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Euler equations in 2D

The (incompressible) Euler equations are

u+(Uu-Viu+Vp=20
V-u=0

on D x (0, T) for some domain D C R? and time T < oo, with
u-n=0

on 9D x (0, T) (no-flow boundary condition) and given u(-, 0).

In 2D, their vorticity form is the active scalar equation
wt+U-Vw=0
with vorticity w := V x u = —(u1)x, + (U2)x, € R and
u=vta'w

Here A is the Dirichlet Laplacian (no-flow boundary condition).



Growth of solutions to the 2D Euler equations

Solutions of any transport equation
wir+Uu-Vw=0

are uniformly bounded, so blow-up might only be possible in
the derivatives of w (loss of regularity).

@ Wolibner (1933) and Hélder (1933) showed that solutions
remain regular, with the double-exponential bound

IV (-, bl < Ce®”

@ Examples with unbounded (up to super-linear) growth by
Yudovich (1974), Nadirashvili (1991), Denissov (2009).

o Kiselev-Sverak (2014) proved existence of solutions on a
disc with double-exponential growth (on the boundary).

@ Z.(2015) proved existence of at least exponential growth
for w(-,0) € CT1=(T?) N C>(T? \ {0}) (hence 0D = 0).
Double-exponential growth on R? and T? is still open.

@ Kiselev-Z. (2015) showed finite time blow-up on a domain
with (two) singular points.



SQG and modified SQG equations

Double-exponential (i.e., fast) growth for the 2D Euler equations
suggests that they could be critical in the sense that finite time
blow-up could happen for more singular models. Particularly
interesting is the surface quasi-geostrophic (SQG) equation

wt+U-Vw=0
u=-vt(=n)y"12y

It is used in atmospheric science models and was first
rigorously studied by Constantin-Majda-Tabak (1994).

2D Euler and SQG are extremal members of the natural family
wt+U-Vw=0
U= _VJ_(_A)7‘|+aw
of modified SQG (m-SQG) equations, with parameter « € [0, %].

The regularity/blow-up question remains open for all a > 0.



Patch solutions

| will talk about the corresponding patch problem (Bertozzi,
Chemin, Constantin, Cérdoba, Denissov, Depauw, Gancedo,
Rodrigo, Yudovich,...) on the half-plane D = R x R*. Here

N
w(t 1) =Y Onxa,n
n=1

with 6, € R\ {0}, and each patch Q,(t) C D is a bounded open
set advected by u = —V(—A)~"*%y (see later). For the
half-plane D, this is (with y = (y1, —y2) and some ¢, > 0)

“(X’t):‘Ca./;< x—y)r  x=y" )w(y,t)dy

x—yPrE T x—

We require patch-like initial data with some regularity:
@ Patches do not touch each other or themselves:
o Q,(0)NQm(0)=0forn#m
e each 0Q,(0) is a simple closed curve
@ All 9Q,(0) have certain prescribed regularity.

Blow-up happens if one of these fails at some time ¢ > 0.




Global regularity of C' Euler patches on R x R+

Theorem (Kiselev-Ryzhik-Yao-Z., 2015)

Leta =0 and~ € (0,1]. Then for each C' patch-like initial
data w(-,0), there exists a unique global C'" patch solution w.

@ The same whole-plane result for a single patch was proved
by Chemin (1993). Our proof is motivated by an alternative
approach by Bertozzi-Constantin (1993).

@ Specifically, each patch boundary is the zero-level set of a
function which is advected by u. The rates of change of
their C' norms, of their gradients on their zero-level sets,
and of the distances of their zero-level sets are controlled.

@ Previously Depauw (1999) proved local regularity on the
half-plane (and global if patches do not touch oD initially).

@ A result of Dutrifoy (2003) implies global existence in C'-$
for some s < 4.



