Partial Differential Equation 00000

Free boundary problem

Tumor growth: from agent-based model to free-boundary problem

Sébastien Motsch

Arizona State University

In collaboration with:

- Pedro Lowenstein (Michigan Univ.)
- o Diane Peurichard (Univ. of Vienna, Austria)

Partially supported by NSF grant (DMS-1515592).

Center for Scientific Computations And Mathematical Modeling University of Maryland

Sébastien Motsch (ASU) Tumor growth: from agent-based model to free-boundary problem October 10 2017 1/ 29

Introduction	Agent-based model	Partial Differential Equation	Free boundary problem 000000000	Conclusion
Outline				

- 2 Agent-based model
 - Microscopic model
 - Numerical simulations
- 3 Partial Differential Equation
 - Derivation
 - Stabilizing method
- 4 Free boundary problem
 - Derivation (Hele-Shaw)
 - Numerical simulation

5 Conclusion

Introduction	Agent-based model	Partial Differential Equation	Free boundary problem 000000000	Conclusion
Outline				

- Agent-based model
 Microscopic model
 Numerical simulation
 - Numerical simulations
- 3 Partial Differential Equation
 - Derivation
 - Stabilizing method
- 4 Free boundary problem
 - Derivation (Hele-Shaw)
 - Numerical simulation

5 Conclusion

gent-based mode

Partial Differential Equation 00000

Free boundary problem

Brain cancer: Glioblastoma

Treatment

- surgery
- radiation therapy
- chemotherapy
- viral therapy
- ... but $\mathbf{15}-\mathbf{21}$ months survival

 \Rightarrow tumor recurrence

gent-based mode

Partial Differential Equation 00000

Free boundary problem

Conclusion

Brain cancer: Glioblastoma

blood vessels

Treatment

- surgery
- radiation therapy
- chemotherapy
- viral therapy
- ... but $\mathbf{15} \mathbf{21}$ months survival
 - \Rightarrow tumor recurrence

Another approach blocking angiogenesis (VEGF)

Introduction Agent-based model Partial Differential Equation Free boundary problem Conclusion

Experiments in mice (Castro-Lowenstein lab)

Experiments in mice (Castro-Lowenstein lab)

Introduction Partial Differential Equation

Experiments in mice (Castro-Lowenstein lab)

Mathematical Models

 Agent-based models (micro) Each cancer cell is represented: x_i ∈ ℝ³ ⇒ (large) systems of interacting particles Ref.: Byrne, Drasdo, Deutsch...

sed model I

Partial Differential Equation

Free boundary problem

Mathematical Models

 Agent-based models (micro) Each cancer cell is represented: x_i ∈ ℝ³ ⇒ (large) systems of interacting particles Ref.: Byrne, Drasdo, Deutsch...

- Partial Differential Equation (macro) Cancer is described as a "mass": ρ(x, t)
 ⇒ reaction-diffusion, hybrid multiscale model
 - Ref.: Kostelich, Swanson, Maini, Oden, Lowengrub...

Agent-based model

Partial Differential Equation

Free boundary problem

Conclusion

Mathematical Models

- Agent-based models (micro) Each cancer cell is represented: x_i ∈ ℝ³ ⇒ (large) systems of interacting particles Ref.: Byrne, Drasdo, Deutsch...
- Kinetic model (mesoscopic)
- Partial Differential Equation (macro) Cancer is described as a "mass": ρ(x, t)
 ⇒ reaction-diffusion, hybrid multiscale model Ref.: Kostelich, Swanson, Maini, Oden, Lowengrub...

