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Fluid and Solid Mechanics

Continuum Thermodynanics - concept of continuum

• balance equations
• conservation of mass, energy
• principles of classical Newtonian mechanics applied to subsets

of the body: d

dt

(mv) = F with v = d�
dt

• principles of classical thermodynamics applied to subsets of the
body assumed to be at local equilibrium

• boundary conditions
• initial conditions

Insufficient to describe mechanical and thermal processes

inside the body
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Initial and boundary value problems

• balance equations

⇢̇ = ⇢ div v
⇢v̇ = divT
⇢Ė = div(Tv � j

e

) E := e + 1

2

|v |2

• the density ⇢

• the velocity v = (v
1

, v
2

, v
3

)

• the internal energy e

• the Cauchy stress tensor T = (T
11

,T
12

,T
13

,T
22

,T
23

,T
33

)

• the energy flux j
e

= (j
e1

, j
e2

, j
e3

)

• boundary conditions
• initial conditions

Insufficient to predict mechanical processes inside the body

Closure - constitutive (material) equations involving T and j
e
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Section 1

Balance equations and stress power
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General form of the balance equations

P0 P
t

X

x

x = �(t, X )

Balance equation for z

d

dt

Z

P
t

z(t, x) dx =

Z

@P
t

j
z

(t, x) · n(t, x) dS +

Z

P
t

s

z

(t, x) dx

Incompressibility:

d

dt

Vol(P
t

) = 0 () d

dt

Z

P
t

dx = 0
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General form of the balance equations

For all P
t

⇢ ⌦: ż := @z

@t

+ v ·rz v := @�

@t

Z

P
t

{ż + z div v � div j
z

+ s

z

} dx = 0

ż + z div v � div j
z

+ s

z

= 0

For mass density ⇢: ⇢̇ = �⇢ div v

For linear momentum ⇢v : ⇢̇v + ⇢v div v = ⇢v̇ = divT

For total energy ⇢E : ˙⇢E + %E div v = ⇢Ė = div(Tv � j
e

)

Incompressibility: div v = 0 =)
⇢̇ = 0 () ⇢(t,�(t,X )) = ⇢

0

(X )
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Stress power

Multiplying ⇢v̇ = divT scalarly by v : D = 1

2

(rv +rvT )

1

2

⇢ ˙|v |2 = div(Tv)� T : D

Subtracting this from ⇢Ė = div(Tv � j
e

)

⇢ė = div j
e

+ T : D

Stress power - source s

e

T : D = S : D
�

+m div v = S : D
�

if div v = 0

where
A
�

:= A� 1
3
(TrA)I

and
T = S+mI S := T

�

and m := 1

3

TrT
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Stress power and the 2nd law of thermodynamics

So far, continuum thermodynamics entered only through the
conservation of energy (First law of thermodynamics). For classical
compressible fluids the rate of entropy production takes the form
(Second law of thermodynamics)

✓⇠ = S : D
�

+ (m + pth) div v � j
e

· r✓

✓
and ⇠ � 0 (1)

Remarks
• S : D

�

+ (m + pth) div v 6= S : D
�

+m div v
• For incompressible fluids and isothermal processes: ⇠ = S : D � 0
represents gain/loss for internal/kinetic energy
• A purely mechanical systems (isothermal processes) are merely
approximation
• Classification of incompressible fluids based on stress power -
towards model with activation (mixing)
• Constitutive theory for T and j stemming from (1) - towards
geo-physical models
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Section 2

Classification of incompressible fluids
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Josiah Williard Gibbs (1839-1903): One of the principal objects of
theoretical reserach in any department of knowledge is to find the
point of view from which the subject appears in its greatest
simplicity.
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Internal isothermal flows of Incompressible fluids

Incompressible fluids with constant density ⇢⇤

div v = 0

⇢⇤

✓
@v
@t

+ v

k

@v
@x

k

◆
= rm + div S

in (0,T )⇥ ⌦

Internal flows

v · n = 0 on (0,T )⇥ @⌦
nz⌧

z

⌦

@⌦

Balance of energy s := (�Sn)⌧ z⌧ := z � (z · n)n

d

dt

Z

⌦
⇢⇤

|v |2

2
dx +

Z

⌦
S : D dx +

Z

@⌦
s · v⌧ dS = 0
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Two dissipative mechanisms

S : D mechanical energy due to friction between layers of the fluid in the bulk
and due to further microstructural changes, transformed into heat: growth of the
internal energy

• D the symmetric part of the velocity gradient

• S the traceless part of the Cauchy stress

s · v⌧ mechanical energy due to mutual interaction of the fluid in bulk and
the solid that forms the boundary; transformed into the heat: growth of internal
energy

• v⌧ tangential part of the velocity on @⌦

• s projection of the normal traction to the tangent plane

Requirements
S : D � 0 and s · v⌧ � 0

We formulate the whole cascade of models in bulk (i.e. constitutive equations
relating S and D) and the whole cascade of boundary conditions, for internal
flows (i.e. constitutive equations relating s and v⌧ )
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From Euler through NS fluid to rigid body motion

S : D � 0

|D|

|S|

|D|

|S|

|D|

|S|

A linear relation S = 2⌫⇤D () S = ↵⇤D Navier-Stokes fluid

• ⌫⇤ > 0 is the shear viscosity
• ↵⇤ > 0 is the fluidity ↵⇤ = 1

2⌫⇤

Two remarkable trivial situations
• S = O () T = mI Euler fluid

• D = O () v(t, x) = a(t)⇥ x + b(t) rigid body motion

Maryland Málek Activated fluids
13/38



|D|

|S|

Euler fluid

Navier-Stokes fluid

rigid body

Figure: Response of Euler fluid, Navier-Stokes fluid, and rigid body.

Implicit constitutive relations

G(S,D) = O
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Power-law fluids

S = |D|r�2D () D = |S|r 0�2S

Meaningful for r > 1 r

0 = r/(r � 1)

|DDD|

|SSS|

d⇤

2⌫⇤d⇤ r = 20
19

r = 3
2

r = 2r = 3r = 20

Figure: Response of the power-law model for various values of r .
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A generalization of power-law fluid

S = 2⌫⇤
✓

1
2
+

1
2
|D|2

d

2
⇤

◆ r�2
2

D

|DDD|

|SSS|

d⇤

2⌫⇤d⇤
r = 0

r = 1

r = 5
4

r = 2
r = 4r = 10

D =
1

2⌫⇤

✓
1
2
+

1
2

|S|2

(2⌫⇤d⇤)2

◆ r

0�2
2

S

|DDD|

|SSS|

d⇤

2⌫⇤d⇤

r

0 = 0
r

0 = 1 r

0 = 5
4

r

0 = 2

r

0 = 4

r

0 = 10

r 2 R
r

0 2 R
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A generalization of power-law fluid

S =

✓
1 + A

�
1 + |D|2

� r�2
2

◆
D

|DDD|

|SSS|
A = 40

A = 20
A = 10

r = 0

D =

✓
1 + A

�
1 + |S|2

� r

0�2
2

◆
S

|DDD|

|SSS|
A = 40

A = 20A = 10

r

0 = 0

Both models can be simplified by making the response monotone

(dashed line). Note that only on the left S is a function of D; on the
right, D is a function of S.
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|D|

|S|

Euler-Navier-Stokes fluid

Navier-Stokes fluid

Bingham fluid

Figure: Response of the Bingham fluid, the Navier-Stokes fluid, and

activated Euler-Navier-Stokes fluid.

