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Motivation: dynamics of electrons in crystals

> Idea: Electron in a crystal moving under the influence of an
applied electric field can be modeled as a wavepacket
(localized, propagating) solution of Schrodinger’s equation

» Seek an effective (simplified) description of the dynamics
(PDE — ODEs)

» Assumption: Potential slowly-varying relative to lattice
constant; treat wavepacket as localized with respect to
variation of potential, spread over a few lattice periods

— F— Spread of wave packet

—i — Lattice constant

1 Wavelength of applied field

!Solid State Physics, Ashcroft and Mermin (1976).



First: wavepacket dynamics under the influence of a
slowly-varying potential without periodic background

Model: )
10¢)° = —§Ax1/1E + W(ex),

assume € < 1.

Re-scale:
X' =ex,t' = et, (X, t') == Y(x, t)

dropping primes we obtain equivalent form:

i€dp)© = —%Axw + W(x)e®



WKB method

Model: )
iD= —e2§Ax¢€ + W(x)y©.

Make the WKB ansatz:
P(x, t) = et/ (x, 1)
Expanding a“ in powers of the small parameter:
a“(x,t) = a% (x, t) + eal (x,t) + ...

Construct an approximate solution by collecting terms
x €2, €l... = equations for ¢, &/



Analysis of terms oc €°

Equating terms in the expansion o €
Oep+ 5 (Vx¢>) W(x)| a%(x, t) =0 (1)
For a non-trivial solution a° # 0 == equation for phase ¢(x, t):

Oed+ 5 (Vx¢) W(x) =0

Known as the eikonal, Hamilton-Jacobi type.



Solution of eikonal equation
Fully nonlinear equation for ¢(x, t):
O+ 5 (Vx¢) W(x) =0

Solve by method of characteristics:

q(t) = p(t), p(t) = =V4W(q(1))
q(0) = x, p(0) = Vxo(x,0)

1 equations of motion of Hamiltonian 1p® + W(q)
t]' /\2 / /
ola(t).t) = | 5p(E)" = Wia(t))dt

= ¢(q(t), t) is the action along q(t). Solution ¢(x, t) explicit
as long as flow map x — q(t; x) invertible, if not: caustic.



Analysis of terms o< ¢

Equating terms oc ¢ = transport equation for a°(x, t):
1
0ra® + V¢ - Vxa® + 5(viqs)ao =0.

Again, solution explicit while x — q(t; x) invertible (no caustics):

1
- \/Jacobian(x — q(t; x))

2’(q(t; x), t) 2(x,0).  (3)

= initial data transported along solutions of the characteristic
equations generated by ‘H = %pz + W(q).



Rigorous error bound

1
i€dnp" = =2 Dy + W(x)y

So far (formal analysis): 1(x, t) = e/®(:t)/<30(x, t) + O(e)
#, a° explicit (solve ODEs) up to time of first caustic T¢ > 0.

How to make O(e) rigorous?

Define n¢(x, t) := (x, t) — e’?(t)/<a0(x t), assume
n(x,0) = 0. Then 7° satisfies:

1
€0 = _EGZAXWE + W(x)n® + rc, (4)
Let T < Tc. Standard L? estimate for solutions of (4):

Il < & [ s )

= supepo, 1 I )l 2 < Gié?,
L? estimate (5) = supeepo, 71 17°( )l 12 < Cae.

Forms of ¢, a°



Motivation: dynamics of electrons in crystals

Seek generalization of WKB theory (geometric optics):
wavelength < scale of medium features

— slowly varying periodic media:
wavelength = scale of periodicity of medium
& scale of variation of periodic structure

— — Spread of wave packet
=i — Laltice constant

2 Wavelength of applied field

?Solid State Physics, Ashcroft and Mermin (1976).



