Wavepacket dynamics in locally periodic media Focus: effects of Bloch band degeneracies

Alexander Watson ${ }^{1}$
Michael Weinstein ${ }^{23}$, Jianfeng Lu ${ }^{1}$
${ }^{1}$ Mathematics, Duke University
${ }^{2}$ Applied Physics and Applied Mathematics, Columbia University
${ }^{3}$ Mathematics, Columbia University

October 2, 2017

Research supported in part by NSF Grants DMS-1412560 (AW \& MIW) and DMS-1454939 (JL) and Simons Foundation Math + X Investigator Award
\#376319 (AW \& MIW)

Outline

- We study the dynamics of waves governed by Schrödinger's equation and Maxwell's equations in spatially non-homogeneous media.

Outline

- We study the dynamics of waves governed by Schrödinger's equation and Maxwell's equations in spatially non-homogeneous media.
- Assume medium variation occurs over two distinct length scales: short 'fast' scale over which variation is periodic and long 'slow' scale over which variation is smooth
\Longrightarrow Call this a locally periodic medium.

Outline

- We study the dynamics of waves governed by Schrödinger's equation and Maxwell's equations in spatially non-homogeneous media.
- Assume medium variation occurs over two distinct length scales: short 'fast' scale over which variation is periodic and long 'slow' scale over which variation is smooth
\Longrightarrow Call this a locally periodic medium.
- Model of electron propagation in crystalline media with defects and of light propagation through photonic variants.

Outline

- Focus: effects of eigenvalue degeneracies on wave dynamics. 2×2 matrix example:

$$
H\left(p_{1}, p_{2}\right):=\left(\begin{array}{cc}
0 & p_{1}+p_{2} i \\
p_{1}-p_{2} i & 0
\end{array}\right), E_{ \pm}\left(p_{1}, p_{2}\right)= \pm \sqrt{p_{1}^{2}+p_{2}^{2}} .
$$

Eigenvalues degenerate at $p_{1}=p_{2}=0$.

Outline

- Focus: effects of eigenvalue degeneracies on wave dynamics. 2×2 matrix example:

$$
H\left(p_{1}, p_{2}\right):=\left(\begin{array}{cc}
0 & p_{1}+p_{2} i \\
p_{1}-p_{2} i & 0
\end{array}\right), E_{ \pm}\left(p_{1}, p_{2}\right)= \pm \sqrt{p_{1}^{2}+p_{2}^{2}} .
$$

Eigenvalues degenerate at $p_{1}=p_{2}=0$.

- In periodic media wave dynamics controlled by Bloch band dispersion surfaces. Symmetries of periodic structure
\Longrightarrow Bloch band degeneracies

Outline

- Focus: effects of eigenvalue degeneracies on wave dynamics. 2×2 matrix example:

$$
H\left(p_{1}, p_{2}\right):=\left(\begin{array}{cc}
0 & p_{1}+p_{2} i \\
p_{1}-p_{2} i & 0
\end{array}\right), E_{ \pm}\left(p_{1}, p_{2}\right)= \pm \sqrt{p_{1}^{2}+p_{2}^{2}} .
$$

Eigenvalues degenerate at $p_{1}=p_{2}=0$.

- In periodic media wave dynamics controlled by Bloch band dispersion surfaces. Symmetries of periodic structure \Longrightarrow Bloch band degeneracies
- Example: honeycomb lattice symmetry of graphene, gives rise to 'Dirac points' in band structure, transport properties:

Outline

After introducing the model PDEs we study, I will describe in detail the following results:

Outline

After introducing the model PDEs we study, I will describe in detail the following results:

1. A new Hamiltonian system controlling the dynamics of wavepackets in locally periodic media which are spectrally localized away from Bloch band degeneracies.

Outline

After introducing the model PDEs we study, I will describe in detail the following results:

1. A new Hamiltonian system controlling the dynamics of wavepackets in locally periodic media which are spectrally localized away from Bloch band degeneracies.

Rich dynamics! Anomalous velocity due to Berry curvature of the Bloch band and (new) 'particle-field' coupling.

Outline

After introducing the model PDEs we study, I will describe in detail the following results:

1. A new Hamiltonian system controlling the dynamics of wavepackets in locally periodic media which are spectrally localized away from Bloch band degeneracies.