Bingham fluid

• mixes rigid body behaviour with
fluid behaviour

• a key model of viscoplasticity

• a special issue of IJNonNFM
(2015)

Euler/Navier-Stokes fluid

• connects behavior of fluids where
shear effects are neglegible in parts
of the fluid domain

• a possible model in boundary layer
theory

• superfluids
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Activated power-law fluids

D = O () |S|  �⇤

D 6= O () S = �⇤
D
|D|

+ 2⌫g
�
|D|2

�
D

|D|

|S|
r

0 = 2r

0 = 3

r

0 = 3
2

�⇤

S = O () |D|  �⇤

S 6= O () D = �⇤
S
|S|

+
1

2⌫g (|D|2)
S

|D|

|S|

r = 2

r = 3

r = 3
2

�⇤

D =
1

2⌫g (|D|2)
(|S|� �⇤)

+

|S| S S = 2⌫g
�
|D|2

� (|D|� �⇤)
+

|D| D
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Workshop Viscoplastic fluids: from theory to application (2013)
(Xavier Chateau, Antony Wachs)

• The realistic and accurate modeling of viscoplastic and
thixotropic materials still remains an unsolved question in the
field

• Efforts in designing new numerical approaches with enhanced
accuracy and fast convergence have seemed to slow down and
the workshop was an occasion to acknowledge that this research
should be revived

A novel approach
G(S,D) = O

Continuous curve over the Cartesian product R3⇥3 ⇥ R3⇥3 (replaces
viewpoints through "multivalued" or "discontinuus" functions, or
variational inequalities)
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Fluids with limiting shear-stress/shear-rate

S = 2⌫⇤
✓

1 +
|D|2

d

2
⇤

◆� 1
2
D D =

1
2⌫⇤

✓
1 +

|S|2

d

2
⇤

◆� 1
2
S
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Fluids with limiting shear-stress/shear-rate

S = 2⌫⇤
✓

1 +
|D|a

d

a

⇤

◆� 1
a

D D =
1

2⌫⇤

✓
1 +

|S|b

d

b

⇤

◆� 1
b

S
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Fluids with limiting shear-stress/shear-rate

S = 2⌫⇤
✓

1 +
|D|a

d

a

⇤

◆� 1
a

D

|DDD|

|SSS|

d⇤

2⌫⇤d⇤

a = 1
2

a = 1
a = 2
a = 4

a = 1

D =
1

2⌫⇤

✓
1 +

|S|b

d

b

⇤

◆� 1
b

S

|DDD|

|SSS|

d⇤

2⌫⇤d⇤

b
=

1 2

b
=

1
b
=

2
b
=

4

b = 1
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Summary

Euler/limiting

shear-rate

limiting shear-

rate

rigid body

Euler/shear-

thickening

shear-

thickening

rigid/shear-

thickening

Euler/Navier-

Stokes

Navier-Stokes Bingham =

rigid/Navier-

Stokes

Euler/shear-

thinning

shear-thinning rigid/shear-

thinning

Euler limiting shear

stress

perfect plastic

|D|  �⇤ () S = O no activation |S|  �⇤ () D = O

Summary of systematic classification of fluid-like responses

with corresponding |S| vs |D| diagrams.
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“Mixing” two of the above given fluids

fluid 1

fluid 2

S = S1 + S2

fluid 1 fluid 2

D = D1 + D2
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From slip through Navier’s slip to no-slip

s · v⌧ � 0

A linear relation s = �⇤v⌧ () v⌧ =
1
�⇤

s Navier’s slip

Two remarkable trivial situations

• s = 0 slip

• v⌧ = 0 no-slip

v⌧ = 0 () |s|  s⇤

v⌧ 6= 0 () s = s⇤
v⌧

|v⌧ |
+ �⇤v⌧

s = 0 () |v⌧ |  v⇤

s 6= 0 () v⌧ = v⇤
s
|s|

+
1

�⇤
v⌧

v⌧ =
1
�⇤

(|s|� s⇤)
+

|s| s s = �⇤
(|v⌧ |� v⇤)

+

|v⌧ |
v⌧

stick-slip slip/Navier’s slip
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Summary

no-slip

slip/Navier’s

slip

Navier’s slip stick-slip

slip

|v⌧ |  �⇤ () s = 0 no activation |s|  �⇤ () v⌧ = 0

Summary of systematic classification of boundary conditions

with corresponding |s| vs |v⌧ | diagrams.

Maryland Málek Activated fluids
25/38



Section 3

Is the developed framework useful?

Maryland Málek Activated fluids
26/38



Importance of and G(S,D) = O and G(T,L) = O

NAVIER-STOKES FLUID can not describe several phenomena that have been
observed and documented experimentally:

•
shear thinning, shear thickening - ⌫

g

depends on |D|2 and/or |S|2

•
pressure thickening - ⌫

g

depends on p

•
the presence of activation or deactivation criteria - “jump" singularities

•
the presence of the normal stress differences at simple shear flows

• stress relaxation

• non-linear creep

• responses of anisotropic fluids

• thixotropy

G(T,L) = O has potential to describe four of them - rich structure.

Models connected with names like Ostwald (1925), de Waele (1923), Carreau
(1972), Yasuda (1979), Eyring (1958), Cross (1965), Sisko (1958), Matsuhisa and
Bird (1965), Glen (1955), Blatter (1995), Barus (1893), Bingham (1922) etc.
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Lid driven cavity with Bingham fluid (J. Hron, J. Málek J. Stebel, K.

Touška) (2016)

• Unknowns (v , p, S):

� div S = �rp + b

G(S,D) = O
D(v) = D improves convergence for larger ⌧⇤

⌧⇤ = 5 ⌧⇤ = 50 ⌧⇤ = 500

D. Vola, L. Boscardin, J.C. Latché: Laminar unsteady flows of Bingham fluids: a numerical
strategy and some benchmark results, 2003.
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Shear stress and shear rate

e
ŷ

e
ẑ

e
x̂

h

x

z

V = V

top

e
ẑ

@p

@z

e
ẑ

y

V = �V

top

e
ẑ
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Nonmonotone response

P.D. Olmstedt: Perspectives on shear banding in complex fluids, Rheol. Acta, Vol. 47, pp.

283–300 (2008)
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Nonmonotone response – gradient and vorticity

banding

J.F. Berret: Rheology of wormlike micelles - Perspectives on shear banding in complex fluids, In

R.G. Weiss and P.Terech (eds.) Molecular gels, pp. 567–720 (2006)

J.K.G. Dhont and W. J. Briels: Gradient and vorticity banding, Rheol. Acta, Vol. 47, pp. 257–281

(2008)

Maryland Málek Activated fluids
31/38



Nonmonotone response – gradient and vorticity

banding

Equillibrium properties and shear banding transitions

J.F. Berret: Rheology of wormlike micelles - Perspectives on shear banding in complex fluids, In

R.G. Weiss and P.Terech (eds.) Molecular gels, pp. 567–720 (2006)
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Nonmonotone response – gradient and vorticity

banding

J.F. Berret: Rheology of wormlike micelles - Perspectives on shear banding in complex fluids, In

R.G. Weiss and P.Terech (eds.) Molecular gels, pp. 567–720 (2006)
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J. Málek, V. Pruša, G. Tierra: Numerical scheme for simulation of transient flows of

non-Newtonian fluids characterized by a non-monotone relation between D and S, in preparation

(2016)
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Experimental data for colloidal suspensions

Can one describe such non-monotone response of fluid-like materials?

