged period.
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Insulin response model

(Huang and Liu, Comm. Comp. Phys., 14)

• There are 3 time scales in the model.

• The slow-fast-ultrafast partition of reactions dynamically changes.

• NSSA is 60 faster than Direct SSA.
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Heat shock response of E. Coli

(El-Samad, Kurata, Doyle, Gross and Khammash 01)

Stochastic Simulation of Multiscale Intracellular Reacting Networks – p. 6/9



Heat shock response of E. Coli

(Huang and Liu, Comm. Comp. Phys., 14)

• The original model is Differential-Algebraic Equations.

• In the full stochastic model, there are 3 time scales.

• Direct SSA is impossible.
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Sampling Invariant Measures with τ -leaping

SDE for SSA

dXt =
∑

j

∫

∞

0
νjAj(q,Xt)P(dt, dq),

where

Aj(q,Xt) =

⎧

⎪

⎨

⎪

⎩

1, q ∈ (
j−1
∑

i=1
ai(Xt),

j
∑

i=1
ai(Xt))

0, otherwise.

and P(dt, dq) is the Poisson random measure with Lebesgue intensity.

τ -leaping (Euler) method (Gillespie 01)

Xn+1 = x+

MR
∑

j=1

νjPj(aj(x), τ),

where Pj(aj(x), τ), j = 1, · · ·MR are independent Poisson r.v.
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Sampling Invariant Measures with τ -leaping

Allow large time steps when populations are high: (T. Li 07, D. Anderson et al. 11)

1

a0
< τ ≪ 1.

Effectiveness on infinite time horizon: (Huang and Liu, Comm. Comp. Phys., 14)

∣

∣

∣

∣

∫

φ(y)dµZn (y)− E
1

N

N
∑

i=1

φ(Yn,i)

∣

∣

∣

∣

≤ C(τ +
1

Tf
).

Modified Inner SSA

Xn,i+1 = Xn,i +

Mf
∑

j=1

νfj Pj(a
f
j (Xn,i), τ), Xn,0 = Xn, i = 0, · · · , N,

Speed up 30% of computation for the Heat Shock Response model
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Minimum Action Method for Chemical Kinetic Systems

Metastability

ẋ = −
∂V (x)

∂x
+
√

2kBT ẇt

Ergodicity =⇒ Exploring the whole configuration space

Time scale separation: Arrhenius Formula

τ = ν exp(∆V/kBT
)

τ—Mean exit time from a local minimum
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Minimum Action Method for Chemical Kinetic Systems

WKB method: (Dykman et. al. 94; Roma et. al. 05)

Forward equation :

∂P (y, t)

∂t
= Ω

∑

j

(

bj
(

y − νj/Ω
)

P
(

y − νj/Ω, t
)

− bj
(

y
)

P
(

y, t
)

)

WKB form : P (y, t) = C exp(−ΩS
(

y, t)
)

Taylor expansion in terms of Ω :

∂P (y, t)

∂t
= HP (y, t)

H(y, p) =
∑

j

bj(y)
(

eνj ·p − 1
)

, pi =
∂

∂yi
S0(y, t)

Optimal path :

ẏit =
∂H

∂pi
, ṗit = −

∂H

∂yi
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Minimum Action Method for Chemical Kinetic Systems

Large Deviation of Stochastic Processes

Local function :

ℓ(y, y′) = sup
θ∈R

NS

⎛

⎝< θ, y′ > −
∑

j

bj(y)
(

e<θ,νj> − 1
)

⎞

⎠

Action functional :
I[0,T ](ϕ) =

∫ T

0
ℓ
(

ϕ(t), ϕ̇(t)
)

dt

Large Deviation Principle :

Px

{

∥ ϕΩ − ϕ ∥
}

≈ exp

(

−
1

Ω
I[0,T ](ϕ)

)

Mean exit time :
τ ≈ exp

{

Ω inf
T

IT [ψT ]
}

Large computing cost for the numerical evaluation of the local function :

y′ =
∑

j

e<θ∗,νj>bj(y)νj
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Minimum Action Method for Chemical Kinetic Systems

Minimum Action Method

(E, Ren and Vanden-Eijnden 04; Vanden-Eijnden and Heymann 07)

∂φ

∂s
= −

∂IT [φ]

∂φ

—Numerical approach for local rates

Minimum Action Method for Chemical Kinetic Systems —

(Di Liu J. Chem. Phys. 06; J. Comp. Phys. 08)

—Asymptotic approach for local rates based on Taylor expansions

Reaction advancement coordinates : (Van Kempen)

yt = y0 +
∑

j

zjt νj
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Minimum Action Method for Chemical Kinetic Systems

Toggle switch model Bacteriophage lambda virus infection in E. coli

R1 =

(

α1

1 + vβ
, (1, 0)

)

, R2 = (u, (−1, 0))

R3 =

(

α2

1 + uγ
, (0, 1)

)

, R4 = (v, (0,−1))
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Minimum Action Method for Chemical Kinetic Systems
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Minimum Action Method for Chemical Kinetic Systems

Lactose utilization of E. Coli
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Minimum Action Method for Chemical Kinetic Systems

Y —cell-associated Lac permease I—Inducer Iex—extracellular Inducer

Generation of Lac permease :

RGEN = k1OT
1 +K1I2

1 +K1I2 +K2RT

Transportation of Inducer by Permease :

RACTIV E =
αIexY

β + Iex

Permease independent transport of inducer :

RFACILITATED = δ(I − Iex)

Dilution of Inducer and Permease due to growth :

RdI = k2I , RdY = k2Y
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Minimum Action Method for Chemical Kinetic Systems

Hysteresis loop under different external inducer populations

10
4

10
5

10
−1

10
0

10
1

10
2

10
3

Extracelluar Inducer (I
ex

)

P
e

rm
e

a
s
e

 (
Y

)

uninduced states

induced states

Stochastic Simulation of Multiscale Intracellular Reacting Networks – p. 8/9



Minimum Action Method for Chemical Kinetic Systems
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Minimum Action Method for Chemical Kinetic Systems

(Arkin et al., 98)

Transition Path Theory (TPT)

(E and Vanden-Eijnden 06; Metzner, Schutte, and Vanden-Eijnden 09)
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Minimum Action Method for Chemical Kinetic Systems

(Du and Liu, preprint)

fAB
ij = lim

s→0+

1

s
P

(

X(t) = i,X(t+ s) = j, t ∈ R, t+ s ∈ R
)

.
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Concluding remarks

1. Multiscale methods for simulating multi scale stochastic reacting networks

2. Optimal error estimate is proved and efficiency is discussed

3. Applied to realistic Genetic Regulatory Networks

4. Current investigations on transition paths of metastable systems,
system with delays (Chen and Liu, submitted).
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