Rich dynamics! Anomalous velocity due to Berry curvature of the Bloch band and (new) 'particle-field' coupling.
2. The dynamics of a wavepacket incident on a Bloch band degeneracy in one dimension.

Outline

After introducing the model PDEs we study, I will describe in detail the following results:

1. A new Hamiltonian system controlling the dynamics of wavepackets in locally periodic media which are spectrally localized away from Bloch band degeneracies.

Rich dynamics! Anomalous velocity due to Berry curvature of the Bloch band and (new) 'particle-field' coupling.
2. The dynamics of a wavepacket incident on a Bloch band degeneracy in one dimension.

Consistency with 'Landau-Zener' theory for the probability of an inter-band transition.

Outline

After introducing the model PDEs we study, I will describe in detail the following results:

1. A new Hamiltonian system controlling the dynamics of wavepackets in locally periodic media which are spectrally localized away from Bloch band degeneracies.

Rich dynamics! Anomalous velocity due to Berry curvature of the Bloch band and (new) 'particle-field' coupling.
2. The dynamics of a wavepacket incident on a Bloch band degeneracy in one dimension.

Consistency with 'Landau-Zener' theory for the probability of an inter-band transition.

I will then discuss future directions of this work.

Models

- Schrödinger's equation with a real 'two-scale' (assume $\epsilon \ll 1$) potential U:

$$
i \partial_{t} \psi^{\epsilon}=-\frac{1}{2} \Delta_{\boldsymbol{x}} \psi^{\epsilon}+U(\boldsymbol{x}, \epsilon \boldsymbol{x}) \psi^{\epsilon}
$$

$x \in \mathbb{R}^{d}, d$ positive integer.

Models

- Schrödinger's equation with a real 'two-scale' (assume $\epsilon \ll 1$) potential U:

$$
i \partial_{t} \psi^{\epsilon}=-\frac{1}{2} \Delta_{\boldsymbol{x}} \psi^{\epsilon}+U(\boldsymbol{x}, \epsilon \boldsymbol{x}) \psi^{\epsilon}
$$

$\boldsymbol{x} \in \mathbb{R}^{d}, d$ positive integer.

- Assume U is locally periodic in the sense that for each fixed $\boldsymbol{X} \in \mathbb{R}^{d}, U(\boldsymbol{x}, \boldsymbol{X})$ is periodic in \boldsymbol{x} :

$$
\forall \boldsymbol{v} \in \Lambda, U(\boldsymbol{x}+\boldsymbol{v}, \boldsymbol{X})=U(\boldsymbol{x}, \boldsymbol{X})
$$

where Λ is a d-dimensional lattice.

Models

- Schrödinger's equation with a real 'two-scale' (assume $\epsilon \ll 1$) potential U :

$$
i \partial_{t} \psi^{\epsilon}=-\frac{1}{2} \Delta_{\boldsymbol{x}} \psi^{\epsilon}+U(\boldsymbol{x}, \epsilon \boldsymbol{x}) \psi^{\epsilon}
$$

$\boldsymbol{x} \in \mathbb{R}^{d}, d$ positive integer.

- Assume U is locally periodic in the sense that for each fixed $\boldsymbol{X} \in \mathbb{R}^{d}, U(\boldsymbol{x}, \boldsymbol{X})$ is periodic in \boldsymbol{x} :

$$
\forall \boldsymbol{v} \in \Lambda, U(\boldsymbol{x}+\boldsymbol{v}, \boldsymbol{X})=U(\boldsymbol{x}, \boldsymbol{X})
$$

where Λ is a d-dimensional lattice.