C. B. Holmes, M. E. Cates, M. Fuchs, P. Sollich: Glass transitions and shear thickening

suspension rheology, J. Rheology, Vol. 49, pp. 237–269 (2005)
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Stress-controlled and strain-controlled data

Tris (2-hydroxyethyl) ammonium acetate (TTAA) surfactant dissolved in water
with addition of sodium salicylate (NaSal)

P. Boltenhagen, Y. Hu, E.F. Mathys, D.J. Pine: Observation of bulk phase separation and

coexistence in asheared micellar solution , Phys. Rev. Lett., Vol. 79, pp. 2359–2362 (1997)
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T. Perlácová, V. Pr ‌uša: Tensorial implicit constitutive relations in mechanics of incompressible
non-Newtonian fluids , J. Non-Newton. Fluid Mech., Vol. 216, pp. 13–21 (2015)

A.Janečka, V. Pr ‌uša: Perspectives on using implicit type constitutive relations in the modelling of

the behavior of non-newtonian fluids, AIP Conference Proceedings, Vol. 1662 (2015)
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Summary

1 Some fluids exhibit new qualitative phenomena (shear banding,
vorticity banding).

2 Experimental data can be explained by nonmonotone shear
stress/shear rate relation.

3 The framework of implicit constitutive relations seems suitable
to described fluids with activation

4 A new way to look at the problems from perspective of PDE
analysis and numerical simulations
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Activated fluids: continuum description, analysis and
computational results

II. A continuum thermodynamic approach

Josef Málek
Nečas Center for Mathematical Modeling

and
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A Modern Thermodynamic Approach to
Constitutive Theory

Classical equilibrium thermodynamics

• E = E (S ,V )

• T =def
@E
@S , P =def � @E

@V

• dS � dQ
T or dS = dQ

T for reversible processes

Continuum mechanics equilibrium thermodynamics

• e = e(⌘, ⇢)

• ✓ =def
@e
@⌘ , pth =def � @e

@
⇣

1
⇢

⌘ = ⇢2 @e@⇢

• ⇢⌘̇ + div
⇣
j⌘
✓

⌘
� 0

⇢⇠ =def ⇢⌘̇ + div

✓
j⌘
✓

◆
� 0 and ⇠ � 0
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Navier–Stokes–Fourier Fluid

• e = e (⌘, ⇢) =) ⇢ė = ⇢
@e

@⌘|{z}
✓

⌘̇ + ⇢
@e

@⇢|{z}
pth
⇢

⇢̇

• Use the balance equations

⇢✓⌘̇ = T : D� div je + pth div v

= S : D� � div je + (m + pth) div v

⇢⌘̇ + div

✓
je
✓

◆
=

1

✓


S : D� + (m + pth) div v � je ·

r✓

✓

�

⇢✓⇠ =def


S : D� + (m + pth) div v � je ·

r✓

✓

�
> 0
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Navier–Stokes–Fourier Fluid

⇢✓⇠ =def


S : D� + (m + pth) div v � je ·

r✓

✓

�
> 0

S = 2⌫D�, ⌫ > 0 (a)

m + pth = �̃ div v, �̃ > 0 (b)

je = �kr✓, k > 0 (c)

From (a) and (b) follows:

T = S+mI = 2⌫D� +
⇣
�̃ div v � pth

⌘
I

= 2⌫D� pthI+
✓
�̃� 2⌫

3

◆
(div v)I

= �pthI+ 2⌫D+ �(div v)I

� =def �̃� 2⌫
3 () �̃ = 2⌫+3�

3
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General Thermodynamic Framework

1 e = e (⌘, y1, . . . , yn) is increasing function w.r.t. ⌘

2 ⇢ė = ⇢
@e

@⌘
⌘̇ + ⇢

X

j

@e

@yj
ẏj

We need to know ẏj from balance equations or kinematics
3 ✓ = @e

@⌘ > 0

4 ⇢⌘̇ + div
⇣
j⌘
✓

⌘
= s⌘, where s⌘ = 1

✓

P
↵ J↵A↵

each J↵A↵ represents independent dissipative mechanism

5 Identify s⌘ with ⇢⇠

⇢⇠ =def
1

✓

X

↵

J↵A↵ and ⇠ � 0 (1)

6 1 Linear non-equilibrium thermodynamics: J↵ = �↵A↵, �↵ > 0
2 Non-linear non-equilibrium thermodynamics: specification of

constitutive equation for ⇠ and its maximization with the
constraint (1)
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K. R. Rajagopal, A. R. Srinivasa: On thermomechanical restrictions
of continua, Proc. R. Soc. Lond. A Vol. 460, pp. 631–651 (2004).

J. Málek, V. Pr̊uša: Derivation of equations for continuum
mechanics and thermodynamics of fluids, Handbook of
Mathematical Analysis in Mechanics of Viscous Fluids (eds. Y. Giga,
A. Novotný), submitted (2015).
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Korteweg–NSF Fluid

• Korteweg (1901)

T = �pI+2⌫(⇢)D+
⇣
�(⇢) div v + ↵(⇢) |r⇢|2 + �(⇢)�⇢

⌘
I+�(⇢)r⇢⌦r⇢

• Q: Is this model compatible with 2nd law of thermodynamics?

• Q: How to extend this model to include thermal processes?

e = eNSF (⌘, ⇢) +
�

2⇢
|r⇢|2 ṙ⇢ = �r (⇢ div v) + [rv]>r⇢

⇢⇠ =
1

✓
[(T� � � (r⇢⌦r⇢)�) : D�

+

✓
m + pKth � �

3
|r⇢|2 � �⇢�⇢+ (1� �)�⇢ (r⇢) · r✓

✓

◆
div v

� (je � ��⇢(div v)r⇢) · r✓

✓

�

pKth = pNSF
th � �

2 |r⇢|2, � 2 [0, 1]
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Rate Type Fluid Models

• Popular class of phenomenological models in visco-elasticity
• Broad applications of visco-elasticity:

• Bio-mechanics (soft tissues, bio-fluids)
• Polymer industry, glass technology
• Food industry
• Geo-mechanics (Earth’s mantle, tectonic plates, glacier, soil)

• Derivation of complete 3D models that are consistent with the
second law of thermodynamics is very recent

K. R. Rajagopal, A. R. Srinivasa: A thermodynamic frame work for rate
type fluid models, J. Non-Newton. Fluid, Vol. 88, pp. 207–227 (2000).

J. Málek, K. R. Rajagopal, K. Tůma: On a variant of the Maxwell and
Oldroyd-B models within the context of a thermodynamic basis, Int. J.
Non-Linear Mech., Vol. 76, pp. 42–47 (2015).

