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Outline

I We study the dynamics of waves governed by Schrödinger’s
equation and Maxwell’s equations in spatially
non-homogeneous media.

I Assume medium variation occurs over two distinct length
scales: short ‘fast’ scale over which variation is periodic and
long ‘slow’ scale over which variation is smooth

=⇒ Call this a locally periodic medium.

I Model of electron propagation in crystalline media with
defects and of light propagation through photonic variants.
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Outline

I Focus: effects of eigenvalue degeneracies on wave dynamics.
2× 2 matrix example:

H(p1, p2) :=

(
0 p1 + p2i

p1 − p2i 0

)
, E±(p1, p2) = ±

√
p21 + p22 .

Eigenvalues degenerate at p1 = p2 = 0.

I In periodic media wave dynamics controlled by Bloch band
dispersion surfaces. Symmetries of periodic structure
=⇒ Bloch band degeneracies

I Example: honeycomb lattice symmetry of graphene, gives rise
to ‘Dirac points’ in band structure, transport properties:



Outline

I Focus: effects of eigenvalue degeneracies on wave dynamics.
2× 2 matrix example:

H(p1, p2) :=

(
0 p1 + p2i

p1 − p2i 0

)
, E±(p1, p2) = ±

√
p21 + p22 .

Eigenvalues degenerate at p1 = p2 = 0.

I In periodic media wave dynamics controlled by Bloch band
dispersion surfaces. Symmetries of periodic structure
=⇒ Bloch band degeneracies

I Example: honeycomb lattice symmetry of graphene, gives rise
to ‘Dirac points’ in band structure, transport properties:



Outline

I Focus: effects of eigenvalue degeneracies on wave dynamics.
2× 2 matrix example:

H(p1, p2) :=

(
0 p1 + p2i

p1 − p2i 0

)
, E±(p1, p2) = ±

√
p21 + p22 .

Eigenvalues degenerate at p1 = p2 = 0.

I In periodic media wave dynamics controlled by Bloch band
dispersion surfaces. Symmetries of periodic structure
=⇒ Bloch band degeneracies

I Example: honeycomb lattice symmetry of graphene, gives rise
to ‘Dirac points’ in band structure, transport properties:



Outline

After introducing the model PDEs we study, I will describe in
detail the following results:

1. A new Hamiltonian system controlling the dynamics of
wavepackets in locally periodic media which are spectrally
localized away from Bloch band degeneracies.

Rich dynamics! Anomalous velocity due to Berry curvature of
the Bloch band and (new) ‘particle-field’ coupling.

2. The dynamics of a wavepacket incident on a Bloch band
degeneracy in one dimension.

Consistency with ‘Landau-Zener’ theory for the probability of
an inter-band transition.

I will then discuss future directions of this work.
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Models
I Schrödinger’s equation with a real ‘two-scale’ (assume ε� 1)

potential U:

i∂tψ
ε = −1

2
∆xψ

ε + U(x , εx)ψε

x ∈ Rd , d positive integer.

I Assume U is locally periodic in the sense that for each fixed
X ∈ Rd , U(x ,X ) is periodic in x :

∀v ∈ Λ,U(x + v ,X ) = U(x ,X )

where Λ is a d-dimensional lattice.
I Example (d = 1): U(x , εx) = cos(4πx) + tanh(εx) cos(2πx)
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Models

I Maxwell’s equations in dimension d = 3:

∂tDδ(x , t) = ∇×Hδ(x , t) ∇ ·Dδ(x , t) = 0

∂tBδ(x , t) = −∇× E δ(x , t) ∇ · Bδ(x , t) = 0,

with a ‘two-scale’ (assume δ � 1) matrix of constitutive
relations:(

Dδ(x , t)

Bδ(x , t)

)
=

(
ε (x , δx) χ† (x , δx)
χ (x , δx) µ (x , δx)

)(
E δ(x , t)

Hδ(x , t)

)
.

I Locally periodic assumption:

For fixed X ∈ R3, ε(x ,X ), χ(x ,X ), µ(x ,X ) periodic in x .

I Assume matrix to be positive-definite and Hermitian for all x .