- Example $(d=1): U(x, \epsilon x)=\cos (4 \pi x)+\tanh (\epsilon x) \cos (2 \pi x)$

Models

- Maxwell's equations in dimension $d=3$:

$$
\begin{array}{ll}
\partial_{t} \boldsymbol{D}^{\delta}(\boldsymbol{x}, t)=\nabla \times \boldsymbol{H}^{\delta}(\boldsymbol{x}, t) & \nabla \cdot \boldsymbol{D}^{\delta}(\boldsymbol{x}, t)=0 \\
\partial_{t} \boldsymbol{B}^{\delta}(\boldsymbol{x}, t)=-\nabla \times \boldsymbol{E}^{\delta}(\boldsymbol{x}, t) & \nabla \cdot \boldsymbol{B}^{\delta}(\boldsymbol{x}, t)=0
\end{array}
$$

with a 'two-scale' (assume $\delta \ll 1$) matrix of constitutive relations:

$$
\binom{\boldsymbol{D}^{\delta}(\boldsymbol{x}, t)}{\boldsymbol{B}^{\delta}(\boldsymbol{x}, t)}=\left(\begin{array}{cc}
\varepsilon(\boldsymbol{x}, \delta \boldsymbol{x}) & \chi^{\dagger}(\boldsymbol{x}, \delta \boldsymbol{x}) \\
\chi(\boldsymbol{x}, \delta \boldsymbol{x}) & \mu(\boldsymbol{x}, \delta \boldsymbol{x})
\end{array}\right)\binom{\boldsymbol{E}^{\delta}(\boldsymbol{x}, t)}{\boldsymbol{H}^{\delta}(\boldsymbol{x}, t)} .
$$

Models

- Maxwell's equations in dimension $d=3$:

$$
\begin{array}{ll}
\partial_{t} \boldsymbol{D}^{\delta}(\boldsymbol{x}, t)=\nabla \times \boldsymbol{H}^{\delta}(\boldsymbol{x}, t) & \nabla \cdot \boldsymbol{D}^{\delta}(\boldsymbol{x}, t)=0 \\
\partial_{t} \boldsymbol{B}^{\delta}(\boldsymbol{x}, t)=-\nabla \times \boldsymbol{E}^{\delta}(\boldsymbol{x}, t) & \nabla \cdot \boldsymbol{B}^{\delta}(\boldsymbol{x}, t)=0
\end{array}
$$

with a 'two-scale' (assume $\delta \ll 1$) matrix of constitutive relations:

$$
\binom{\boldsymbol{D}^{\delta}(\boldsymbol{x}, t)}{\boldsymbol{B}^{\delta}(\boldsymbol{x}, t)}=\left(\begin{array}{cc}
\varepsilon(\boldsymbol{x}, \delta \boldsymbol{x}) & \chi^{\dagger}(\boldsymbol{x}, \delta \boldsymbol{x}) \\
\chi(\boldsymbol{x}, \delta \boldsymbol{x}) & \mu(\boldsymbol{x}, \delta \boldsymbol{x})
\end{array}\right)\binom{\boldsymbol{E}^{\delta}(\boldsymbol{x}, t)}{\boldsymbol{H}^{\delta}(\boldsymbol{x}, t)}
$$

- Locally periodic assumption:

For fixed $\boldsymbol{X} \in \mathbb{R}^{3}, \varepsilon(\boldsymbol{x}, \boldsymbol{X}), \chi(\boldsymbol{x}, \boldsymbol{X}), \mu(\boldsymbol{x}, \boldsymbol{X})$ periodic in \boldsymbol{x}.

Models

- Maxwell's equations in dimension $d=3$:

$$
\begin{array}{ll}
\partial_{t} \boldsymbol{D}^{\delta}(\boldsymbol{x}, t)=\nabla \times \boldsymbol{H}^{\delta}(\boldsymbol{x}, t) & \nabla \cdot \boldsymbol{D}^{\delta}(\boldsymbol{x}, t)=0 \\
\partial_{t} \boldsymbol{B}^{\delta}(\boldsymbol{x}, t)=-\nabla \times \boldsymbol{E}^{\delta}(\boldsymbol{x}, t) & \nabla \cdot \boldsymbol{B}^{\delta}(\boldsymbol{x}, t)=0
\end{array}
$$

with a 'two-scale' (assume $\delta \ll 1$) matrix of constitutive relations:

$$
\binom{\boldsymbol{D}^{\delta}(\boldsymbol{x}, t)}{\boldsymbol{B}^{\delta}(\boldsymbol{x}, t)}=\left(\begin{array}{cc}
\varepsilon(\boldsymbol{x}, \delta \boldsymbol{x}) & \chi^{\dagger}(\boldsymbol{x}, \delta \boldsymbol{x}) \\
\chi(\boldsymbol{x}, \delta \boldsymbol{x}) & \mu(\boldsymbol{x}, \delta \boldsymbol{x})
\end{array}\right)\binom{\boldsymbol{E}^{\delta}(\boldsymbol{x}, t)}{\boldsymbol{H}^{\delta}(\boldsymbol{x}, t)}
$$

