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1. Background

Motivation: To understand synchronization in a large population of
interacting elements: cells of the cardiac pacemaker, flashing of fireflies...

Basic model: N oscillators, described by their

phases θ1, . . . , θN ∈ T, and natural frequencies ω1, . . . , ωN .

Free evolution: θ̇i = ωi (w.l.o.g. 1
N

∑N
i=1 ωi = 0).

Mean field coupling: discrete Kuramoto model (1975)

θ̇i = ωi −
K

N

N∑
j=1

sin(θi − θj), i = 1, . . . ,N, K > 0 (KD)
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Question: Lim N → +∞ ?

Classical mean field theory applies [Golse’13].

Appropriate object is the empirical measure :

fN(t, θ, ω) =
1

N

∑
δ(θi (t),ωi )(θ, ω)

Theorem

Let f0 ∈ P(T× R). Assume fN(0)→ f0.

Then fN(t)→ f (t) for all t ≥ 0, f solution in C (R+,w − P(T× R)) of

∂t f + ∂θ(ωf − K

∫
T×R

sin(θ − θ′)df (θ′, ω′)f ) = 0 (K)

with data f0.
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Remark: Different from Vlasov like equations. Here, transport in θ only.

Remark:
∫
f (t, θ, ω)dθ =

∫
f0(θ, ω)dθ.

Interpretation: for ωi i.i.d. random variables, with law g .∫
f0(θ, ω)dθ = lim

N→∞

∫
fN(0, θ, ω)dθ = lim

N→∞

1

N

∑
δωi = g p.s.

(law of large numbers).

We shall denote: g(ω) =
∫
f (t, θ, ω)dθ.
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2. Qualitative features

Question: Synchronization ? Locking of phases on a common value ?

Related to the so-called order parameter:

(KD): r(t) = 1
N

∑
k e

iθk . (K): r(t) =

∫
T×R

e iθf (t, θ, ω)dθdω .

Asynchrony : r ≈ 0. Synchronization : |r | ≈ 1.

Remark: (K) reads

∂t f + ∂θ

(
ωf − K

2i
(e iθr(t)− e−iθr(t))f

)
= 0

Example: r = 0. Incoherent state: fi (θ, ω) =
g(ω)

2π
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Existence of steady solutions with r > 0 ?

Satisfy ∂θ ((ω − Kr sin θ)f ) = 0.

Two kinds of oscillators, depending on the natural frequency:

|ω| > Kr : drifting oscillators:

df (θ, ω) =
Cω

ω − Kr sin θ
=

√
ω2 − (Kr)2

2π|ω − Kr sin θ|
g(ω)dωdθ

|ω| < Kr : locked oscillators:

One gets a combination of Dirac masses:

df (θ, ω) = α(ω)g(ω)δθs(ω) + (1− α(ω))g(ω)δθu(ω)

with
θs(ω) = arcsin

( ω
Kr

)
, θu(ω) = π − arcsin

( ω
Kr

)
.
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Remark: if we fix the order parameter in (K) (r(t) = r).

Linear equation, with characteristic equation:

θ̇ = ω − Kr sin(θ)

θs(ω) stable, θu(ω) unstable. Suggests stability of dfs(θ, ω) =

√
ω2 − (Kr)2

2π|ω − Kr sin θ|
g(ω)dωdθ, |ω| > Kr

dfs(θ, ω) = g(ω)δθs(ω), |ω| < Kr

and instability of possible other partially locked states.

Warning ! fs = fs,r must satisfy a self-consistency relation

r =

∫
T×R

e iθfs,r (θ, ω)dθdω

Nonlinear equation in r , with parameter K . Not obvious !
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Special case: g unimodal, that is

g : R 7→ R continuous, even, decreasing over R+.

Proposition

For K < 2
πg(0) , a single solution: fi , r = 0.

For K > 2
πg(0) , another solution: fs , r = rs > 0.

Remark: (K) invariant by a shift in θ: circle of synchronized states:
fs,φ(ω, θ) = fs(θ + φ, ω), with rφ = e−iφr .

Time evolution

Numerics (unimodal case) :

Convergence to fi for K < 2
πg(0) , r → 0.

Convergence to fs for K > 2
πg(0) , r → rs .

Problem: seems impossible in classical functional spaces!
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Classical L2 norms do not decay.

