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1. Background

Motivation: To understand synchronization in a large population of
interacting elements: cells of the cardiac pacemaker, flashing of fireflies...

Basic model: N oscillators, described by their

phases 01,...,0n € T, and natural frequencies wq, ..., wn.
. A N
Free evolution: 0; = w; (w.l.o.g. % Zi:l w;j = 0).

Mean field coupling: discrete Kuramoto model (1975)
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Question: Lim N — 400 7

Classical mean field theory applies [Golse'13].

Appropriate object is the empirical measure :

Theorem

Let fo € P(T x
Then fN(t) —

fN(l’ 0, w

Z(S(g(t w: 9 w

R). Assume fn(0) — fo.
f(t) for all t > 0, f solution in C(Ry,w — P(T x R)) of

B:f + Op(wf — K/

TxR

sin(0 — ') df (¢’

W) =0

with data fy.




Remark: Different from Vlasov like equations. Here, transport in 6 only.

Remark: [ f(t,0,w)d0 = [ fo(0,w)dd.

Interpretation: for w; i.i.d. random variables, with law g.

/fOdeG_ lim /f,\,oewde_ lim fZ&J,_g p.s.

(law of large numbers).

We shall denote: g(w) = [ f(t,6,w)db.



2. Qualitative features

Question: Synchronization 7 Locking of phases on a common value ?

Related to the so-called order parameter:

(KD): r(t) =4 > e (K): [r(t) :/ ef(t,0,w)dodw |
TxR

Asynchrony : r ~ 0. Synchronization : |r| ~ 1.

Remark: (K) reads

Otf + Op (wf - g(e’.eﬁ— eior(t))f) =0

Example: r = 0. Incoherent state: | f;(0,w) = gz(w)
— T




Existence of steady solutions with r > 0 7

Satisfy 0y ((w — Krsin6)f) = 0.

Two kinds of oscillators, depending on the natural frequency:

@ |w| > Kr: drifting oscillators:

Co  Vw?—(Kr)?
w— Krsinf 2w — Krsin 6|

df (0, w) = g(w)dwdb

e |w| < Kr: locked oscillators:

One gets a combination of Dirac masses:

with

df (0, w) = a(w)g(w)dp,(w) + (1 — a(w))g(w)dg, ()

0s(w) = arcsin (%) ,  Oy(w) =m — arcsin (%) .
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Remark: if we fix the order parameter in (K) (r(t) = r).

Linear equation, with characteristic equation:
0 = w — Krsin(6)

0s(w) stable, 0,(w) unstable. Suggests stability of

w? — (Kr)?
dfs(0 = dwdf K
(6:w) 27r]w—Krsin0|g(w) wa ] > Kr
df5(07w) = g(w)59s(w)7 ‘w| < Kr

and instability of possible other partially locked states.

Warning ! f; = f; , must satisfy a self-consistency relation

r= / ef, (6, w)dOdw
TxR

Nonlinear equation in r, with parameter K. Not obvious !
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Special case: g unimodal, that is

g : R +— R continuous, even, decreasing over R, .

Proposition
e For K < 7rg(0) a single solution: f;, r = 0.

@ For K > g(O) another solution: f5, r = rs > 0.

Remark: (K) invariant by a shift in 6: circle of synchronized states:
fop(w,0) = (0 + ¢,w), with ry = e r.

Time evolution

Numerics (unimodal case) :

Convergence to f; for K < 7rg2(0)’ r— 0.

Convergence to f; for K > ﬁgz(o), r—rs.

Problem: seems impossible in classical functional spaces!



e Classical L? norms do not decay.

@ Linearized operator f; or f; has imaginary spectrum.

Already true for free transport: ’8# + Op(wf) =0 ‘

But ...in Fourier space : (0,w) — (/,£) :

Ouf —10:F =0, with F(t,1,€) = fo(l,£ + It)

@ Transfer from low to high frequencies : pointwise convergence in
Fourier, i.e. weak convergence in measures.

@ Speed of convergence depends on the smoothness of fg.

Example: for analytic fy, exponential rate.

Conclusion: one can hope for convergence :

@ in weak topology

@ in strong topology in the moving frame: ¢/ = 0 — wt.



Back to the full equation:

Problems
@ Linear analysis: spectral stability of f; or £ 7
o Effect of nonlinearities 7
Difficult:

» Spectrum is on the imaginary axis in usual spaces.
» Cascade from high frequencies to low frequencies.

Very limited results: [Crawford'94],[0tt-Antonsen’04,"08],[Carillo et al'13]

But parallel to Landau damping in plasma physics...

Nonlinear Landau damping

Refs: [Hwang-Velazquez'09],[Lin-Zheng'11],[Mouhot-Villani'11],
[Faou-Rousset'14], [Bedrossian-Masmoudi-Mouhot'16]

About the Vlasov equation !

TxR

Otf + Ox(vF) + O, (Ef) =0, E(x) = — OV (x — X"VF(X', V' )dx dv'
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Typical result

fy = fn(v) a homogeneous and smooth equilibrium, spectrally stable.
fo = fo(x, v) smooth, close to fp.

Then the solution f = f(t,x, v) with data fo converges weakly to

fn = fr(v), homogeneous and smooth equilibrium close to fj.
Moreover, E strongly converges to 0.

