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Sébastien Motsch (ASU) Tumor growth: from agent-based model to free-boundary problem October 10 2017 2/ 29



Introduction Agent-based model Partial Differential Equation Free boundary problem Conclusion

Outline

1 Introduction

2 Agent-based model
Microscopic model
Numerical simulations

3 Partial Differential Equation
Derivation
Stabilizing method

4 Free boundary problem
Derivation (Hele-Shaw)
Numerical simulation

5 Conclusion
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Brain cancer: Glioblastoma

blood vessels

angiogenesis

Treatment

◦ surgery

◦ radiation therapy

◦ chemotherapy

◦ viral therapy

... but 15− 21 months survival

⇒ tumor recurrence

Another approach
blocking angiogenesis (VEGF)
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Sébastien Motsch (ASU) Tumor growth: from agent-based model to free-boundary problem October 10 2017 5/ 29



Introduction Agent-based model Partial Differential Equation Free boundary problem Conclusion

Experiments in mice (Castro-Lowenstein lab)

0.25h 3h 6h

12h 24h 48h

72h 96h

75μm

120h
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Mathematical Models

Agent-based models (micro)
Each cancer cell is represented: xi ∈ R3

⇒ (large) systems of interacting particles

Ref.: Byrne, Drasdo, Deutsch...

Kinetic model (mesoscopic)

Partial Differential Equation (macro)
Cancer is described as a “mass”: ρ(x, t)

⇒ reaction-diffusion, hybrid multiscale model

Ref.: Kostelich, Swanson, Maini, Oden, Lowengrub...
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Sébastien Motsch (ASU) Tumor growth: from agent-based model to free-boundary problem October 10 2017 6/ 29



Introduction Agent-based model Partial Differential Equation Free boundary problem Conclusion

Mathematical Models

Agent-based models (micro)
Each cancer cell is represented: xi ∈ R3

⇒ (large) systems of interacting particles

Ref.: Byrne, Drasdo, Deutsch...

Kinetic model (mesoscopic)

Partial Differential Equation (macro)
Cancer is described as a “mass”: ρ(x, t)

⇒ reaction-diffusion, hybrid multiscale model

Ref.: Kostelich, Swanson, Maini, Oden, Lowengrub...
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Kinetic model

tumor cell

blood
vessel

Dynamics:{
x′ = c(x)ω

dω =

∇V (x) dt +

σdBt

with V density of blood
vessel and

c(x) =

{
c0 if V (x) > 0
c1 if V (x) = 0

coupled with birth/death
process
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Sébastien Motsch (ASU) Tumor growth: from agent-based model to free-boundary problem October 10 2017 7/ 29



Introduction Agent-based model Partial Differential Equation Free boundary problem Conclusion

Kinetic model
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Numerical and in vivo experiments show that brain-tumor spread
without angiogenesis.
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Agent-based model

Cell represented by a position xi ∈ R2 and
a fix radius R > 0.

cells are pushing each other:

ẋi = −
∑
j 6=i

φij · (xj − xi )

with φij = φ

(∣∣∣xj−xi
2R

∣∣∣2).

Ref: Bertozzi, Carrillo, Delgadino, Fetecau,

Kolokolnikov, Mellet, Slepcev...

cells divide at a rate µ > 0 (Poisson
process):

xi  (xi , xi∗)

R

0 1

normalized distance
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re
n
gh
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r

φ(s) = 1
s − 1

Cell division

Goal: investigate the dynamics at a macroscopic scale.
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Sébastien Motsch (ASU) Tumor growth: from agent-based model to free-boundary problem October 10 2017 10/ 29



Introduction Agent-based model Partial Differential Equation Free boundary problem Conclusion

Agent-based model

Cell represented by a position xi ∈ R2 and
a fix radius R > 0.

cells are pushing each other:
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Numerical experiments

We study three cases:

Case 1: pushing, no cell division µ = 0

⇒ converges to compact config.