J. Málek, V. Pr̊uša: Derivation of equations for continuum mechanics and
thermodynamics of fluids, Handbook of Mathematical Analysis in
Mechanics of Viscous Fluids (eds. Y. Giga, A. Novotný), submitted (2015).
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Example of a Visco-Elastic Material

Asphalt binders

• Widely used

• Microstructure and chemistry are not well understood =)
macroscopic decription is the only possible choice

• An example of a complex material with complicated
microstructure exhibiting—with clear evidence—visco-elastic
phenomena (stress relaxation, non-linear creep, normal stress
di↵erences) =) their response cannot be described by
standard models

• Good access to available experimental data

J. M. Krishnan, K. R. Rajagopal: On the mechanical behavior of asphalt,
Mech. Mater., Vol. 37, pp. 1085–1100 (2005).
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Asphalt binder

• Glue in the asphalt concrete (very sticky)

• Almost incompressible (compared to asphalt concrete)

• Mixture of a large number of hydrocarbons

• Exhibits viscoelastic behavior

Josef Málek Continuum thermodynamic approach
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Solid- and Fluid-Like Materials

Year Event
1930 Plug trimmed o↵
1938 1st drop
1954 3rd drop
1970 5th drop
1988 7th drop
2000 8th drop
2014 9th drop

Josef Málek Continuum thermodynamic approach
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Incompressible Rate-Type Fluid Models

• Balance equations for compressible fluids

⇢̇ = �⇢ div v

⇢v̇ = divT, T = T>

• Balance equations for incompressible fluids

div v = 0

⇢⇤v̇ = divT� +rm, T� = T>
�

• Goal: To find an additional evolution equation for a part of
the stress

Josef Málek Continuum thermodynamic approach
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Standard Viscoelastic Rate-Type Fluid Models

Cauchy stress T = �pI+ S,
O
S =def

dS
dt

� LS� SL> , L =def rv

• Maxwell (1867)

S+ �
O
S = 2µD

• Oldroyd-B (1950)

S+ �
O
S = 2⌘1D+ 2⌘2

O
D

• Burgers (1939)

S+ �1

O
S+ �2

OO
S = 2⌘1D+ 2⌘2

O
D

• Giesekus (1982)

S+ �1

O
S� ↵�2

µ
S2 = �2µD

• Models due to Phan-Thien–Tanner (1977), Johnson–Segelman
(1977), White–Metzer (1977), etc.

Josef Málek Continuum thermodynamic approach
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Basic Questions

• Q: Are these models compatible with 2nd law of
thermodynamics?

• Q: How to extend these models to include thermal processes?

Josef Málek Continuum thermodynamic approach
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Natural Configuration

• Deformation gradient F =def FR
is split into the elastic and

the dissipative part: Fp(t)
and G

X x

Xp(t)

R(B) t(B)

p(t)(B)

�R

FR

Fp(t)

G

• F = Fp(t)
G

Josef Málek Continuum thermodynamic approach
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Natural Configuration Kinematics

X x

Xp(t)

R(B) t(B)

p(t)(B)

�R

FR

Fp(t)

G

• Left and right Cauchy–Green tensors:

Bp(t) =def Fp(t)F>
p(t)

, Cp(t) =def F>
p(t)

Fp(t)

• Lp(t)
=def ĠG�1,Dp(t)

=def
1
2

⇣
Lp(t)

+ L>
p(t)

⌘

Ḃp(t)
= LBp(t)

+ Bp(t)
L> � 2Fp(t)

Dp(t)
F>
p(t)

=)
O
Bp(t)

= �2Fp(t)
Dp(t)

F>
p(t)
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Constitutive equations

• Internal energy e for compressible neo-Hookean solid

e = eNSF(⌘, ⇢) +
µ

2⇢

�
TrBp(t)

� 3� log detBp(t)

�

⇢⇠ =
1

✓

�
T� µBp(t)

�
�
: D� + µ

�
Cp(t) � I

�
: Dp(t)

� je ·
r✓

✓

+

✓
m + pMth � µ

✓
1

3
TrBp(t)

� 1

◆◆
div v

�

pMth =def p
NSF
th � µ

2

�
TrBp(t)

� 3� log detBp(t)

�

• Linearity
�
T� µBp(t)

�
�
= 2⌫D�, ⌫ > 0

m + pMth � µ

✓
1

3
TrBp(t)

� 1

◆
=

2⌫ + 3�

3
div v, 2⌫ + 3� > 0

µ
�
Cp(t) � I

�
= 2⌫1Dp(t)

, ⌫1 > 0

je = �kr✓, k > 0
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Compressible Giesekus Fluid

1

�
T� µBp(t)

�
�
= 2⌫D�

m + pMth � µ

✓
1

3
TrBp(t)

� 1

◆
=

2⌫ + 3�

3
div v

imply

T = T� +mI = �pMthI+ 2⌫D+ � (div v) I+ µ
⇣
Bp(t)

� I
⌘

2 µ
�
Cp(t) � I

�
= 2⌫1Dp(t)

and
O
Bp(t)

= �2Fp(t)
Dp(t)

F>
p(t)

imply

µB2
p(t)

� µBp(t)
= ⌫1

O
Bp(t)
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Incompressible Giesekus Fluid

• Internal energy e for compressible neo-Hookean solid

e = eNSF(⌘, ⇢) +
µ

2⇢

�
TrBp(t)

� 3� log detBp(t)

�

⇢⇠ =
1

✓

�
T� µBp(t)

�
�
: D� + µ

�
Cp(t) � I

�
: Dp(t)

� je ·
r✓

✓

�

• Linearity implies

T = T� +mI = mI+ 2⌫D+ µ
�
Bp(t)

� I
�

• µ
�
Cp(t) � I

�
= 2⌫1Dp(t)

and
O
Bp(t)

= �2Fp(t)
Dp(t)

F>
p(t)

imply

µB2
p(t)

� µBp(t)
= ⌫1

O
Bp(t)
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Compressible Maxwell and Oldroyd-B Fluid

• Compressible Maxwell fluid
• Internal energy e

e = eNSF(⌘, ⇢) +
µ

2⇢

�
TrBp(t)

� 3� log detBp(t)

�

• Rate of entropy production ⇠:

⇠ = 2µ1Dp(t) : Cp(t)Dp(t) � 0

• Compressible Oldroyd-B fluid
• Internal energy e

e = eNSF(⌘, ⇢) +
µ

2⇢

�
TrBp(t)

� 3� log detBp(t)

�

• Rate of entropy production ⇠:

⇠ = 2µ1Dp(t) : Cp(t)Dp(t) + 2µ2D : D � 0
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Burgers Fluid

S+ �1

O
S+ �2

OO
S = 2⌘1D+ 2⌘2

O
D

R t

p1(t)

p2(t)

G1

G2

FR

Fp1(t)

Fp2(t)
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Summary

• An important step towards analysis of initial and boundary value
problems (a priori estimates) – specifying the object for relevant
computer simulations

• Material coe�cients may, in general, depend on state variables

• Compressible and incompressible Navier–Stokes–Fourier (NSF)
fluids, Korteweg NSF fluids, Rate type fluids

K. R. Rajagopal, A. R. Srinivasa: A thermodynamic frame work for
rate type fluid models, J. Non-Newton. Fluid, Vol. 88, pp. 207–227
(2000).

M. Heida, J. Málek: On compressible Korteweg fluid-like materials,
Int. J. Eng. Sci., Vol. 48, pp. 1313–1324 (2010).

J. Málek, V. Pr̊uša: Derivation of equations for continuum
mechanics and thermodynamics of fluids, Handbook of
Mathematical Analysis in Mechanics of Viscous Fluids (eds. Y. Giga,
A. Novotný), submitted (2015).
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Summary

• Cahn–Hilliard NSF fluids

M. Heida, J. Málek, K. R. Rajagopal: On the development and
generalizations of Cahn–Hilliard equations within a thermodynamic
framework, Z. Angew. Math. Phys., Vol. 63, pp. 145–169 (2012).

• Allen–Cahn NSF fluids

M. Heida, J. Málek, K. R. Rajagopal: On the development and
generalizations of Allen–Cahn and Stefan equations within a
thermodynamic framework, Z. Angew. Math. Phys., Vol. 63, pp.
759–776 (2012).