I Vector equations =⇒ degeneracies when periodicity trivial!
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Wavepacket dynamics in locally periodic structures

I Simplest case. Schrödinger’s equation with a ‘two-scale’
(assume ε� 1) potential which may be written as a sum:

i∂tψ
ε = −1

2
∆xψ

ε + V (x)ψε + W (εx)ψε

∀v ∈ Λ,V (x + v) = V (x).

I Model of an electron in a crystal under the influence of an
external electric field generated by W

I Example (d = 1): U(x , εx) = 1 + cos(4πx)− cos(εx)2
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I Re-scale: x ′ := εx , t ′ := εt, ψε′(x ′, t ′) := ψε(x , t).

iε∂tψ
ε = −ε2 1

2
∆xψ

ε + V
(x
ε

)
ψε + W (x)ψε

∀v ∈ Λ,V (z + v) = V (z).
(?)

I Seek wavepacket solutions, wavelength ∝ ε, width ∝
√
ε

=⇒ extended with respect to scale of periodic variation
(∝ ε), localized with respect to slow modulation (∝ 1):
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I Limit ε ↓ 0 a ‘non-standard’ geometric optics/WKB limit:

ε :=
wavelength ≈ scale of variation of V (periodic)

scale of variation of W (perturbation)
� 1.

NB multi-scale WKB ansatz breaks down near degeneracies.
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Wavepacket dynamics without periodicity
I ‘Free’ case V = W = 0:

iε∂tψ
ε = −1

2
ε2∆xψ

ε (F)

I Has (appropriately scaled) stationary, spreading Gaussian
exact solutions. Define:

G(y , t) :=
1

(1 + it)d/2
exp

(
−|y |2

2(1 + it)

)
Then: ψε(x , t) = ε−d/4G

(
x
ε1/2

, t
)

satisfies (F).

Pre-factor ensures L2 norm preserved in the limit ε ↓ 0.
I Galilean invariance of (F) =⇒ travelling Gaussian solutions

with center at q(t) := q0 + p0t:

ψε(x , t) = ε−d/4e iS(t)/εe ip0·(x−q(t))/εG
(

x − q(t)

ε1/2
, t

)
for any (q0,p0) ∈ Rd × Rd . S(t) := 1

2 |p0|
2t.
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Gaussian exact solution of free Schrödinger, d = 1:

ψε(x , t) = ε−d/4e iS(t)/εe ip(t)(x−q(t))/εG
(
x − q(t)

ε1/2
, t

)
.

q(t), p(t) satisfy Hamiltonian dynamics with H = p2:
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Theorem (Hagedorn 1980, Heller 1976)

For any trajectory (q(t),p(t)) generated by the classical

Hamiltonian H := |p|2
2 + W (q), there exists a solution of the PDE:

iε∂tψ
ε = −ε2 1

2
∆xψ

ε + W (x)ψε

asymptotic as ε ↓ 0 to a semiclassical wavepacket up to
‘Ehrenfest time’ t ∼ ln 1/ε:

ψε(x , t) = ε−d/4e iS(t)/εe ip(t)·(x−q(t))/εa

(
x − q(t)

ε1/2
, t

)
+OL2x (Rd )(ε

1/2eCt).

Envelope satisfies Schrödinger’s equation with harmonic oscillator
Hamiltonian driven by q(t):

i∂ta = −1

2
∆ya +

1

2
y · D2

yW (q(t))ya.

When W quadratic, solution exact! Error ∝ ‖∂3qW (q)‖L∞ . Can

improve error bound: OL2x (Rd )(ε
n/2eCt), any positive integer n.
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Hamiltonian H := |p|2
2 + W (q), there exists a solution of the PDE:

iε∂tψ
ε = −ε2 1

2
∆xψ

ε + W (x)ψε

asymptotic as ε ↓ 0 to a semiclassical wavepacket up to
‘Ehrenfest time’ t ∼ ln 1/ε:

ψε(x , t) = ε−d/4e iS(t)/εe ip(t)·(x−q(t))/εa

(
x − q(t)

ε1/2
, t

)
+OL2x (Rd )(ε

1/2eCt).

Envelope satisfies Schrödinger’s equation with harmonic oscillator
Hamiltonian driven by q(t):

i∂ta = −1

2
∆ya +

1

2
y · D2

yW (q(t))ya.

When W quadratic, solution exact! Error ∝ ‖∂3qW (q)‖L∞ . Can

improve error bound: OL2x (Rd )(ε
n/2eCt), any positive integer n.