Outline of talk

» Generalization of WKB theory to slowly-varying periodic
media by a multi-scale WKB ansatz
» Extensions of this description:

» First-order corrections to dynamics
» Dynamics at band crossings

Key tool: multi-scale semiclassical wavepacket ansatz
» Ongoing work/future directions



Model: Schrodinger's equation

Non-dimensionalized Schrodinger equation:
1
e = == Bt + U(x, ex)y*

U periodic with respect to a d-dimensional lattice A in its first
argument:
Vv e U(x+v,X)=U(x,X)

In this talk:
1
00 = =5 D + V() + W(ex)y"
Vv el V(x+v)=V(x)

recover standard WKB setting when V = 0.



Recap: spectral theory of periodic operators

» Recall the spectral theory of the operator with periodic
potential (e = 0 case):

1
hi=—30:+V(2)

YvelV(z+v)=V(z)
» Bloch’'s theorem: bounded eigenfunctions of h satisfy the
p-quasi-periodic boundary condition:
ho(z; p) = E(p)®(z; p)
Vv €N\, d(z + v) = ePVd(z; p)

symmetry of BC — restrict p to a primitive cell of the
reciprocal lattice: first Brillouin zone B

» Fixed quasi-momentum p, self-adjoint elliptic eigenvalue
problem = discrete real spectrum:

Ei(p) < BEx(p) < ... < Ey(p) < ...



Spectral theory of periodic operators

» Maps p € B — E,(p) € R are the Bloch band dispersion
surfaces

» The spectrum of h = —3A, + V(z) is then the union of real
intervals swept out by the Bloch band dispersion functions

En(p)

3 0 ® 20

3Fefferman, Lee-Thorp, Weinstein; PNAS 2014.



Spectral theory of periodic operators

» The set of Bloch waves (eigenfunctions)
{®,(z;p) : n €N, p € B} is complete in L?(RY)

» Can decompose ®,(z; p) = ePZx,(z; p) where x,(z; p)
satisfies another self-adjoint elliptic eigenvalue problem with
periodic boundary conditions:

h(p)x(z; p) = E(p)x(z; P)

Vv e A x(z+v)=x(zp) (6)
h(p) = 2 (P~ iV2)" + V(2)

(6) is the reduced Bloch eigenvalue problem



Re-scaling

Model: 1
i@ﬂ/}e = —EAX¢E + \/(X)'@bE + W(EX)’(/)G

Again, re-scale:
x' = €X, t' = et, wd(xlv t,) = @Z’E(X, t)

Dropping the primes gives the equivalent formulation:

1
i)t = —e2§Ax¢€ +V (f) Y+ W(x)y*



Multiscale WKB method

et =~ 2B+ V (2) w4 W)
Make the multiscale WKB ansatz:
Pe(x,t) = ele(xt)/e fe (z, x, t)|z:§
Expanding f€ in powers of the small parameter:
f(z,x,t) =0 (z,x,t) + ef* (z,x,t) + ...
Impose that f/ have the periodicity of the lattice A in z:
Y eNF(z+v,x, t)=Ff(zx,t)

Equating terms of like order, we obtain equations for ¢, f/



Analysis of terms oc €°

Equating terms in the expansion o< €® obtain self-adjoint elliptic
eigenvalue problem in z for fO which depends on x, t as
parameters:

%(chb LIV, 4 V(2)| Oz x, £) = [—0e6 — W(x)] £z, x, )

Vv e Aoz + v, x,t) =0z, x,t).

(7)
Let E, be an isolated Bloch band (non-degenerate eigenvalue):
Vp € B, E,-1(p) < Ex(p) < Ent1(p)
Then we can solve (7) by taking:

fo(za X7 t) = aO(X7 t)Xn(zv VX¢)
01+ En(Vxd) + W(x) =0



Eikonal equation

Again, Eikonal equation for ¢(x, t):
8t¢ + En(vx¢) + W(X) =0
Fully nonlinear, solve by method of characteristics:

q(t) = van(p(t))7p(t) - _vq W(q(t))
q(0) = x, p(0) = Vxo(x,0)

1 equations of motion of Hamiltonian E,(p) + W(q)
o(a(e).0) = [ 4(¢)- p(e) ~ Elp(e) - Wla(e)) ¢

= ¢(q(t), t) is the action along q(t). Again, solution ¢(x, t)
explicit as long as x — q(t; x) invertible, if not: caustics.