• Binary mixtures with and without chemical reactions

O. Souček, V. Pr̊uša, J. Málek, K. R. Rajagopal: On the natural
structure of thermodynamic potentials and fluxes in the theory of
chemically non-reacting binary mixtures, Acta Mech., Vol. 225, pp.
3157–3186 (2014).
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Activated fluids: continuum description, analysis and
computational results

Josef Málek

Nečas Center for Mathematical Modeling
and

Mathematical Institute of Charles University in Prague
Faculty of Mathematics and Physics

May 24, 2016

ERC-CZ project LL1202 - MORE
Implicitly constituted material models: from theory through
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Incompressible fluids and boundary conditions with activation

Part #1

Incompressible fluids and boundary conditions with activation
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Incompressible fluids and boundary conditions with activation

Euler/limiting
shear-rate

limiting shear-
rate

rigid body

Euler/shear-
thickening

shear-thickening rigid/shear-
thickening

Euler/Navier-
Stokes

Navier-Stokes Bingham =
rigid/Navier-
Stokes

Euler/shear-
thinning

shear-thinning rigid/shear-
thinning

Euler limiting shear
stress

perfect plastic

|D|  �⇤ () S = O no activation |S|  �⇤ () D = O

Summary of systematic classification of fluid-like responses
with corresponding |S| vs |D| diagrams.
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Incompressible fluids and boundary conditions with activation

no-slip

slip/Navier’s slip Navier’s slip stick-slip

slip

|v⌧ |  �⇤ () s = 0 no activation |s|  �⇤ () v⌧ = 0

Summary of systematic classification of boundary conditions
with corresponding |s| vs |v⌧ | diagrams.
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Incompressible fluids and boundary conditions with activation

Formulation of the problem

PROBLEM

div v = 0

@tv + div(v ⌦ v)� div S = �rp + b
G(S,D) = O

)
in QT

v · n = 0

s := �(Sn)⌧ g(s, v⌧ ) = 0

)
on ⌃T

v(0, ·) = v0 in ⌦

DATA

I ⌦ ⇢ Rd bounded, open set with @⌦ 2 C1,1 and n : @⌦ ! Rd

I T > 0 and QT := (0,T )⇥ ⌦, ⌃T := (0,T )⇥ @⌦

I v 0, b
I G and g - constitutive functions in the bulk and on the boundary
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Incompressible fluids and boundary conditions with activation

Main questions addressed

UNKNOWNS triplet (v , p, S) defined on QT and s defined on ⌃T

div v = 0

@tv + div(v ⌦ v)� div S = �rp + b
G(S,D) = O

)

in QT

v · n = 0

g(s, v⌧ ) = 0

)

on ⌃T

v(0, ·) = v 0 in ⌦
AIM
I To establish large data existence of solution for any set of data (⌦, T , v 0, b)
and for robust class of constitutive equations described by G and g
I To develop a theory with p 2 L

1(QT ) - important

heat-conducting incompressible fluids (M. Buĺıček, E. Feireisl - G. Schimperna)

one/two equation turbulence model (M. Buĺıček, R. Lewandowski)

incompressible fluids with pressure and shear-rate dependent viscosity (J. Nečas,

KR Rajagopal, M. Buĺıček, M. Majdoub, A. Hirn, J. Stebel, M. Lanzendörfer, ...)

corresponding numerical methods and their analysis
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Incompressible fluids and boundary conditions with activation

Theoretical results

Existence of WS to NSEs in 2d and 3d (Leray (1929-1934), Oseen (1922))

Existence of WS to NSEs in bounded domains, its 2d uniqueness and 3d

conditional uniqueness and existence (Hopf (1952), Kiselev & Ladyzhenkaya (1959), Prodi (1959),

Serrin (1963))

Existence of WS to S = 2(⌫0 + ⌫1|D|r�2)D for r � 11
5 and its uniqueness if r � 5

2

(Ladyzhenskaya (1967-1972), J.-L. Lions (1969))

Nečas, Bellout, Bloom, Málek, Růžička (1993-2000): r � 9
5

DalMaso, Murat (1996), Frehse, Málek, Steinhauer, Růžička (1996-2000), Buĺıček, Málek, Rajagopal (2007),

Wolf (2009): r � 8
5

Diening, Růžička, Wolf (2010), Breit, Diening, Schwarzacher (2015): r > 6
5

Buĺıček, Ettwein, Kaplický, Pražák (2010): uniqueness for r > 11
5

Existence of WS to monotone (rather than strictly monotone) response, Orlicz

function-type response (Buĺıček, Gwiazda, Málek, Świerczewska-Gwiazda (2012): r > 6
5 )

Existence of WS to activated fluids with activated boundary conditions (Buĺıček, Málek

(2016): r > 6
5 )

J. Málek Incompressible Fluids with activation



Structure of implicit relations

Part #2

Structure of implicit relations
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Structure of implicit relations

Basic information

A PRIORI ESTIMATES

Multiplying the 2nd Eq. by v (b ⌘ 0)

1
2
@|v |2
@t + div( 12 |v |

2v)� div(Sv) + S · D = � div(pv)

Since v · n = 0, integrating it over ⌦ leads to

1

2

d

dt

kvk22 +
ˆ
⌦
S : D dx +

ˆ
@⌦

s · v⌧ dS = 0

For the power-law fluids S = |D|r�2D () D = |S|r
0�2S r

0 = r/(r � 1) :

S : D =

✓
1

r

+
1

r

0

◆
S : D =

1

r

|D|r + 1

r

0 |S|
r 0

For Navier’s slip s = �⇤v⌧ () v⌧ = 1
�⇤

s :

s · v⌧ = ( 12 + 1
2 )s · v⌧ = �⇤

2 |v⌧ |2 + 1
2�⇤

|s|2
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Structure of implicit relations

Implicit constitutive equations in bulk - maximal monotone

r -graph setting

Define
(S,D) 2 A () G(S,D) = O

Assumptions - A is a maximal monotone r -graph, r 2 (1,+1)

(A1) (O,O) 2 A
(A2) Monotone graph: For any (S1,D1), (S2,D2) 2 A

(S1 � S2) · (D1 � D2) � 0

(A3) Maximal monotone graph: Let (S⇤,D⇤) 2 Rd⇥d
sym ⇥ Rd⇥d

sym .

If (S⇤ � S) · (D⇤ � D) � 0 8 (S,D) 2 A then (S⇤,D⇤) 2 A

(A4) r-graph: There are ↵⇤ > 0 and c⇤ � 0 so that for any (S,D) 2 A

S · D � ↵⇤

⇣

|D|r + |S|r
0⌘

� c⇤
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Structure of implicit relations

Implicit formulation of BCs - maximal monotone q-graph
setting

Define
(s, v⌧ ) 2 B () g(s, v⌧ ) = 0

(B1) B contains the origin. (0, 0) 2 B.
(B2) B is a monotone graph.

(s1 � s2) · (v 1
⌧ � v 2

⌧ ) � 0 for all (s1, v 1
⌧ ), (s2, v 2

⌧ ) 2 B.

(B3) B is a maximal monotone graph. Let for some (s, u) holds:

If (s̄ � s) · (v̄⌧ � u) � 0 for all (s̄, v̄⌧ ) 2 B then (s, u) 2 B.

(B4) B is a q-graph. For any q 2 (1,1) fixed there are �⇤ > 0 and d⇤ � 0 such that

s · v⌧ � �⇤(|v⌧ |q + |s|q/(q�1))� d⇤ for all (s, v⌧ ) 2 B .