Blow-up of H® patches on R x R* for small a > 0

Theorem (Kiselev-Yao-Z., 2015)

Leta € (0, 7). Then for each H® patch-like initial data w(-,0),
there exists a unique local H® patch solution w.

Moreover, if the maximal time T, of existence of w is finite, then
at T, either two patches touch, or a patch boundary touches
itself, or a patch boundary loses H® regularity (i.e., blow-up).

Local existence on the whole plane was proved for a € (0, %) by
Gancedo (2008). We can prove uniqueness and the last claim.

Theorem (Kiselev-Ryzhik-Yao-Z., 2015)

Leta € (0, 5;). Then there are H® patch-like initial data w(-, 0)
for which the solution w blows up in finite time (i.e., T,, < o).

To the best of our knowledge, this is the first rigorous result
proving finite time blow-up in this type of fluid dynamics models.



Definition of patch solutions

In the Euler case one usually requires that ®; : D — D given by
GOl = u(@x),1)  and  o(x) = x

preserves each patch: ©:(Q,(0)) = Qu(t) foreach t € (0, T).
However, the map $; need not be uniquely defined for @ > 0.

Definition
A patch-like (i.e., no touches of patches at any t € [0, T) plus
continuity of each 0Q2,(t) in time w.r.t Hausdorff distance)

N
w(-t) = Z Onxan (1)
n=1

is a patch solution to m-SQG on [0, T) if for each t, n we have

by (09t + ), XD [90(0)])
lim ' =0
h—0 h

with dy Hausdorff distance and X//[A] = {x + hu(x) | x € A}.




Properties of patch solutions

Denote Q(t) = |, Qn(t). The definition shows that:
@ 0Q(t) is moving with velocity u(x, t) at x € 99(t).
@ Patch solutions to m-SQG are also weak solutions

(and weak solutions with C' boundaries which move with
some continuous velocity are patch solutions).

@ In the Euler case it is equivalent to the definition via ¢.

@ ltis also essentially equivalent to the definition via ¢ in the
case of H® patch solutions to m-SQG with a < % [KYZ].

@ In fact, ®4(x) is uniquely defined for x € D\ 9Q(0), and
O Qp(0) - Qp(f)  and o [5\@} = [E\W)}.

Also, these maps are measure preserving bijections and
we have ¢4(0Q2,(0)) = 9Q,(t) in an appropriate sense.

e This uses that the normal component of u (w.r.t. 9Q(t)) is
Lipschitz in the normal direction if o < 1.



Local H® regularity: The contour equation

For simplicity assume a single patch. Parametrize 0Q(t) by
z(-,t) € H3(T). Then for any x = z(¢, t) € 9Q(t) we obtain

_afz §— 1, )
,Z/Trz (€0 -2 .0 "

with

Z'(& ) =2(¢t)  and  ZP(& 1) = 2(¢ 1)
Next add a multiple of the tangent vector 0:z(¢, t) so that the
integrand becomes more regular, and get the contour equation

852 ‘Sa 8§Z‘(§ m, t)
nz(& ) Z/T 2(e.0) — 2i(e —n.0E O

Gancedo proves local regularity for the contour equation in R?
(which has only i = 1, and also a single patch) for any a < %



Local H? regularity: Existence of a patch solution

We prove local regularity on D = R x R* for a < 57, via
—llz(, Bl < C)bll2(, I°

where || - || = ||z(+, t)||ys + inverse Lipschitz norm of z(-, t)

(+ distance of patches when N > 2). Quite a bit more involved...
@ The method does not seem to work for H6lder norms.

Limitation on « is essentially due to insufficient bounds on the

tangential velocity. Where a patch departs x;-axis, tangential
velocity generated by its reflection might deform it excessively.

@ Most of the proof works for a < .

This local contour solution z then yields a patch solution w.



Local H® regularity: Independence of parametrization

Proving unigueness via some version of Gronwall difficult:

lu(x) — 0(x)| < dy (09, Q)1 2«

@ Gronwall does apply to ||z — Z||,;2 but z, Z might not exist.