Introduction	Agent-based model	Partial Differential Equation	Free boundary problem	Conclusion

$\underbrace{\begin{array}{rcl} Dynamics: \\ \begin{pmatrix} \mathbf{x}' &= c(\mathbf{x})\omega \\ d\omega &= \sigma dB_t \end{array}$

with V density of blood vessel and

 $c(\mathbf{x}) = \begin{cases} c_0 & \text{if } V(\mathbf{x}) > 0 \\ c_1 & \text{if } V(\mathbf{x}) = 0 \end{cases}$

Introduction Agent-based model Partial Differential Equation Free boundary problem Conclusion 00000 000000000000000000000000000000							
	Introduction	Agent-based model	Partial Differential Equation	Free boundary problem	Conclusion		

Dynamics:

$$\begin{cases} \mathbf{x}' = c(\mathbf{x})\omega \\ d\omega = \nabla V(\mathbf{x}) dt + \sigma dB_t \end{cases}$$

with V density of blood vessel and

 $c(\mathbf{x}) = \begin{cases} c_0 & \text{if } V(\mathbf{x}) > 0\\ c_1 & \text{if } V(\mathbf{x}) = 0 \end{cases}$

Introduction Agent-based model Partial Differential Equation Free boundary problem Conclusion 00000 000000000000000000000000000000							
	Introduction	Agent-based model	Partial Differential Equation	Free boundary problem	Conclusion		

Dynamics:

.

1

$$\begin{cases} \mathbf{x}' = c(\mathbf{x})\omega \\ d\omega = \nabla V(\mathbf{x}) dt + \sigma dB_t \end{cases}$$

with V density of blood vessel and

$$c(\mathbf{x}) = \begin{cases} c_0 & \text{if } V(\mathbf{x}) > 0\\ c_1 & \text{if } V(\mathbf{x}) = 0 \end{cases}$$

coupled with birth/death process

Kinetic model

Numerical and in vivo experiments show that brain-tumor spread without angiogenesis.

Sébastien Motsch (ASU) Tumor growth: from agent-based model to free-boundary problem October 10 2017 8/ 29

Introduction	Agent-based model	Partial Differential Equation	Free boundary problem 000000000	Conclusion
Outline				

- Agent-based model
 Microscopic model
 Numerical simulations
- 3 Partial Differential Equation
 - Derivation
 - Stabilizing method
- 4 Free boundary problem
 - Derivation (Hele-Shaw)
 - Numerical simulation

5 Conclusion

Cell represented by a position $\mathbf{x}_i \in \mathbb{R}^2$ and a fix radius R > 0.

Agent-based model

Cell represented by a position $\mathbf{x}_i \in \mathbb{R}^2$ and a fix radius R > 0.

• cells are *pushing* each other:

$$\dot{\mathbf{x}}_i = -\sum_{j \neq i} \phi_{ij} \cdot (\mathbf{x}_j - \mathbf{x}_i)$$

with $\phi_{ij} = \phi\left(\left|\frac{\mathbf{x}_j - \mathbf{x}_i}{2R}\right|^2\right)$.

Ref: Bertozzi, Carrillo, Delgadino, Fetecau, Kolokolnikov, Mellet, Slepcev...

Agent-based model

Cell represented by a position $\mathbf{x}_i \in \mathbb{R}^2$ and a fix radius R > 0.

• cells are *pushing* each other:

$$\dot{\mathbf{x}}_i = -\sum_{j \neq i} \phi_{ij} \cdot (\mathbf{x}_j - \mathbf{x}_i)$$

with $\phi_{ij} = \phi\left(\left|\frac{\mathbf{x}_j - \mathbf{x}_i}{2R}\right|^2\right)$.

Ref: Bertozzi, Carrillo, Delgadino, Fetecau, Kolokolnikov, Mellet, Slepcev...

cells *divide* at a rate µ > 0 (Poisson process):

 $\mathbf{x}_i \rightsquigarrow (\mathbf{x}_i, \mathbf{x}_{i_*})$

Agent-based model

Cell represented by a position $\mathbf{x}_i \in \mathbb{R}^2$ and a fix radius R > 0.

• cells are *pushing* each other:

$$\dot{\mathbf{x}}_i = -\sum_{j \neq i} \phi_{ij} \cdot (\mathbf{x}_j - \mathbf{x}_i)$$

with $\phi_{ij} = \phi\left(\left|\frac{\mathbf{x}_j - \mathbf{x}_i}{2R}\right|^2\right)$.