I No-slip boundary condition is excluded by (B4)

I For all our examples q = 2
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Structure of implicit relations

Basic estimates

A PRIORI ESTIMATES REVISITED

Recall
1

2

d

dt

kvk22 +
ˆ
⌦
S : D dx +

ˆ
@⌦

s · v⌧ dS = 0

Using (A4) and (B4) and integrating the result from 0 to any t 2 (0,T ]:

1

2
kv(t)k22 + ↵⇤

ˆ t

0
kSkr

0

r 0 + kDkrr + �⇤

ˆ t

0
ksk22,@⌦ + kv⌧k22,@⌦

 1

2
kv 0k22 + c⇤|QT |+ d⇤|⌃T |

Consequently,
(v , s, S) 2 FS

Any reasonable (numerical) approximations should fulfil uniform estimates in FS
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Structure of implicit relations

Function spaces - Stick-slip versus No-slip

W

1,q
n := {v 2 W

1,q(⌦;Rd); v · n = 0 on @⌦},
W

1,q
n,div := {v 2 W

1,q(⌦;Rd); div v = 0; v · n = 0 on @⌦},
versus

W

1,q
0 := {v 2 W

1,q(⌦;Rd); v = 0 on @⌦},
W

1,q
0,div := {v 2 W

1,q(⌦;Rd); div v = 0; v = 0 on @⌦},
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Structure of implicit relations

FS

v 2 L

1(0,T ; L2) \ L

r (0,T ;W 1,r
n,div) \ L

5r
3 (0,T ; L

5r
3 (⌦)d)

S 2 L

r 0(0,T ; Lr
0
(⌦)d⇥d

s 2 L

2(0,T ; L2(@⌦)d)

@tv 2
⇣
L

r (0,T ;W 1,r
n,div) \ L

5r
6 (0,T ;W

1, 5r6
n,div

⌘⇤

=

(
L

r 0(0,T ;W�1,r 0

n,div ) if r � 11
5

L

5r
5r�6 (0,T ;W

�1, 5r
5r�6

n,div ) if r < 11
5

• FS compactly embedded into L

2(0,T ; L2(⌦)) if r > 6/5

• FS compactly embedded into L

2(0,T ; L2(@⌦)) if r > 8/5
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Weak stability of Problem

Part #3

Weak stability of Problem
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Weak stability of Problem

Weak stability of Problem

Assume that

for each n 2 N: (vn, sn, Sn) solves Problem
(vn, sn, Sn) converges weakly to (v , s, S) in FS

Is (v , s, S) also solution of Problem?
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Weak stability of Problem

Balance of linear momentum - equation of motion

For all w̃ 2 (W 1,r (⌦) \ C1(⌦))3 with div w̃ = 0 in ⌦ and w̃ · n = 0 on @⌦:

ˆ T

0
{h@tvn, w̃i+ (Sn,Dw̃)⌦ + (sn, w̃⌧ )@⌦ � (vn ⌦ vn,rw̃)⌦} dt = 0

converges to

ˆ T

0
{h@tv , w̃i+ (S,Dw̃)⌦ + (s, w̃⌧ )@⌦ � (v ⌦ v ,rw̃)⌦} dt = 0

provided that W 1,r (⌦) is compactly embedded into L

2(⌦), which holds if

r > 6/5.

It remains to show that

(S,Dv) 2 A and (s, v⌧ ) 2 B.
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Weak stability of Problem

Convergence lemma

Lemma

Let U ⇢ QT be arbitrary (measurable) and r 2 (1,1). Assume that

A is a maximal monotone graph (satisfying (A2)–(A3))

{Sn}1n=1 and {Dn}1n=1 satisfy

(Sn,Dn) 2 A for a.a. (t, x) 2 U

Dn * D weakly in L

r (U)d⇥d

Sn * S weakly in L

r 0(U)d⇥d

lim sup
n!1

ˆ
U

Sn · Dn
dx dt 

ˆ
U

S · D dx dt.

Then

(S,D) 2 A almost everywhere in U.

I Local version

I Last assumption suggests to use energy (entropy) inequality

J. Málek Incompressible Fluids with activation



Weak stability of Problem

Step 1. Sn · Dn * S · D weakly in L

1(U)

From (A2)
0  (Sn � Sm) · (Dn � Dm) a.e. in U

Hence, by the assumptions,

lim
n!1

lim
m!1

k(Sn � Sm) · (Dn � Dm)k1  0

which implies

lim
n!1

lim
m!1

ˆ
U

(Sn � Sm) · (Dn � Dm)' = 0 8' 2 L

1(U)

Setting L := lim`!1
´
U
(S` · D`)' we conclude that

0 = lim
n!1

lim
m!1

ˆ
U

Sn · Dn '�
ˆ
U

Sn · Dm '�
ˆ
U

Sm · Dn '+

ˆ
U

Sm · Dm '

�

= 2

✓

L�
ˆ
U

S · D'

◆
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Weak stability of Problem

Step 2. (S,D) 2 A a.e. in U

Take arbitrarily
(S⇤,D⇤) 2 A and a nonnegative ' 2 L

1(U)

Then from (A2) and Step 1

0  lim
n!1

ˆ
U

(Sn � S⇤) · (Dn � D⇤)' =

ˆ
U

(S� S⇤) · (D� D⇤)'.

Since ' � 0 arbitrary we get

0  (S� S⇤) · (D� D⇤) a.e. in U

Since (S⇤,D⇤) 2 A is arbitrary, the maximality of the graph implies

(S,D) 2 A a.e. in U
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Weak stability of Problem

Identification of the limit for boundary terms

Assume that
sn * s weakly in L

2(0,T ; L2(@⌦)3),

v n * v weakly in L

2(0,T ; L2(@⌦)3)

and (sn, v n) 2 B
it is enough to show that

lim sup
n!1

ˆ
@⌦

sn · v n 
ˆ
@⌦

s · v

however we also have

v n ! v strongly in L

1(0,T ; L1(@⌦)3)

By Egorov theorem, for any " > 0 there exists U" ⇢ ⌃T such that |⌃T \ U"|  "
and

v n ! v strongly in L

1(U")
3

=) lim sup
n!1

ˆ
U"

sn · v n 
ˆ
U"

s · v

and (s, v) 2 B a.e. in U". But " is arbitrary and (s, v) 2 B a.e. on ⌃T
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Weak stability of Problem

Identification (S,Dv) 2 A - the convective term neglected

Take v n as a test function in weak formulation of BLM for Problem(n):

1
2
kv n(T )k22 +

ˆ
QT

Sn : Dn +

ˆ
⌃T

sn · v n =
1
2
kv n

0k22 (1)

Take v as a test function in weak formulation of BLM for Problem:

1
2
kv(T )k22 +

ˆ
QT

S : D+

ˆ
⌃T

s · v =
1
2
kv 0k22 (2)

Letting n ! 1 in (1) and comparing the result with (2) we observe that

lim sup
n!1

ˆ
QT

Sn : Dn 
ˆ
QT

S : D

which is the fourth assumption of Convergence lemma. Therefore

(S,D) 2 A
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Weak stability of Problem

Identification (S,Dv) 2 A - with the convective term

Since ˆ
⌦

v

n
k
@v n

@xk
· v n =

ˆ
⌦

v

n
k
1
2
@|v n|2

@xk
=

ˆ
⌦

1
2
div(|v |2v) = 0

and similarly ˆ
⌦

vk
@v
@xk

· v = 0

the above stated proof remains unchanged if

vk
@v
@xk

· v 2 L

1(QT ) (3)

I Since v 2 L

5r
3 (QT ), (3) holds if r � 11

5 .