First step towards uniqueness is showing independence of the
“contour” patch from parametrization of 9Q(0).

@ Regularize:

ua(X,l‘)Z—Ca/D<( G-y ) )w(y,t)dy

|X_y‘2_|_€2)1+04 (‘X_}_/|2+€2)1+a

@ Show uniqueness of patch solution w. (e.g., via Gronwall).
Then any contour solutions z., z. which parametrize the
same initial patch must yield the same w..

@ Show z. — z if they have the same initial parametrization.
Similarly z. — Z, hence z, Z must yield the same w.



Local H® regularity: Unigueness of the patch solution

Let w be any patch solution and wS the “contour” patch solution
with w3(-, 8) = w(+, 8) (w® is unique). Forsmall T > 0and J € N:

\J

T 89 = %T s;g=T t
Successive estimation of the rates of change of dy (9%, Q)

and ||z — 2|2 and telescoping give |Q(T)AQY(T)| < Ji-1/2a
Then take J — oo and get Q = Q% on [0, T].



Finite time blow-up in H3: Initial data and symmetry

Our initial data will be made of two patches and odd in x;.

T2
=0

w(+,0) = Xa(0) — X&(0)

oD
Z1

Then local uniqueness shows that before blow-up we have
w(-, 1) = Xa) — X

with Q(t) € Dt = (RT)?2 and y = (—y1, y2). Then (let ¢, = 1)

u(x, t) = —/;Z(t) H(x. y)dy

H(x, y) = x=-y)*  x=y  x=yt (x+y)
V)T I Typra T x—yjprea [x— pptea x4 y|2tea



Finite time blow-up in H3: A barrier argument

Goal: show that if Q(0) 2 [¢,3] x [0,3] and € > 0 is small, then
Q) DK() ={X(t) <x1 <2} N{0 < X2 < X1}

until blow-up, where X(0) = ¢ and X'(t) = — 5= X ()72~
This gives blow-up because X(50s2%) =

o T

0.

€ 2 T X(t) 0a 2 x

If t < 502 is the first time with D+ \ Q(t) N K(t) # 0, then by
Ul < Crllw(-, 0) || + Coflw (-, 0)||1< C

the touch can only be on /; U k (since Q(t) 2 Q, by e small).
Also uses that the patch cannot separate from the x;-axis...




Finite time blow-up in H3: Estimates on the flow

We have uy(x, t) fQ(t Hi(x,y)dy, where

Hy(x,y) = Y2 — X2 Yo — X2 Yat+Xo Yot Xo
V)= x—yjzrea |x—jpree x—yprea x4+ y[tea

Then |x — y| < |x + y| on Q(t) C D" gives

Yo —Xo Yo —Xo
u Xat S _/ ( - ~ > d
1(X; 1) ) X — y|2t2e  |x — p[ptee y

G(x.y)

From K(t) C Q(t) we have for x € K(t)n{ x; <1}

U (x, 1) < / G(x. y)|dy - / G(x, y)dy
Rx(0,x2) A(x)

because sgn(G(x, ¥)) = sgn(y> — X2).

Small « is crucial for A(x) to compensate limited control near x.
Blow-up may be easier to prove in slightly super-critical models.



Finite time blow-up in H3: Conclusion of the proof

A computation and cancellations yield for xo < xq < 6, (> 0)

1 1
GX, d < < _2—a> 17201
/RX(O’XZ)\ < (o 1

1 1
— G(x,y)dy < — — < > x] 2

and we get for small « and x € /; U b (using x; > X(t))

1 1-2a 1 1-2a !
< - _— =
U1(X, f) 50q X1 < 100a X(t) X(t)

So touch cannot happen on /.

2
Similarly, for small « and x € b

us(x, t) > X, 2> 0

~ 50

so touch cannot happen on k.