First order analysis

Equating terms proportional to € + imposing periodic BCs obtain
inhomogeneous self-adjoint elliptic equation in z for f1:

1
590 V7 4 V(@) - E(T0)] Pzx0)
1
= [i@t +i(Vxp—iVz) - Vx+ i2V,2(qzb} fO(z,x, t)
Fredholm alternative = solvability equivalent to vanishing

projection of RHS onto null-space of LHS operator — transport
equation for a°:

01’ 4+ VpEn(Vx) - Vi + %vx -V pEn(Vx9)
+iVxW(x) - (xn(:; Vx®)|iVpxn(- Vx¢)>L2(Rd/A) =0

= initial conditions are transported along solutions of the
characteristic equations generated by H = E,(p) + W(q)



Outline of talk

» Generalization of WKB theory to slowly-varying periodic
media by a multi-scale WKB ansatz
» Extensions of this description:

» First-order corrections to dynamics (x €)
» Dynamics at band crossings (eigenvalue degeneracies)

Key tool: multi-scale semiclassical wavepacket ansatz

> First-order corrections = spin Hall effect of light:

“Bliokh, Niv, Kleiner, Hasman; Nature Photonics 2008.



Theorem (Carles-Sparber 2008, Hagedorn 1980, Heller 1976)

Let (g(t),p(t)) denote a classical trajectory generated by the

Bloch band Hamiltonian H = E,(p) + W(q) such that the band
E, is isolated at each p(t):

Vet >0, Ep1(p(t)) < En(p(t)) < Ensa(p(t))-

Then there exists a solution 1¢(x, t) of the PDE:

i) = DA+ V ( ) P+ W(x)y©

which is asymptotic as € |, 0 to a ‘semiclassical wavepacket’ up to
‘Ehrenfest time' t ~ In1/e:

P(x,t) =

— /4 oiS(0)/c g—ip()-a(t) /e, (X = A(2) eP(t)x/ey (5'P(t)>
e/ ’ ¢

4 OLE(Rd)(el/zeCt)'



Precise interpretation of functions (q(t), p(t))

Writing the solution in terms of the multiscale variables:

1/)€(x7 t) = we(yaz’ t)‘yfqu(t) o + OLg(Rd)(€1/2)

_761/2 ,Z=

q(t), p(t) the center of mass and average quasi-momentum of the
wavepacket, to leading order in €'/2:

Qe(t) = /Rdxhze(yv z, t)’2_x—q(t) x dX

a2 %=

= a()+ 2 | ylaly. )P dy + 0(0)

P = [ Tz 08Tz, ax

X
Z==
Y="a7m %%

= p(t)+ & | Sy 0(-i9,)aly. 1)y + O(0)




Theorem (Watson-Weinstein-Lu 2016)
1) The observables Q°(t) and P(t), the center of mass and

average quasi-momentum, satisfy the equations of motion:
Q°(t) = Vpe E,(P(t)) + eC1[a](2)
— P (t) x Fa(P(t)) + O(¥/?)
P(t) = =V W(Q (1)) + eCala](t) + O(*/?)

where F ,(P€) is the Berry curvature of the Bloch band.

C1[a%|(t), C2[a%](t) describe coupling to the wavepacket envelope
a“(y, t), which satisfies:

; € 1 € € ]‘ € €
i0pa" = =5 Vy - D3 E,(PS(t))Vya + §y~D26W(Q (t))ya



Theorem (Watson-Weinstein-Lu 2016 continued)

2) After an appropriate change of variables, the coupled dynamics
of Q(t), P(t), a*(y, t) can be derived from the e-dependent
Hamiltonian:

HE 1= Ey(PY) + W(Q) + Vg W(Q) - An(PY)

1 — 1 —

+e- / Vya© - D3 Ep(P)Vyatdy + e= / ya© - D% W(Q)ya“ dy
2 Rd 2 Rd

where A,(P¢) is the n-th band Berry connection.