Ref: Bertozzi, Carrillo, Delgadino, Fetecau, Kolokolnikov, Mellet, Slepcev...

cells *divide* at a rate µ > 0 (Poisson process):

 $\mathbf{x}_i \rightsquigarrow (\mathbf{x}_i, \mathbf{x}_{i_*})$

Goal: investigate the dynamics at a *macroscopic scale*.

We study three cases:

- **<u>Case 1</u>**: pushing, no cell division $\mu = 0$
- Case 2: pushing and cell division
- <u>**Case 3**</u>: *strong* pushing and cell division (repulsion $\phi \rightsquigarrow \frac{\phi}{\varepsilon}$ and $\varepsilon \rightarrow 0$)

Introduction	Agent-based model ○●	Partial Differential Equation	Free boundary problem 000000000	Conclusion
Numerie	cal experimer	nts		

• <u>Case 1</u>: pushing, no cell division $\mu = 0$

<u>Case 1</u>: pushing, no cell division μ = 0
 ⇒ converges to compact config.

Introduction	Agent-based ○●	model	Partial Differential Equation	Free boundary problem 000000000	Conclusion
N I					

• Case 2: pushing and cell division

radial distance r

October 10 2017 11/29

<u>Case 2</u>: pushing and cell division
 ⇒ diffuses and growths

Introduction	Agent-based model ○●	Partial Differential Equation	Free boundary problem	Conclusion

• <u>**Case 3**</u>: *strong* pushing and cell division (repulsion $\phi \rightsquigarrow \frac{\phi}{\varepsilon}$ and $\varepsilon \rightarrow 0$)

• <u>Case 3</u>: *strong* pushing and cell division (repulsion $\phi \rightsquigarrow \frac{\phi}{\varepsilon}$ and $\varepsilon \rightarrow 0$) \Rightarrow "free boundary problem"

- <u>Case 3</u>: *strong* pushing and cell division (repulsion $\phi \rightsquigarrow \frac{\phi}{\varepsilon}$ and $\varepsilon \to 0$)
 - \Rightarrow "free boundary problem"

What equation governs the motion of the boundary $\partial \Omega$?

Introduction	Agent-based model	Partial Differential Equation	Free boundary problem 000000000	Conclusion
Outline				

- Agent-based model
 Microscopic model
 Numerical simulations
- 3 Partial Differential Equation
 - Derivation
 - Stabilizing method
 - 4 Free boundary problem
 - Derivation (Hele-Shaw)
 - Numerical simulation

5 Conclusion

• **Repulsion dynamics**: let $\{x_i(t)\}_{i=1..N}$ solution micro.

• **Repulsion dynamics**: let $\{\mathbf{x}_i(t)\}_{i=1..N}$ solution micro.

The empirical distribution $\rho(\mathbf{x}, t)$:

$$\rho(\mathbf{x},t) = \sum_{i} \delta_{\mathbf{x}_{i}(t)}(\mathbf{x}).$$

Repulsion dynamics: let $\{\mathbf{x}_i(t)\}_{i=1..N}$ solution micro. •

The empirical distribution $\rho(\mathbf{x}, t)$:

$$\rho(\mathbf{x},t) = \sum_{i} \delta_{\mathbf{x}_{i}(t)}(\mathbf{x}).$$

satisfies (weakly) the transport PDE:

$$\partial_t \rho + \nabla_{\mathbf{x}} \cdot (G[\rho]\rho) = 0,$$

 $G[\rho](\mathbf{x}) = -\int_{\mathbf{y}} \phi\left(\left|\frac{\mathbf{x}-\mathbf{y}}{2R}\right|^2\right) (\mathbf{y}-\mathbf{x})\rho(\mathbf{y}) \,\mathrm{d}\mathbf{y}.$