Gaussian exact solution of Schrödinger’s equation with harmonic
oscillator potential W ∝ q2, d = 1:

ψε(x , t) = ε−d/4e iS(t)/εe ip(t)(x−q(t))/εG
(
x − q(t)

ε1/2
, t

)
,

q(t), p(t) satisfy Hamiltonian dynamics: H = p2 + q2.
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Theorem =⇒ Schrödinger’s equation with an anharmonic
oscillator potential W ∝ q4, d = 1 has an approximate Gaussian
solution:

ψε(x , t) = ε−d/4e iS(t)/εe ip(t)(x−q(t))/εG
(
x − q(t)

ε1/2
, t

)
+OL2x

(ε1/2eCt)

q(t), p(t) satisfy Hamiltonian dynamics: H = p2 + q4.
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Wavepacket ansatz does not capture dynamics of PDE for t large.



Wavepacket dynamics in locally periodic media

iε∂tψ
ε = −ε2 1

2
∆xψ

ε + V
(x
ε

)
ψε + W (x)ψε

∀v ∈ Λ,V (z + v) = V (z).
(?)

I When V 6= 0, dynamics depends crucially on Bloch band
structure (spectral theory) of periodic operator obtained by
taking W = 0 in (?):

H := −1

2
∆z + V (z)

and spectral localization of the wavepacket in phase space.
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Spectral theory of periodic operators
I Recall the spectral theory of the operator with periodic

potential:

H := −1

2
∆z + V (z)

∀v ∈ Λ,V (z + v) = V (z)

I Bloch’s theorem: bounded eigenfunctions of H satisfy the
p-quasi-periodic boundary condition:

H Φ(z ; p) = E (p)Φ(z ; p)

∀v ∈ Λ,Φ(z + v) = e ip·vΦ(z ; p)

symmetry of BC =⇒ restrict p to a primitive cell of the
reciprocal lattice: first Brillouin zone B

I Fixed quasi-momentum p, self-adjoint elliptic eigenvalue
problem =⇒ discrete real spectrum:

E1(p) ≤ E2(p) ≤ ... ≤ En(p) ≤ ...
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Spectral theory of periodic operators

I Maps p ∈ B → En(p) ∈ R are the Bloch band dispersion
functions (surfaces).
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I Spectrum of H = −1
2∆z + V (z) is then the union of real

intervals swept out by En(p).
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Spectral theory of periodic operators

I The set of associated eigenfunctions (Bloch waves)
{Φn(z ; p) : n ∈ N,p ∈ B} is complete in L2(Rd).

I Can decompose Φn(z ; p) = e ip·zχn(z ; p) where χn(z ; p)
satisfies another self-adjoint elliptic eigenvalue problem with
periodic boundary conditions:

H(p)χ(z ; p) = E (p)χ(z ; p)

∀v ∈ Λ, χ(z + v) = χ(z ; p)

H(p) :=
1

2
(p − i∇z)2 + V (z),

(P)

(P) is the reduced Bloch eigenvalue problem.
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Theorem (Carles-Sparber 2008, Hagedorn 1980, Heller 1976)

Let (q(t),p(t)) denote any classical trajectory generated by the
Bloch band Hamiltonian H = En(p) + W (q) such that the band
En is non-degenerate at each p(t):

∀t ≥ 0,En−1(p(t)) < En(p(t)) < En+1(p(t)).

Then there exists a solution ψε(x , t) which is asymptotic as ε ↓ 0
to a semiclassical wavepacket up to ‘Ehrenfest time’ t ∼ ln 1/ε:

ψε(x , t) =ε−d/4e iS(t)/εe ip(t)·(x−q(t))/εa

(
x − q(t)

ε1/2
, t

)
χn

(x
ε

; p(t)
)

+ OL2x (Rd )(ε
1/2eCt).

Wavepacket envelope a(y , t) satisfies a Schrödinger equation with
harmonic oscillator Hamiltonian, driven by q(t),p(t):

i∂ta = −1

2
∇y · D2

pEn(p(t))∇ya +
1

2
y · D2

qW (q(t))ya
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Wavepacket dynamics in locally periodic structures

Results:

1. A new Hamiltonian system controlling the dynamics of
wavepackets which are spectrally localized away from Bloch
band degeneracies.