- Locally periodic assumption:

For fixed $\boldsymbol{X} \in \mathbb{R}^{3}, \varepsilon(\boldsymbol{x}, \boldsymbol{X}), \chi(\boldsymbol{x}, \boldsymbol{X}), \mu(\boldsymbol{x}, \boldsymbol{X})$ periodic in \boldsymbol{x}.

- Assume matrix to be positive-definite and Hermitian for all \boldsymbol{x}.

Models

- Maxwell's equations in dimension $d=3$:

$$
\begin{array}{ll}
\partial_{t} \boldsymbol{D}^{\delta}(\boldsymbol{x}, t)=\nabla \times \boldsymbol{H}^{\delta}(\boldsymbol{x}, t) & \nabla \cdot \boldsymbol{D}^{\delta}(\boldsymbol{x}, t)=0 \\
\partial_{t} \boldsymbol{B}^{\delta}(\boldsymbol{x}, t)=-\nabla \times \boldsymbol{E}^{\delta}(\boldsymbol{x}, t) & \nabla \cdot \boldsymbol{B}^{\delta}(\boldsymbol{x}, t)=0
\end{array}
$$

with a 'two-scale' (assume $\delta \ll 1$) matrix of constitutive relations:

$$
\binom{\boldsymbol{D}^{\delta}(\boldsymbol{x}, t)}{\boldsymbol{B}^{\delta}(\boldsymbol{x}, t)}=\left(\begin{array}{cc}
\varepsilon(\boldsymbol{x}, \delta \boldsymbol{x}) & \chi^{\dagger}(\boldsymbol{x}, \delta \boldsymbol{x}) \\
\chi(\boldsymbol{x}, \delta \boldsymbol{x}) & \mu(\boldsymbol{x}, \delta \boldsymbol{x})
\end{array}\right)\binom{\boldsymbol{E}^{\delta}(\boldsymbol{x}, t)}{\boldsymbol{H}^{\delta}(\boldsymbol{x}, t)}
$$

- Locally periodic assumption:

For fixed $\boldsymbol{X} \in \mathbb{R}^{3}, \varepsilon(\boldsymbol{x}, \boldsymbol{X}), \chi(\boldsymbol{x}, \boldsymbol{X}), \mu(\boldsymbol{x}, \boldsymbol{X})$ periodic in \boldsymbol{x}.

- Assume matrix to be positive-definite and Hermitian for all \boldsymbol{x}.
- Vector equations \Longrightarrow degeneracies when periodicity trivial!

Wavepacket dynamics in locally periodic structures

- Simplest case. Schrödinger's equation with a 'two-scale' (assume $\epsilon \ll 1$) potential which may be written as a sum:

$$
\begin{aligned}
& i \partial_{t} \psi^{\epsilon}=-\frac{1}{2} \Delta_{\boldsymbol{x}} \psi^{\epsilon}+V(\boldsymbol{x}) \psi^{\epsilon}+W(\epsilon \boldsymbol{x}) \psi^{\epsilon} \\
& \forall \boldsymbol{v} \in \Lambda, V(\boldsymbol{x}+\boldsymbol{v})=V(\boldsymbol{x})
\end{aligned}
$$

Wavepacket dynamics in locally periodic structures

- Simplest case. Schrödinger's equation with a 'two-scale' (assume $\epsilon \ll 1$) potential which may be written as a sum:

$$
\begin{aligned}
& i \partial_{t} \psi^{\epsilon}=-\frac{1}{2} \Delta_{\boldsymbol{x}} \psi^{\epsilon}+V(\boldsymbol{x}) \psi^{\epsilon}+W(\epsilon \boldsymbol{x}) \psi^{\epsilon} \\
& \forall \boldsymbol{v} \in \Lambda, V(\boldsymbol{x}+\boldsymbol{v})=V(\boldsymbol{x})
\end{aligned}
$$