Repulsion dynamics: let $\{\mathbf{x}_i(t)\}_{i=1..N}$ solution micro. •

The empirical distribution $\rho(\mathbf{x}, t)$:

$$\rho(\mathbf{x},t) = \sum_{i} \delta_{\mathbf{x}_{i}(t)}(\mathbf{x}).$$

satisfies (weakly) the transport PDE:

$$\partial_t \rho + \nabla_{\mathbf{x}} \cdot (G[\rho]\rho) = 0,$$

 $G[\rho](\mathbf{x}) = -\int_{\mathbf{y}} \phi\left(\left|\frac{\mathbf{x}-\mathbf{y}}{2R}\right|^{2}\right) (\mathbf{y}-\mathbf{x})\rho(\mathbf{y}) \,\mathrm{d}\mathbf{y}.$

Repulsion dynamics + cell division:

$$\partial_t \rho + \nabla_{\mathbf{x}} \cdot (G[\rho]\rho) = \mu \rho.$$

Sébastien Motsch (ASU)

Partial Differential Equation 00000 Case 1: no cell-division

...does not converge to a compactly supported config.

Explanation: Dirac distributions are *unstable* (weak) solutions. **Ref.**: D. Balagué, J. Carrillo, T. Laurent, and G. Raoul

radial distance r

2 3 Δ

radial distance r

6

0

...does **not** converge to a compactly supported config.

x

Explanation: Dirac distributions are *unstable* (weak) solutions. Ref.: D. Balagué, J. Carrillo, T. Laurent, and G. Raoul

Fix: introduce a density threshold for the interaction

Introduction	Agent-based model	Partial Differential Equation ००●००	Free boundary problem 000000000	Conclusion
Stabilizi	ng method			

Observation: repulsion occurs only when $|\mathbf{x}_i - \mathbf{x}_j| \le 2R$.

Observation: repulsion occurs only when $|\mathbf{x}_i - \mathbf{x}_j| \le 2R$. Regularization empirical distribution: $\varphi_R = \frac{1}{\pi R^2} \mathbb{1}_{B(0,R)}$

$$\widetilde{\rho}(\mathbf{x},t) = \rho * \varphi_R$$

= $\frac{1}{\pi R^2} \sum_{i=1}^N \mathbb{1}_{B(\mathbf{x}_i(t),R)}(\mathbf{x}).$

Stabilizing method

Observation: repulsion occurs only when $|\mathbf{x}_i - \mathbf{x}_j| \le 2R$. Regularization empirical distribution: $\varphi_R = \frac{1}{\pi R^2} \mathbb{1}_{B(0,R)}$

$$\widetilde{
ho}(\mathbf{x},t) =
ho * \varphi_R$$

= $\frac{1}{\pi R^2} \sum_{i=1}^N \mathbb{1}_{B(\mathbf{x}_i(t),R)}(\mathbf{x}).$

We modify the transport equation:

$$\partial_t \rho + \nabla_{\mathbf{x}} \cdot (\overline{G}[\rho]\rho) = \mu \rho,$$

$$\overline{G}[\rho](\mathbf{x}) = -\int_{\mathbf{y}} \phi\left(\left|\frac{\mathbf{x}-\mathbf{y}}{2R}\right|^{2}\right)(\mathbf{y}-\mathbf{x})\mathbf{h}(\rho(\mathbf{y})) \,\mathrm{d}\mathbf{y}$$

and $\mathbf{h}(\rho) = \rho - \rho_{*}$ for $\rho \ge \rho_{*}$.

Introduction Agent-based model Partial Differential Equation Free boundary problem Conclusion

Case 1: no cell-division

Using the **threshold** $\rho_* = \frac{1}{\pi R^2}$:

Introduction Agent-based model Partial Differential Equation Free boundary problem Conclusion 00 0000● 000000000

Case 2: with cell-division

Using the **threshold** $\rho_* = \frac{1}{\pi R^2}$:

Introduction Agent-based model Partial Differential Equation Free boundary problem Conclusion

Case 2: with cell-division

Using the **threshold** $\rho_* = \frac{1}{\pi R^2}$:

Question: How about case 3 (non-overlapping with $\varepsilon \rightarrow 0$)?