QE = VP5H€ . OH
- ¢ Iatae - =
P = _VoHe 5a°



Gaussian reduction of envelope equation

The equation satisfied by the wavepacket envelope:
. 1 1
i0pa" = =5 Vy - D2 E,(P(t))Vya© + A D& W(Q(t))ya"

has family of exact solutions which form a basis
e.g. time-dependent Gaussians®:

a‘(y,t) = [detAel(t)]1/2 exp <—;y : Be(t)AE(t)_IY)

A(t) = iD3E,(P€)B(t), B (t) = iD5HW(Q)A(t)  (9)

appropriate initial data = (Q°, P, a) system reduces to ODEs

®Hagedorn; Annals of Physics 1998.



Numerical simulation: ¢ = 0, decoupled system

Study coupling of observables to

wave-field:

>

v

v

v

One-dimensional: d =1
Uniform background:
V($) =0

Gaussian envelope

Applied potential
W(Q) =3Q>+3Q°

w(a)

15

Phase space plot: P against Q

a
Qagainst time




Numerical simulation: € # 0,

Simulation of full coupled
system:

» Wave-field coupling has
destabilizing effect on
periodic orbits

» Wavepacket may escape
potential well to Q¢ = —o0

cou pled system

Phase space plot: P against Q

2

15
)

Qagainst time

120



Dynamics at band crossings

» Would like to relax the ‘isolated band’' assumption:

vt >0, En1(p(t)) < En(p(t)) < Enta(p(t))

» Crossings usually associated with symmetries

2 2
0 H 2 0 i 2 k? -4 -4 kY

» At crossings Bloch band functions: p — (En(p), xn(2; p)) not
smooth in general, e.g. conical degeneracies (Dirac points)
— restricttod =1



Theorem (Watson-Weinstein 2016)
p* denote a crossing point ind =1

E.(p), E_(p) denote smooth band functions at p*

(p+(t), g+ (t)) denote a classical trajectory of the +-band
Hamiltonian E(p) + W(q) s.t. p+(0) = p*, p+(0) #0

Then the solution of the PDE on a small interval t € [T, T],
with initial data at t = — T a wavepacket associated with the
+-band localized about (p+(—T),q+(—T)), remains to leading
order a wavepacket associated with the +-band localized about the
classical trajectory (p+(t),q+(t)) Vt € [T, T].



Theorem (Watson-Weinstein 2016 ctd.)

At the crossing time t = 0, a wavepacket associated with E_ is
excited whose centers (q_(t), p—(t)) follow the classical trajectory
of the —-band Hamiltonian E_(p) + W(q) with initial data:

q- q
p-(0) = p+(0) = p".

This correction is of order €'/2 (in L2(R)) and is explicitly
characterized.



Remarks on band crossing result

» Proof is by matched asymptotic expansion: error in
single-band approximation blows up as t 1 0, resolution by
more general ansatz which includes contributions from the
band E_. — excited wave

> Since OpE;(p*) = —0pE_(p*), the wavepacket ‘excited’ at
the crossing has opposite group velocity. Call this a ‘reflected
wave'

» Our result can be seen as an analog of those obtained by
Hagedorn® in the context of Born-Oppenheimer approximation
of molecular dynamics

®Molecular propagation through electron energy level crossings,
Hagedorn G., Memoirs of the American Mathematical Society (1994).



Recap of talk

» Generalization of WKB theory to slowly-varying periodic
media by a multi-scale WKB ansatz
» Extensions of this description:

» First-order corrections to dynamics
» Dynamics at band crossings

Key tool: multi-scale semiclassical wavepacket ansatz

» Ongoing work/future directions




Ongoing work /future directions

» Schrodinger — Maxwell: spin Hall effect of light:

<)

A

A

» Conical band crossings:

e.g. anisotropic Maxwell's equations, honeycomb lattice
potentials