Linearized operator fi or fs has imaginary spectrum.

Already true for free transport: ∂t f + ∂θ(ωf ) = 0 .

But . . . in Fourier space : (θ, ω)→ (l , ξ) :

∂t f̂ − l∂ξ f̂ = 0, with f̂ (t, l , ξ) = f̂0(l , ξ + lt)

Transfer from low to high frequencies : pointwise convergence in
Fourier, i.e. weak convergence in measures.

Speed of convergence depends on the smoothness of f0.

Example: for analytic f0, exponential rate.

Conclusion: one can hope for convergence :

in weak topology

in strong topology in the moving frame: θ′ = θ − ωt.
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Back to the full equation:

Problems

Linear analysis: spectral stability of fi or fs ?

Effect of nonlinearities ?

Difficult:
I Spectrum is on the imaginary axis in usual spaces.
I Cascade from high frequencies to low frequencies.

Very limited results: [Crawford’94],[0tt-Antonsen’04,’08],[Carillo et al’13]

But parallel to Landau damping in plasma physics...

Nonlinear Landau damping

Refs: [Hwang-Velazquez’09],[Lin-Zheng’11],[Mouhot-Villani’11],

[Faou-Rousset’14], [Bedrossian-Masmoudi-Mouhot’16]

About the Vlasov equation !

∂t f + ∂x(vf ) + ∂v (Ef ) = 0, E (x) = −
∫
T×R

∂xV (x − x ′)f (x ′, v ′)dx ′dv ′
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Typical result

fh = fh(v) a homogeneous and smooth equilibrium, spectrally stable.

f0 = f0(x , v) smooth, close to fh.

Then the solution f = f (t, x , v) with data f0 converges weakly to
f̃h = f̃h(v), homogeneous and smooth equilibrium close to fh.

Moreover, E strongly converges to 0.

Remarks:

Spectral stability for hoogeneous states of Vlasov is known: Penrose
condition. If fh unimodal, this condition is satisfied.

E is an integral in v (Fourier : ξ = 0). Transfer from low to high
frequencies allows for strong convergence.

Weak convergence of f comes from strong convergence result in the
moving frame : x ′ = x − vt.
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Homogeneity and regularity assumptions are crucial, at least in the
proofs. VP: theorem is false in Hs , s < 3/2.

Link between the smoothness required and the singularity of kernel V .

VP: Gevrey. Vlasov-HMF : Sobolev or C k .

Consequences on Kuramoto model

Methods of Landau damping can be extended to describe the asynchrony.

Theorem ([Fernandez-Giacomin-GV’14])

Let g s.t. ‖〈ω〉g‖H4 < +∞, ‖〈|ξ|4〉ĝ‖L1 < +∞. If

(H) 1− K

2

∫
R+

ĝ(ξ)e−iωξdω 6= 0 ∀ω with Imω ≤ 0

there exists εK such that: for all f0 with ||f0 − fi ||H4 ≤ εK ,

f (t) ⇀ fi in L2, with r(t) = O(t−4).
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Remark: Condition (H) is a spectral stability condition, of Penrose type.

If g unimodal, it comes down to K < 2
πg(0) .

Question: What about K > 2
πg(0) ? Asymptotic stability of fs ?

Problem: fs is inhomogeneous and irregular (Dirac mass). Previous
methods do not apply.

13 / 22



3. Study of synchronization

With H. Dietert, B. Fernandez.

Relies on ideas of [Dietert’14].

Main contribution: well-suited functional space, with a ”weak” norm.

1 In such space, explicit criterion of spectral stability for the
linearization around fs .

Completes existing linear results [Mirollo-Strogatz’07].

2 In such space, result of the type:

Spectral stability ⇒ Nonlinear asymptotic stability

New: inhomogeneous and irregular state (Dirac mass).
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Functional space

Fourier: u(l , ξ) = 1
2π

∫ 2π
0

∫
R e i(lθ+ξω)f (θ, ω)dωdθ.

∂tu(l , ξ) = l∂ξu(l , ξ) +
Kl

2

(
u(1, 0)u(l − 1, ξ)− u(1, 0)u(l + 1, ξ)

)
(KF)

Remark: u(t, 0, ξ) = ĝ(ξ) ∀t, ∀ξ.

Modes u(t, l , ξ), l > 0 and l < 0 are decoupled.