Remarks:

@ Spectral stability for hoogeneous states of Vlasov is known: Penrose
condition. If f, unimodal, this condition is satisfied.

e E is an integral in v (Fourier : £ = 0). Transfer from low to high
frequencies allows for strong convergence.

@ Weak convergence of f comes from strong convergence result in the
moving frame : x’ = x — vt.
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@ Homogeneity and regularity assumptions are crucial, at least in the
proofs. VP: theorem is false in H®, s < 3/2.

@ Link between the smoothness required and the singularity of kernel V.
VP: Gevrey. Vlasov-HMF : Sobolev or C.

Consequences on Kuramoto model

Methods of Landau damping can be extended to describe the asynchrony.

Theorem ([Fernandez-Giacomin-GV'14])
Let g s.t. [[{(w)gllge < o0, [[{|€]ME]n < +o0. If

K .
H) 1-= [ z(&)e ™“dw+#0 VYwwithZmw <0

2 Jr,

there exists i such that: for all fy with ||fy — fi||ye < ek,

f(t) = f in L2, with r(t) = O(t™%).

-
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Remark: Condition (H) is a spectral stability condition, of Penrose type.

If g unimodal, it comes down to K < g2(0 .

Question: What about K > ( ) 7 Asymptotic stability of f; ?

Problem: f; is inhomogeneous and irregular (Dirac mass). Previous
methods do not apply.
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3. Study of synchronization

With H. Dietert, B. Fernandez.
Relies on ideas of [Dietert'14].

Main contribution: well-suited functional space, with a "weak” norm.

@ In such space, explicit criterion of spectral stability for the
linearization around f;.

Completes existing linear results [Mirollo-Strogatz'07].

@ In such space, result of the type:

Spectral stability = Nonlinear asymptotic stability

New: inhomogeneous and irregular state (Dirac mass).
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Functional space

Fourier: u(/,€) = & [ [, e(PTE) £ (9, w)dwdd.

pu(1,€) = 19¢u(l, €) + g (u(1, 0)u(/ — 1,€) — u(L, 0)u(/ + 1,5))
(KF)

Remark: u(t,0,£) = g(&§) Vt, V&.

Modes u(t,1,£), | >0 and | < 0 are decoupled.
As u(l,€) = u(—1,—¢&) : we restrict to / > 0.

Underlying free transport: | Oru — 10¢u =0,  u(t,],§) = up(& + It).

Iflimyoo up =0, then limi_ oo u=0.

Different from classical spaces for which limi, g = 0.
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Concretely, for a > 0:

P, = {f € P1(T x R), such that 72(0,5) =g(§) et

S [ #7008 + aef. ) < oo,

leN

Distance over P;:

4,(F,g) = \/Z [ e - 81000 + e - 21 O

IeN

Important: €22 £ e22l€l: the latter corresponds to analytic setting
(Paley-Wiener).

Remark: Use of exponential weight not new : see [Pego-Weinstein'94]
(stability of the KDV soliton).
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@ Well-suited to partially locked states f:

Proposition

fo €Pa fud Pal

Remark: Important to exclude f,.
@ P, is preserved by the Kuramoto flow

Proposition

i [ €29 (g(e) +10c@(€)P) dé < +oc,
R
and if fy € P,, then the solution of (K) satisfies f € C(R, P,).
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Linear stability

Linearization around f; in Fourier: u := f— 7?5 us = fs One gets

’8tu:Lu:L1u—|—L2u‘

with, for I € Ny, £ € R:

Liu(1,€) == 10¢u(l,€) + grs (u(l =1,8) — u(l+1,¢))

Lou(l,€) = g (u(l,O)us(/ ~1,6) — u(L, 0)us(/ + 1,5)) .
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Technical difficulty: Ly R-linear, not C-linear.

But C-linear in (u, @). Allows for complexification of the operator. The
spectrum mentioned below is the one of the complexified operator.

Operators are considered over

Z,= { (0.6 = 0. 3 [ (O + 10cP(1, )Py < oo},

leN

Theorem
Q 0ess(L) = 0ess(L1) C {Re X < —a}.

@ V>0, vp(L)Nn{ReA > —a+n}is finite, with explicit
characterization.

Q@ 0e vp(l)
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Remark: the first item is crucial: gess & /R.

Remark: The third item comes from the shift invariance of (K) in 6.

Proof of the first item:

@ Ly of finite rank, so that 0ess(L) = Tess(L1)-

@ Property oess(L1) C {Re A < —a}: a priori estimate for the resolvent
equation:

Nall,€) — 10gu(1,) — 5 (ull = 1,6) = u(1 + 1,6)) = £(1,€)

Testing against /~1e??¢u(/, £), one finds

1 B _
SReNITNul, + allul3, < 117z, |lulz,



Nonlinear stability

Spectral stability assumption (a > 0 fixed):

[(H) o(£)n{Re >0} = {0}

Proposition ([Mirollo-Strogatz'07]

If g is unimodal, (H) is satisfied for all K > _Zg;.

Theorem

Under assumption (H): there exists ¢ > 0, a’ > 0 s.t. for all data fy € P,
with da(fo, fs) < €, one can find ¢ = ¢(fy) satisfying:

da(F(1), (- + ¢,7)) < Coe™ ™
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Idea of proof:

Center manifold theorem.

Here, the center manifold is explicit: circle of steady stable solutions :

V= {ei"us —us, p€eR}

Technical difficulty : the nonlinearity does not preserve Z,.

Use of a regularizing effect of the semigroup L? in time....
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