2. The dynamics of a wavepacket incident on a Bloch band
degeneracy.



Hamiltonian system for dynamics away from degeneracies
I We derive the equations of motion of the center of mass

Qε(t) and expected (quasi-)momentum Pε(t) of the
wavepacket with corrections ∝ ε.

I Of particular interest, a correction due to Berry curvature Fn

which takes the form of a monopole at degeneracies:

Fn(p) = Im
∑
m 6=n

〈ψn(p)|∇pH(p)ψm(p)〉 × (n↔ m)

(Em(p)− En(p))2

I Experimentally measured in photonics, where polarization
condition p · e(p) = 0 degenerate at p = 0:

=⇒
spin Hall effect of light

a

aBliokh et al., Nature Photonics, 2008.



Hamiltonian system for dynamics away from degeneracies
I We derive the equations of motion of the center of mass

Qε(t) and expected (quasi-)momentum Pε(t) of the
wavepacket with corrections ∝ ε.

I Of particular interest, a correction due to Berry curvature Fn

which takes the form of a monopole at degeneracies:

Fn(p) = Im
∑
m 6=n

〈ψn(p)|∇pH(p)ψm(p)〉 × (n↔ m)

(Em(p)− En(p))2

I Experimentally measured in photonics, where polarization
condition p · e(p) = 0 degenerate at p = 0:

=⇒
spin Hall effect of light

a

aBliokh et al., Nature Photonics, 2008.



Hamiltonian system for dynamics away from degeneracies
I We derive the equations of motion of the center of mass

Qε(t) and expected (quasi-)momentum Pε(t) of the
wavepacket with corrections ∝ ε.

I Of particular interest, a correction due to Berry curvature Fn

which takes the form of a monopole at degeneracies:

Fn(p) = Im
∑
m 6=n

〈ψn(p)|∇pH(p)ψm(p)〉 × (n↔ m)

(Em(p)− En(p))2

I Experimentally measured in photonics, where polarization
condition p · e(p) = 0 degenerate at p = 0:

=⇒
spin Hall effect of light

a

aBliokh et al., Nature Photonics, 2008.



Strategy of proof
I Recall form of the asymptotic solution:

ψε(x , t) =

ε−d/4e iS(t)/εe ip(t)·(x−q(t))/εa

(
x − q(t)

ε1/2
, t

)
χn

(x
ε

; p(t)
)

+ OL2x (Rd )(ε
1/2eCt).

(AS)

I Using (AS), we obtain expansions of the center of mass Qε

and average quasi-momentum Pε in powers of ε1/2:

Qε(t) = q(t) + ε1/2
∫
Rd

y |a(y , t)|2 dy + O(ε)

Pε(t) = p(t) + ε1/2
∫
Rd

a(y , t)(−i∇y )a(y , t)dy + O(ε)

Dynamics of Qε,Pε couples to evolution of q,p, a
(complicated) as well as the Bloch functions χn(z ; p).
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Theorem (Watson-Weinstein-Lu 2016)

1) Let Qε,Pε denote the center of mass and averaged
quasi-momentum of the wavepacket asymptotic solution. Then,
after making the near-identity change of variables:

(q,p, a) 7→ (Qε,Pε, aε)

where aε(y , t) satisfies:

i∂ta
ε = −1

2
∇y ·D2

PεEn(Pε(t))∇ya
ε+

1

2
y ·D2

QεW (Qε(t))yaε (E)

the observables Qε(t) and Pε(t) satisfy:

Q̇ε
(t) = ∇PεEn(Pε(t))−εṖε

(t)×Fn(Pε(t))︸ ︷︷ ︸
Anomalous velocity

+εC 1[aε](t)+O(ε3/2)

Ṗε
(t) = −∇QεW (Qε(t)) + εC 2[aε](t) + O(ε3/2) (O)

where Fn(Pε) denotes the Berry curvature of the Bloch band.
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Theorem (Watson-Weinstein-Lu 2016 continued)

2) The coupled dynamics of Qε(t),Pε(t), aε(y , t) can be derived
from the ε-dependent Hamiltonian:

Hε := En(Pε) + W (Qε) + ε∇QεW (Qε) ·An(Pε)

+ ε
1

2

∫
Rd

∇yaε · D2
PεEn(Pε)∇ya

ε dy + ε
1

2

∫
Rd

yaε · D2
QεW (Qε)yaε dy

where An(Pε) is the n-th band Berry connection.