As u(l , ξ) = u(−l ,−ξ) : we restrict to l > 0.

Underlying free transport: ∂tu − l∂ξu = 0, u(t, l , ξ) = u0(ξ + lt).

If lim+∞ u0 = 0, then limt→+∞ u = 0.

Different from classical spaces for which lim±∞ u0 = 0.
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Concretely, for a > 0:

Pa =

{
f ∈ P1(T× R), such that f̂ (0, ξ) = ĝ(ξ) et∑

l∈N

∫
R
e2aξ(|f̂ (l , ξ)|2 + |∂ξ f̂ (l , ξ)|2)dξ <∞

}
,

Distance over Pa:

da(f , g) =

√∑
l∈N

∫
R
e2aξ(|(f̂ − ĝ)(l , ξ)|2 + |∂ξ(f̂ − ĝ)(l , ξ)|2)dξ

Important: e2aξ 6= e2a|ξ|: the latter corresponds to analytic setting
(Paley-Wiener).

Remark: Use of exponential weight not new : see [Pego-Weinstein’94]

(stability of the KDV soliton).
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Well-suited to partially locked states fs :

Proposition

fs ∈ Pa, fu 6∈ Pa

Remark: Important to exclude fu.

Pa is preserved by the Kuramoto flow

Proposition

If

∫
R
e2a|ξ| (|ĝ(ξ)|2 + |∂ξĝ(ξ)|2

)
dξ < +∞,

and if f0 ∈ Pa, then the solution of (K) satisfies f ∈ C (R+,Pa).
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Linear stability

Linearization around fs in Fourier: u := f̂ − f̂s , us := f̂s . One gets

∂tu = Lu = L1u + L2u

with, for l ∈ N∗, ξ ∈ R:

L1u(l , ξ) := l∂ξu(l , ξ) +
Kl

2
rs (u(l − 1, ξ)− u(l + 1, ξ))

L2u(l , ξ) :=
Kl

2

(
u(1, 0)us(l − 1, ξ)− u(1, 0)us(l + 1, ξ)

)
.
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Technical difficulty: L2 R-linear, not C-linear.

But C-linear in (u, u). Allows for complexification of the operator. The
spectrum mentioned below is the one of the complexified operator.

Operators are considered over

Za =

{
u, u(0, ξ) = 0,

∑
l∈N

∫
R
e2aξ(|f̂ (l , ξ)|2 + |∂ξ f̂ (l , ξ)|2)dξ <∞

}
,

Theorem
1 σess(L) = σess(L1) ⊂ {Re λ ≤ −a}.
2 ∀η > 0, vp(L) ∩ {Re λ ≥ −a + η} is finite, with explicit

characterization.

3 0 ∈ vp(L)

19 / 22



Remark: the first item is crucial: σess 6⊂ iR.

Remark: The third item comes from the shift invariance of (K) in θ.

Proof of the first item:

L2 of finite rank, so that σess(L) = σess(L1).

Property σess(L1) ⊂ {Re λ ≤ −a}: a priori estimate for the resolvent
equation:

λu(l , ξ)− l∂ξu(l , ξ)− Kl

2
rs (u(l − 1, ξ)− u(l + 1, ξ)) = f (l , ξ)

Testing against l−1e2aξu(l , ξ), one finds

1

2
(Re λ)‖l−1u‖2

Za
+ a‖u‖2

Za
≤ ‖l−1f ‖Za ‖u‖Za
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Nonlinear stability

Spectral stability assumption (a > 0 fixed):

(H) σ(L) ∩ {Re λ ≥ 0} = {0}

Proposition ([Mirollo-Strogatz’07]

If g is unimodal, (H) is satisfied for all K > 2
πg(0) .

Theorem

Under assumption (H): there exists ε > 0, a′ > 0 s.t. for all data f0 ∈ Pa
with da(f0, fs) ≤ ε, one can find φ = φ(f0) satisfying:

da(f (t), fs(·+ φ, ·)) ≤ Cε e
−a′t
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Idea of proof:

Center manifold theorem.

Here, the center manifold is explicit: circle of steady stable solutions :

V = {e iϕus − us , ϕ ∈ R}

Technical difficulty : the nonlinearity does not preserve Za.

Use of a regularizing effect of the semigroup L2 in time....
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