I Weak stability of Problem is proved. The result include Rigid/shear-thickening fluids,
activated NS fluids, and Euler/shear-thickening fluids if r � 11/5

Q: What about the Euler/NS fluid or Bingham fluids when r = 2?
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Bingham fluids with threshold slip

Part #4

Bingham fluids with threshold slip - existence of unsteady flows
for large data
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Bingham fluids with threshold slip

G(S,D) := D� (|S|� ⌧⇤)+
|S| S Bingham fluid

g(s, v) := v � (|s|� �⇤)+
|s| s Threshold slip

Theorem

Let ⌦ ⇢ Rd
be a C1,1

domain. Then for any v 0 2 L

2
0,div there exists

v 2 L

1(0,T ; L2(⌦)d) \ L

2(0,T ;W 1,2
n,div)

S 2 L

2(Q)d⇥d
sym , s 2 L

2(0,T ; L2(@⌦)d)

p1 2 L

2(Q), p2 2 L

d+2
d+1 (0,T ;W 1, d+2

d+1 (⌦))

solving for almost all time t 2 (0,T ) and for all w 2 W

1,1
n

h@tv ,wi �
ˆ
⌦

(v ⌦ v) ·rw +

ˆ
⌦

S : D(w) +

ˆ
@⌦

s · w =

ˆ
⌦

(p1 + p2) divw

and fulfilling

G(S,Dv) = O a.e. in QT and g(s, v⌧ ) = 0 a.e. in ⌃T

M. Buĺıček, J. Málek: On unsteady internal flows of Bingham fluids subject to threshold slip on the impermeable

boundary, in Recent Developments of Mathematical Fluid Mechanics (eds. H. Amann et al.), pp. 135-156
(2016)J. Málek Incompressible Fluids with activation



Bingham fluids with threshold slip

Function spaces - Stick-slip versus Slip

W

1,q
n := {v 2 W

1,q(⌦;Rd); v · n = 0 on @⌦},
W

1,q
n,div := {v 2 W

1,q(⌦;Rd); div v = 0; v · n = 0 on @⌦},
versus

W

1,q
0 := {v 2 W

1,q(⌦;Rd); v = 0 on @⌦},
W

1,q
0,div := {v 2 W

1,q(⌦;Rd); div v = 0; v = 0 on @⌦},

By the Helmholtz decomposition, for q 2 (1,1):

W

1,q
n = W

1,q
n,div � {r';' 2 W

2,q,r' · n = 0 on @⌦}.

Similar decomposition for W 1,q
0 (⌦)d is open.

Essential di↵erence in the weak formulation
�⇤ can be artificial (big enough) so that it is never active

in analysis if v 2 L

1(0,T ;C (⌦))
in computer simulations
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Bingham fluids with threshold slip

Proof - n-approximations

Consider

Gn(S,D) := D�
✓

(|S|� ⌧⇤)+
|S| +

1
n

◆

S Bingham fluid,

g n(s, v) := v �
✓

(|s|� �⇤)+
|s| +

1
n

◆

s threshold slip

(Bn)

(Tn)

and smooth Gn, |G 0
n|  1

n

Gn(s) := 1 for s  n, Gn(s) = 0 for s > 2n.

Take approximation

@tv n + div(v n ⌦ v n)Gn(|v n|)� div Sn = �rp

n

with constitutive equations (Bn) and (Tn). Since (Bn) and (Tn) imply

S = S⇤
n(D), s = s⇤n(v)

with S⇤
n and s⇤n being continuous monotone with linear growth (at infinity), the existence

follows from monotone operator theory (due to the presence of Gn)
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Bingham fluids with threshold slip

Pressure for n fixed

h@tv n, w̃i+ (Sn,D(w̃)) + (div(v n ⌦ v n)G(|v n|), w̃) + (sn, w̃⌧ )@⌦

� hb, w̃i = 0 for all w̃ 2 W

1,2
n,div and a.a. t 2 (0,T )

Define p

n as the solution of the following problem

(rp

n,rz) + (Sn,r(2)
z) + (div(v n ⌦ v n)G(|v n|),rz)

+ (sn, (rz)⌧ )@⌦ � hb,rzi = 0

for all z 2 W

2,2(⌦) with rz · n = 0 on @⌦ and a.a. t 2 (0,T )

w = w̃ +rz

(Sn,D(w))) + (div(v n ⌦ v n)G(|v n|),w) + (sn,w⌧ )@⌦ � hb,wi
= h@tv n, w̃i+ (rp,rz)

= h@tv n, w̃ +rzi+ (rp, w̃ +rz)

which finally leads to:

h@tv n,wi+ (Sn,D(w)) + (div(v n ⌦ v n)G(|v n|),w) + (sn,w⌧ )@⌦

= (pn, divw) + hb,wi for all w 2 W

1,2
n and a.a. t 2 (0,T )
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Bingham fluids with threshold slip

Apriori estimates

I. Test by v n (convective term) vanishes to get

1
2
d

dt

kv nk22 +
ˆ
⌦

Sn · D(v n) +

ˆ
@⌦

sn · v n = 0

sup
t2(0,T )

kv n(t)k22 +
ˆ
QT

|Sn|2 + |rv n|2 + |v n|
2(d+2)

d +

ˆ
(0,T )⇥@⌦

|sn|2 + |v n|2  C(v 0)

II. Find p

n
2 with zero mean value solving at each time level

ˆ
⌦

rp

n
2 ·r' = �

ˆ
⌦

div(v n ⌦ v n)Gn(|v n|) · '

But

div(v n ⌦ v n)Gn(|v n|) = v

n
k
@v n

@xk
Gn(|v n|)

ˆ
QT

| div(v n ⌦ v n)Gn(|v n|)|
d+2
d+1  C =)

ˆ T

0

kpn
2k

d+2
d+1

1, d+2
d+1

 C

Define p

n
1 := p

n � p

n
2 .
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Bingham fluids with threshold slip

Apriori estimates - continuation

III. For pn
1 := p

n � p

n
2 find ' with zero mean value such that r' · n = 0 on @⌦ solving

�' = p

n
1 =)

ˆ
QT

|r2'|2 +
ˆ
(0,T )⇥@⌦

|r'|2 
ˆ
QT

|pn
1 |2

Test by r' and integrate over QTˆ
QT

|pn
1 |2 = �

ˆ
QT

rp

n
1 ·r' =

ˆ
QT

(rp

n
2 � div(v n ⌦ v n)Gn(|v n|)) ·r'

+

ˆ
QT

Sn ·r2'+

ˆ
(0,T )⇥@⌦

sn ·r'

=

ˆ
QT

Sn ·r2'+

ˆ
(0,T )⇥@⌦

sn ·r'

 C

✓ˆ
QT

|pn
1 |2

◆

1
2

IV. k@tv nk
(L2(0,T ;W 1,2

n )\Ld+2(QT ))⇤  C
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Bingham fluids with threshold slip

Convergences

Aubin-Lions and apriori estimates:

v n * v weakly in L

2(0,T ;W 1,2
n ),

Sn * S weakly in L

2(Q)d⇥d ,

sn * s weakly in L

2(0,T ; L2(@⌦)),

v n ! v strongly in L

2(Q),

v n ! v strongly in L

2(0,T ; L2(@⌦)),

p

n
1 * p1 weakly in L

2(Q),

p

n
2 * p2 weakly in L

d+2
d+1 (0,T ;W 1, d+2

d+1 (⌦)),

@tv n * @tv weakly in (L2(0,T ;W 1,2
n ) \ L

d+2(QT ))
⇤

solving the original problem, and also g(s, v⌧ ) = 0

It remains to show the validity of G(S,Dv) = O.
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Bingham fluids with threshold slip

Convergence III

Assume that {kn}1n=1 is such that 0 < A  k

n  B < 1. Test the n-th approximation by

w n := Tkn (v n � v) := (v n � v)min
n

1,
k

n

|v n � v |

o

Note Tk(u) = u if |u|  k.