Sébastien Motsch (ASU) Tumor growth: from agent-based model to free-boundary problem October 10 2017 17/ 29

Introduction	Agent-based model	Partial Differential Equation	Free boundary problem	Conclusion
Outline				

- Agent-based model
 Microscopic model
 Numerical simulations
- 3 Partial Differential Equation
 - Derivation
 - Stabilizing method
- Free boundary problem
 Derivation (Hele-Shaw)
 Numerical simulation
 -

5 Conclusion

Porous media equation

Asymptotic $R \ll 1$

$$\overline{G}[\rho](\mathbf{x}) = -\int_{\mathbf{y}} \phi\left(\left|\frac{\mathbf{x}-\mathbf{y}}{2R}\right|^2\right) (\mathbf{y}-\mathbf{x})\mathbf{h}(\rho(\mathbf{y})) \,\mathrm{d}\mathbf{y}$$

Porous media equation

Asymptotic $R \ll 1$

$$\overline{G}[\rho](\mathbf{x}) = -\int_{\mathbf{y}} \phi\left(\left|\frac{\mathbf{x}-\mathbf{y}}{2R}\right|^{2}\right) (\mathbf{y}-\mathbf{x})\mathbf{h}(\rho(\mathbf{y})) \,\mathrm{d}\mathbf{y}$$
$$= (2R)^{3} \int_{\mathbf{z}} \phi(|\mathbf{z}|^{2}) \,\mathbf{z} \,\mathbf{h}(\rho(\mathbf{x}-2R\mathbf{z})) \,\mathrm{d}\mathbf{z}$$

Porous media equation

Asymptotic $R \ll 1$

$$\overline{G}[\rho](\mathbf{x}) = -\int_{\mathbf{y}} \phi\left(\left|\frac{\mathbf{x}-\mathbf{y}}{2R}\right|^{2}\right) (\mathbf{y}-\mathbf{x})\mathbf{h}(\rho(\mathbf{y})) \,\mathrm{d}\mathbf{y}$$
$$= (2R)^{3} \int_{\mathbf{z}} \phi(|\mathbf{z}|^{2}) \,\mathbf{z} \,\mathbf{h}(\rho(\mathbf{x}-2R\mathbf{z})) \,\mathrm{d}\mathbf{z}$$
$$= -\alpha_{R} \,\mathbf{h}'(\rho(\mathbf{x})) \nabla_{\mathbf{x}} \rho(\mathbf{x}) + \mathcal{O}(R^{5})$$

with α_R constant.

Introduction Agent-based model Partial Differential Equation 00 Conclusion 00000 Conclusion

Porous media equation

Asymptotic $R \ll 1$

$$\overline{G}[\rho](\mathbf{x}) = -\int_{\mathbf{y}} \phi\left(\left|\frac{\mathbf{x}-\mathbf{y}}{2R}\right|^{2}\right) (\mathbf{y}-\mathbf{x})\mathbf{h}(\rho(\mathbf{y})) \,\mathrm{d}\mathbf{y}$$
$$= (2R)^{3} \int_{\mathbf{z}} \phi(|\mathbf{z}|^{2}) \,\mathbf{z} \,\mathbf{h}(\rho(\mathbf{x}-2R\mathbf{z})) \,\mathrm{d}\mathbf{z}$$
$$= -\alpha_{R} \,\mathbf{h}'(\rho(\mathbf{x})) \nabla_{\mathbf{x}} \rho(\mathbf{x}) + \mathcal{O}(R^{5})$$

with α_R constant. Neglecting high order term leads to a **porous** media equation:

$$\partial_t \rho = \alpha_R \nabla_{\mathbf{x}} \cdot \left(\mathbf{h}'(\rho(\mathbf{x})) \rho \nabla_{\mathbf{x}} \rho \right) + \mu \rho,$$

or:

$$\partial_t \rho = \frac{\alpha_R}{2} \Delta_{\mathbf{x}} H(\rho^2) + \mu \rho$$

with
$$H(s)=(s-
ho_*^2)^+$$

.