Case 2: pushing and cell division

⇒ diffuses and growths

Case 3: strong pushing and cell division
(repulsion φ φ

ε and ε→ 0)

⇒ “free boundary problem”

What equation governs the
motion of the boundary ∂Ω?
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Empirical distribution

Repulsion dynamics: let {xi (t)}i=1..N solution micro.

The empirical distribution ρ(x, t):

ρ(x, t) =
∑
i

δxi (t)(x).

satisfies (weakly) the transport PDE:

∂tρ+∇x · (G [ρ]ρ) = 0,

G [ρ](x) = −
∫

y φ
(∣∣ x−y

2R

∣∣2) (y − x)ρ(y)dy.

Repulsion dynamics + cell division:

∂tρ+∇x · (G [ρ]ρ) = µρ.
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Case 1: no cell-division
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...does not converge to a compactly supported config.

Explanation: Dirac distributions are unstable (weak) solutions.
Ref.: D. Balagué, J. Carrillo, T. Laurent, and G. Raoul

Fix: introduce a density threshold for the interaction
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Stabilizing method

Observation: repulsion occurs only when |xi − xj | ≤ 2R.

Regularization empirical distribution: ϕR = 1
πR21B(0,R)

ρ̃(x, t) = ρ ∗ ϕR

=
1

πR2

N∑
i=1

1B(xi (t),R)(x).

We modify the transport equation:

∂tρ+∇x · (G [ρ]ρ) = µρ,

G [ρ](x) = −
∫

y φ
(∣∣ x−y

2R

∣∣2) (y−x)h(ρ(y))dy

and h(ρ) = ρ− ρ∗ for ρ ≥ ρ∗.
low density overlapping
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Case 1: no cell-division

Using the threshold ρ∗ = 1
πR2 :
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Case 2: with cell-division

Using the threshold ρ∗ = 1
πR2 :
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Question: How about case 3 (non-overlapping with ε→ 0)?
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Outline derivation

Micro. 
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Macro. Convolution
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Sébastien Motsch (ASU) Tumor growth: from agent-based model to free-boundary problem October 10 2017 19/ 29



Introduction Agent-based model Partial Differential Equation Free boundary problem Conclusion

Porous media equation

Asymptotic R � 1

G [ρ](x) = −
∫

y
φ

(∣∣∣∣x−y

2R

∣∣∣∣2
)

(y−x)h(ρ(y))dy

= (2R)3

∫
z
φ(|z|2) z h

(
ρ(x− 2Rz)

)
dz

= − αR h′(ρ(x))∇xρ(x) +O(R5)

with αR constant. Neglecting high order term leads to a porous
media equation:

∂tρ = αR∇x ·
(
h′(ρ(x))ρ∇xρ

)
+ µρ,

or:

∂tρ =
αR

2
∆xH(ρ2) + µρ

with H(s) = (s − ρ2
∗)

+.
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Outline derivation

Micro. 
statistical

description

Macro. Convolution

Macro. Diffusion

radius

+ cell division

Non-overlapping

⁇?
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Free-boundary problem (Hele-Shaw)

Asymptotic φ φ
ε and ε→ 0 (no-overlapping)

∂tρε =
αR

2ε
∆xH(ρ2

ε) + µρε.

Question: is there a limit equation as ε→ 0?

Suppose: ρε
ε→0−→ ρ∞.

O(ε−1): ∆xH(ρ2
∞) = 0 ⇒ ρ∞(x) ≤ ρ∗.

Denote Ω(t) = {ρ∞(x, t) = ρ∗}.
O(ε0): perturbation analysis ρε = ρ∞ + ερ1 +O(ε2)

∂tρε = αRρ∞∆xρ1 + µρε +O(ε)

↓
0 = αR∆xρ1 + µ on Ω(t).