Taking w n as a test function

lim sup
n!1

ˆ
QT

Sn · D(w n)� p

n
1 divw n

= lim sup
n!1

ˆ
QT

�h@tv n,w ni � (div(v n ⌦ v n)Gn(|v n|)) +rp

n
2) · w n

+

ˆ
⌃T

sn · w n  0
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Bingham fluids with threshold slip

Find S 2 L

2(Q) fulfilling

D(v) = (S|� ⌧)+
|S|

S

Then

lim sup
n!1

ˆ
QT

(Sn � S) · D(w n)  lim sup
n!1

ˆ
|vn�v|�kn

k

n

|v n � v | |p
n
1 |(|rv n|+ |rv |)

Considering

I

n := C⇤(|pn
1 |2 + |rv n|2 + |rv |2 + |S|2 + |Sn|) sup

n

ˆ
QT

I

n < 1

we observe that

lim sup
n!1

ˆ
|vn�v|<kn

(Sn � S) · D(v n � v)  lim sup
n!1

ˆ
|vn�v|�kn

k

n

|v n � v | I
n

AIM: RHS should tend to zero by making a proper choice for A, B and k

n.
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Bingham fluids with threshold slip

For N 2 N arbitrary, fix A := N and B := N

N+1 and define

Q

n
i := {(t, x) 2 QT ;N

i  |v n � v |  N

i+1} i = 1, . . . ,N.

Since
N
X

i=1

ˆ
Qn
i

I

n  C⇤,

there is, for each n 2 N, an index in 2 {1, . . . ,N} such thatˆ
Qn
in

I

n <
C⇤

N

Setting k

n := N

in+1, RHS is estimated in the following way:
ˆ
|vn�v|�Nin+1

k

n

|v n � v | I
n =

ˆ
Nin+2�|vn�v|�Nin+1

· · ·+
ˆ
|vn�v|�Nin+2

. . .

=

ˆ
Qn
in

· · ·+
ˆ
|vn�v|�Nin+2

I

n  C⇤

N

.
(4)

Next, using the constitutive equation for Dv n and Dv we conclude that

lim sup
n!1

ˆ
|vn�v|kn

�

Sn � S
�

·
✓✓

(Sn � ⌧⇤)+
|Sn| +

1
n

◆

Sn � (S|� ⌧)+
|S|

S
◆

 C⇤

N

,
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Bingham fluids with threshold slip

Thus, for Z

n :=
�

Sn � S
�

·
✓

(Sn � ⌧⇤)+
|Sn| Sn � (S|� ⌧⇤)+

|S|
S
◆

� 0.

lim sup
n!1

ˆ
|vn�v|kn

Z

n  C⇤

N

+ lim sup
1
n

ˆ
QT

|Sn||Sn � S|  C⇤

N

Since A = N and k

n � N

lim sup
n!1

ˆ
|vn�v|N

Z

n  C⇤

N

Splitting QT into a union of {|v n � v |  N} and {|v n � v | > N} one concludes

lim sup
n!1

ˆ
QT

p
Z

n  C⇤

N

=) Z

n ! 0 a.e. in QT

Applying then the biting lemma, one then concludes that

Z

n ! 0 strongly in L

1(QT \ Ej) Ej ⇢ QT : lim
j!1

|Ej | = 0

=) lim sup
n!1

ˆ
QT \Ej

Sn · (Dv n � 1
n

Sn) =

ˆ
QT \Ej

S · Dv .

Convergence lemma and the properties of Ej : =) (S,Dv) 2 A a.e. in QT .
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Implicitly constituted fluids described by maximal monotone
 -graph

Part #5

Implicitly constituted fluids described by maximal monotone
 -graph - existence of unsteady flows subject to Navier’s slip for

large data
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Implicitly constituted fluids described by maximal monotone
 -graph

Definition of weak solution to the Problem with Navier’s

slip bcs

Definition

We say (p, v , S) is weak solution to Problem with Navier’s slip

p 2 L

1(QT )

v 2 Cweak(0,T ; L2
n,div) \ L

q(0,T ;W 1,1
n,div) with D(v) 2 L

 (QT )

S 2 L

 ⇤
(QT )

lim
t!0+

kv(t)� v 0k22 = 0

hv 0,wi+ (S,D(w))� (v ⌦ v ,D(w)) + ↵⇤(v⌧ ,w⌧ )@⌦ = hb,wi,+(p, divw) ,

for all w 2 W

1,1
n such that D(w) 2 L

1(⌦)d⇥d
and a.a. t 2 (0,T ),

(D(v(t, x)), S(t, x)) 2 A for a.a. (t, x) 2 QT .
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Implicitly constituted fluids described by maximal monotone
 -graph

Theorem

Theorem

Let ⌦ ⇢ R3
and A satisfy the assumptions (A1)–(A4) with  fulfilling

c1s
r � c2   (s)  c3s

r̃ + c4 with r >
2d

d + 2

Then for any ⌦ 2 C1,1
and T 2 (0,1) and for arbitrary

v 0 2 L

2
n,div, b 2 L

2(0,T ; L2(⌦)d) and �⇤ � 0 , (5)

there exists weak solution to Problem.

Novel tools:
(i) Structural assumptions (A1)–(A4) on G(S,D) = O
(ii) Convergence lemma
(iii) Understanding the interplay between the chosen boundary conditions and global
integrability of p
(iv) Lipschitz approximations of Sobolev-Orlicz and Bochner functions

M. Buĺıček, P. Gwiazda, J. Málek, A. Świerczewska-Gwiazda: On Unsteady Flows of Implicitly Constituted

Incompressible Fluids, SIAM J. Math. Anal., Vol. 44, No. 4, pp. 2756–2801 (2012)
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Implicitly constituted fluids described by maximal monotone
 -graph

Methods

subcritical case

Minty’s method
energy equality - v is an admissible test function

supercritical case

Generalized Minty’s method - Convergence lemma
Lipschitz approximation in Orlicz-Sobolev spaces
L

1-truncation of Sobolev functions
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Implicitly constituted fluids described by maximal monotone
 -graph

No-slip versus Threshold slip (Stick-slip)

Homogeneous Dirichlet boundary conditions are considered as the simplest for
many PDEs

In incompressible fluid dynamical problems, it is however, in general, open whether
p 2 L

1(QT ) for no-slip boundary conditions

Exceptions are the cases when we control @tv is an integrable function, e.g.,

Navier-Stokes model (linearity, Solonnikov)
Ladyzhenskaya model for r � 12

5 in 3D setting provided that data are
smooth (potentiality of S, test by time derivative, Ladyzhenskaya )
All models above with uniform monotonicity (but no assumption on
having potential), whenever we can test by v (bootstrap in non-integer
time derivatives, Buĺıček, Etwein, Kaplický, Pražák) r > 11

5
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Implicitly constituted fluids described by maximal monotone
 -graph

Concluding Remarks

implicitly constitutive theory seems to suitable approach to include various
activation criteria both in the bulk and on the boundary

threshold slip is the way how to overcome the troubles connected with the analysis
of unsteady flows subject to homogeneous Dirichlet boundary conditions (no-slip) -
fits nicely to the framework of implicitly constituted materials

for implicitly constituted fluids characterized by (A1)-(A4) and r > 6/5, we define
the solution and show its large data existence - object to be studied numerically
and computationally.

new options how to numerically discretize the problems - some give interesting
results (second order vs. first order PDEs) - J.Hron, P. Minakowski, G.Tierra.
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Thank you
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