Sébastien Motsch (ASU) Tumor growth: from

Introduction Agent-based model Partial Differential Equation Free boundary problem Co

Free-boundary problem (Hele-Shaw)

 $\underline{\text{Asymptotic}} \ \phi \rightsquigarrow \frac{\phi}{\varepsilon} \ \text{and} \ \varepsilon \to 0 \quad (\textit{no-overlapping})$

$$\partial_t \rho_{\varepsilon} = \frac{\alpha_R}{2\varepsilon} \Delta_{\mathbf{x}} H(\rho_{\varepsilon}^2) + \mu \rho_{\varepsilon}.$$

Question: is there a limit equation as $\varepsilon \to 0$?

Introduction Agent-based model Partial Differential Equation 00 00000 Free boundary problem

Free-boundary problem (Hele-Shaw)

<u>Asymptotic</u> $\phi \rightsquigarrow \frac{\phi}{\varepsilon}$ and $\varepsilon \rightarrow 0$ (no-overlapping) $\partial_t \rho_{\varepsilon} = \frac{\alpha_R}{2\varepsilon} \Delta_{\mathbf{x}} H(\rho_{\varepsilon}^2) + \mu \rho_{\varepsilon}.$

Question: is there a limit equation as $\varepsilon \to 0$? Suppose: $\rho_{\varepsilon} \xrightarrow{\varepsilon \to 0} \rho_{\infty}$.

• $\mathcal{O}(\varepsilon^{-1})$: $\Delta_{\mathbf{x}} \mathcal{H}(\rho_{\infty}^2) = 0 \Rightarrow \rho_{\infty}(\mathbf{x}) \le \rho_*$. Denote $\Omega(t) = \{\rho_{\infty}(\mathbf{x}, t) = \rho_*\}$. Agent-based model Partial Differential Equation 00 0000

Free boundary problem

Free-boundary problem (Hele-Shaw)

Introduction

Asymptotic
$$\phi \rightsquigarrow \frac{\phi}{\varepsilon}$$
 and $\varepsilon \rightarrow 0$ (no-overlapping)
 $\partial_t \rho_{\varepsilon} = \frac{\alpha_R}{2\varepsilon} \Delta_{\mathbf{x}} H(\rho_{\varepsilon}^2) + \mu \rho_{\varepsilon}.$

Question: is there a limit equation as $\varepsilon \to 0$? Suppose: $\rho_{\varepsilon} \xrightarrow{\varepsilon \to 0} \rho_{\infty}$.

- $\mathcal{O}(\varepsilon^{-1})$: $\Delta_{\mathbf{x}} H(\rho_{\infty}^2) = 0 \Rightarrow \rho_{\infty}(\mathbf{x}) \le \rho_*.$ Denote $\Omega(t) = \{\rho_{\infty}(\mathbf{x}, t) = \rho_*\}.$
- $\mathcal{O}(\varepsilon^0)$: perturbation analysis $\rho_{\varepsilon} = \rho_{\infty} + \varepsilon \rho_1 + \mathcal{O}(\varepsilon^2)$

$$\partial_t \rho_{\varepsilon} = \alpha_R \rho_{\infty} \Delta_{\mathbf{x}} \rho_1 + \mu \rho_{\varepsilon} + \mathcal{O}(\varepsilon)$$

$$\downarrow$$

$$0 = \alpha_R \Delta_{\mathbf{x}} \rho_1 + \mu \quad \text{on } \Omega(t).$$

Free-boundary problem (Hele-Shaw)

The limit distribution ρ_{∞} satisfies

$$\left\{ \begin{array}{ll} \partial_t \rho_\infty = \mu \rho_\infty & \text{on } \mathbb{R}^2 / \Omega \\ \rho_\infty = \rho_* & \text{on } \Omega \end{array} \right.$$

where $\Omega(t)$ is governed by a Laplace equation: let ψ solution to:

 $\left\{ \begin{array}{ll} \Delta_{\mathbf{x}}\psi+\mu=0 & \text{on } \Omega\\ \psi=0 & \text{on } \partial\Omega \end{array} \right.$

the velocity of the boundary $\partial \Omega$ is $V_n = -\nabla_{\mathbf{x}} \psi$.