Q̇ε
= ∇PεHε

Ṗε
= −∇QεHε

i∂ta
ε =

δH
δaε

(S)

I The system (S) contains terms which do not appear in the
works of Niu et al.1

1Chang et al. Phys. Rev. B 1996; Xiao et al. Rev. Mod. Phys. 2010.
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Aside: dynamics of a particle coupled to a wave-field
I When V = 0, system reduces to:

Q̇ε(t) = Pε(t)

Ṗε(t) = −∇QεW (Qε(t)) −ε1

2
∂3QεW (Qε)

〈
aε(y , t)|y2aε(y , t)

〉
L2y︸ ︷︷ ︸

coupling of discrete degrees of freedom to wave-field

i∂ta
ε = −1

2
∂2PεEn(Pε(t))∂2ya

ε +
1

2
∂2QεW (Qε(t))y2aε

I Center of mass dynamics when potential W ∝ q4:
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Wavepacket dynamics in locally periodic structures

Results:

1. A new Hamiltonian system controlling the dynamics of
wavepackets which are spectrally localized away from Bloch
band degeneracies.

2. The dynamics of a wavepacket incident on a Bloch band
degeneracy.



Dynamics at Bloch band degeneracies
I So far, assumed that the wavepacket avoids degeneracies:

∀t ≥ 0,En−1(p(t)) < En(p(t)) < En+1(p(t))

I Degeneracies, where En(p∗) = En+1(p∗), usually associated
with symmetries of periodic structure. In d = 1, rich set of
examples: Jacobi elliptic functions.
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I New degree of freedom: coupling between degenerate states
I At crossings, Bloch band functions: p → En(p) not smooth

=⇒ easier in d = 1
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Theorem (Watson-Weinstein 2016)

I p∗ a degenerate point in d = 1. E+(p),E−(p) smooth band
functions in a neighborhood of p∗ (always exist in d = 1).
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=⇒ emergent time-scale: s ∼ t−t∗√
ε
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Theorem (Watson-Weinstein 2016 continued)

I By studying in detail the dynamics of the PDE on the
emergent time-scale s = t−t∗√

ε
, we find that the blow-up may

be resolved by allowing coupling between degenerate states.

=⇒ at t = t∗ a second wavepacket associated with the band
E− is excited.

I ‘Excited’ wavepacket has size ∝
√
ε (in L2), may be explicitly

characterized. Group velocity opposite sign: ‘reflected’ wave.
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Result is an analog of those obtained by Hagedorn (B-O approx.)
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Consistency with Landau-Zener theory

I Schrödinger’s equation with a time-dependent Hamiltonian:

iε∂tψ
ε = H(t)ψε

with Spec[H(t)] = E+(t) ∪ E−(t), linear crossing at t = t∗.

I Seek a solution: ψε(t) =
∑

σ=± cσ(t)χσ(t)e−i
∫ t
t∗Eσ(τ) dτ ,

obtain system for co-efficients:

ċ+(t) = 〈χ+(t)|χ̇−(t)〉 e
i
∫ t
t∗E+(τ)−E−(τ) dτ

ε c−(t)

ċ−(t) = 〈χ−(t)|χ̇+(t)〉 e
i
∫ t
t∗E−(τ)−E+(τ) dτ

ε c+(t).

I Suppose c+(0) = 1, c−(0) = 0. Integrating in time, using
oscillations =⇒

‖c−(t)‖2 =
2π| 〈χ−(t∗)|χ̇+(t∗)〉 |2

|Ė+(t∗)− Ė−(t∗)|
√
ε+ o(

√
ε).
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Ongoing work/future directions

I What are the Berry curvature-induced dynamics at and after
the Ehrenfest timescale of validity of the semiclassical
wavepacket ansatz t ∼ ln 1/ε?

I Extension of band crossing theory to conical band crossings,
which appear in dispersion surfaces of honeycomb lattice
potentials, anisotropic photonic media:

and to avoided crossings, gap ∝
√
ε.

Expect O(1) coupling between bands in these cases;
proved by Hagedorn (B-O approximation).
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Thanks for listening!