Sébastien Motsch (ASU) Tumor growth: from agent-based model to free-boundary problem October 10 2017 22/ 29



Introduction Agent-based model Partial Differential Equation Free boundary problem Conclusion

Free-boundary problem (Hele-Shaw)

Asymptotic φ φ
ε and ε→ 0 (no-overlapping)

∂tρε =
αR

2ε
∆xH(ρ2

ε) + µρε.

Question: is there a limit equation as ε→ 0?

Suppose: ρε
ε→0−→ ρ∞.

O(ε−1): ∆xH(ρ2
∞) = 0 ⇒ ρ∞(x) ≤ ρ∗.

Denote Ω(t) = {ρ∞(x, t) = ρ∗}.

O(ε0): perturbation analysis ρε = ρ∞ + ερ1 +O(ε2)

∂tρε = αRρ∞∆xρ1 + µρε +O(ε)

↓
0 = αR∆xρ1 + µ on Ω(t).

Sébastien Motsch (ASU) Tumor growth: from agent-based model to free-boundary problem October 10 2017 22/ 29



Introduction Agent-based model Partial Differential Equation Free boundary problem Conclusion

Free-boundary problem (Hele-Shaw)

Asymptotic φ φ
ε and ε→ 0 (no-overlapping)

∂tρε =
αR

2ε
∆xH(ρ2

ε) + µρε.

Question: is there a limit equation as ε→ 0?

Suppose: ρε
ε→0−→ ρ∞.

O(ε−1): ∆xH(ρ2
∞) = 0 ⇒ ρ∞(x) ≤ ρ∗.

Denote Ω(t) = {ρ∞(x, t) = ρ∗}.
O(ε0): perturbation analysis ρε = ρ∞ + ερ1 +O(ε2)

∂tρε = αRρ∞∆xρ1 + µρε +O(ε)

↓
0 = αR∆xρ1 + µ on Ω(t).
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Free-boundary problem (Hele-Shaw)

The limit distribution ρ∞ satisfies{
∂tρ∞ = µρ∞ on R2/Ω
ρ∞ = ρ∗ on Ω

where Ω(t) is governed by a Laplace equation: let ψ solution to:{
∆xψ + µ = 0 on Ω

ψ = 0 on ∂Ω

the velocity of the boundary ∂Ω is Vn = −∇xψ.
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Outline derivation
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Case 3: non-overlapping
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Case 3: non-overlapping
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Numerical scheme for Hele-Shaw

1) sample the boundary ∂Ω: {pi}i
2) find ψ solving the Elliptic problem:{

∆xψ + µ = 0 on Ω
ψ = 0 on ∂Ω

3) estimate ∇ψ at the points pi

4) update the boundary points:

p′i = −∇ψ(pi )
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Numerical scheme for Hele-Shaw

1) sample the boundary ∂Ω: {pi}i
2) find ψ solving the Elliptic problem:{

∆xψ + µ = 0 on Ω
ψ = 0 on ∂Ω

3) estimate ∇ψ at the points pi

4) update the boundary points:

p′i = −∇ψ(pi )

Triangulation:

× update grid each ∆t

× accuracy ∇ψ?
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Numerical scheme for Hele-Shaw

1) sample the boundary ∂Ω: {pi}i
2) find u = ψ + g solving:{

∆xu = 0 on Ω
u = g on ∂Ω

3) estimate ∇ψ at the points pi

4) update the boundary points:

p′i = −∇ψ(pi )

Dynkin’s formula:

X grid free

X high accuracy ψ near ∂Ω
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Summary

include threshold ρ∗ to match agent-based model/PDE

derivation free-boundary problem for Ω(t)

develop a numerical scheme to solve the Hele-Shaw equation

Perspectives

rigorous proof for the derivation
Ref.: A. Mellet, B. Perthame, F. Quiros

develop a faster method for the constraint dynamics:
⇒ P. Degond, M. Ferreira

different behavior for the cells: ⇒ D. Weser
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