Sébastien Motsch (ASU) Tumor growth: from agent-based model to free-boundary problem October 10 2017 23/ 29

Case 3: non-overlapping

Case 3: non-overlapping

Numerical scheme for Hele-Shaw

1) sample the boundary $\partial \Omega$: $\{\mathbf{p}_i\}_i$

1) sample the boundary $\partial \Omega$: $\{\mathbf{p}_i\}_i$

2) find ψ solving the Elliptic problem:

 $\left\{ \begin{array}{ll} \Delta_{\mathbf{x}}\psi+\mu=0 & \text{on } \Omega\\ \psi=0 & \text{on } \partial\Omega \end{array} \right.$

- 1) sample the boundary $\partial \Omega$: $\{\mathbf{p}_i\}_i$
- 2) find ψ solving the Elliptic problem:

 $\left\{ \begin{array}{ll} \Delta_{\mathbf{x}}\psi+\mu=0 & \text{on } \Omega\\ \psi=0 & \text{on } \partial\Omega \end{array} \right.$

3) estimate $\nabla \psi$ at the points \mathbf{p}_i

- 1) sample the boundary $\partial \Omega$: $\{\mathbf{p}_i\}_i$
- 2) find ψ solving the Elliptic problem:

 $\left\{ \begin{array}{ll} \Delta_{\mathbf{x}}\psi+\mu=0 & \text{on } \Omega\\ \psi=0 & \text{on } \partial\Omega \end{array} \right.$

3) estimate $\nabla \psi$ at the points \mathbf{p}_i

Triangulation:

- \times update grid each Δt
- × accuracy $\nabla \psi$?

- 1) sample the boundary $\partial \Omega$: $\{\mathbf{p}_i\}_i$
- 2) find $u = \psi + g$ solving:

 $\left\{ \begin{array}{ll} \Delta_{\mathbf{x}} u = 0 & \text{on } \Omega \\ u = g & \text{on } \partial \Omega \end{array} \right.$

3) estimate $\nabla \psi$ at the points \mathbf{p}_i

Dynkin's formula:

🗸 grid free

 \checkmark high accuracy ψ near $\partial \Omega$

- 1) sample the boundary $\partial \Omega$: $\{\mathbf{p}_i\}_i$
- 2) find $u = \psi + g$ solving:

 $\left\{ \begin{array}{ll} \Delta_{\mathbf{x}} u = 0 & \text{on } \Omega \\ u = g & \text{on } \partial \Omega \end{array} \right.$

- 3) estimate $\nabla \psi$ at the points \mathbf{p}_i
- 4) update the boundary points:

 $\mathbf{p}_i' = -\nabla \psi(\mathbf{p}_i)$

Dynkin's formula:

 \checkmark grid free

 \checkmark high accuracy ψ near $\partial \Omega$

Introduction	Agent-based model	Partial Differential Equation	Free boundary problem 000000000	Conclusion
Outline				

- Agent-based model
 Microscopic model
 Numerical simulations
- 3 Partial Differential Equation
 - Derivation
 - Stabilizing method
- 4 Free boundary problem
 - Derivation (Hele-Shaw)
 - Numerical simulation

5 Conclusion

Introduction	Agent-based model	Partial Differential Equation	Free boundary problem	Conclusion

Summary

- include threshold ρ_* to match agent-based model/PDE
- derivation free-boundary problem for $\Omega(t)$
- develop a numerical scheme to solve the Hele-Shaw equation

Perspectives

- rigorous proof for the derivation
 Ref.: A. Mellet, B. Perthame, F. Quiros
- develop a faster method for the constraint dynamics:
 ⇒ P. Degond, M. Ferreira
- different behavior for the cells: \Rightarrow *D. Weser*