- Model of an electron in a crystal under the influence of an external electric field generated by W

Wavepacket dynamics in locally periodic structures

- Simplest case. Schrödinger's equation with a 'two-scale' (assume $\epsilon \ll 1$) potential which may be written as a sum:

$$
\begin{aligned}
& i \partial_{t} \psi^{\epsilon}=-\frac{1}{2} \Delta_{\boldsymbol{x}} \psi^{\epsilon}+V(\boldsymbol{x}) \psi^{\epsilon}+W(\epsilon \boldsymbol{x}) \psi^{\epsilon} \\
& \forall \boldsymbol{v} \in \Lambda, V(\boldsymbol{x}+\boldsymbol{v})=V(\boldsymbol{x})
\end{aligned}
$$

- Model of an electron in a crystal under the influence of an external electric field generated by W
- Example $(d=1): U(x, \epsilon x)=1+\cos (4 \pi x)-\cos (\epsilon x)^{2}$

- Re-scale: $\boldsymbol{x}^{\prime}:=\epsilon \boldsymbol{x}, t^{\prime}:=\epsilon t, \psi^{\epsilon \prime}\left(\boldsymbol{x}^{\prime}, t^{\prime}\right):=\psi^{\epsilon}(\boldsymbol{x}, t)$.

$$
i \epsilon \partial_{t} \psi^{\epsilon}=-\epsilon^{2} \frac{1}{2} \Delta_{\boldsymbol{x}} \psi^{\epsilon}+V\left(\frac{\boldsymbol{x}}{\epsilon}\right) \psi^{\epsilon}+W(\boldsymbol{x}) \psi^{\epsilon}
$$

$$
\forall v \in \Lambda, V(z+v)=V(z)
$$

- Re-scale: $\boldsymbol{x}^{\prime}:=\epsilon \boldsymbol{x}, t^{\prime}:=\epsilon t, \psi^{\epsilon \prime}\left(\boldsymbol{x}^{\prime}, t^{\prime}\right):=\psi^{\epsilon}(\boldsymbol{x}, t)$.

$$
\begin{aligned}
& i \epsilon \partial_{t} \psi^{\epsilon}=-\epsilon^{2} \frac{1}{2} \Delta_{\boldsymbol{x}} \psi^{\epsilon}+V\left(\frac{\boldsymbol{x}}{\epsilon}\right) \psi^{\epsilon}+W(\boldsymbol{x}) \psi^{\epsilon} \\
& \forall \boldsymbol{v} \in \Lambda, V(\boldsymbol{z}+\boldsymbol{v})=V(\boldsymbol{z})
\end{aligned}
$$

- Seek wavepacket solutions, wavelength $\propto \epsilon$, width $\propto \sqrt{\epsilon}$ \Longrightarrow extended with respect to scale of periodic variation $(\propto \epsilon)$, localized with respect to slow modulation $(\propto 1)$:

- Re-scale: $\boldsymbol{x}^{\prime}:=\epsilon \boldsymbol{x}, t^{\prime}:=\epsilon t, \psi^{\epsilon \prime}\left(\boldsymbol{x}^{\prime}, t^{\prime}\right):=\psi^{\epsilon}(\boldsymbol{x}, t)$.

$$
\begin{aligned}
& i \epsilon \partial_{t} \psi^{\epsilon}=-\epsilon^{2} \frac{1}{2} \Delta_{\boldsymbol{x}} \psi^{\epsilon}+V\left(\frac{\boldsymbol{x}}{\epsilon}\right) \psi^{\epsilon}+W(\boldsymbol{x}) \psi^{\epsilon} \\
& \forall \boldsymbol{v} \in \Lambda, V(\boldsymbol{z}+\boldsymbol{v})=V(\boldsymbol{z})
\end{aligned}
$$

- Seek wavepacket solutions, wavelength $\propto \epsilon$, width $\propto \sqrt{\epsilon}$ \Longrightarrow extended with respect to scale of periodic variation $(\propto \epsilon)$, localized with respect to slow modulation $(\propto 1)$:

- Limit $\epsilon \downarrow 0$ a 'non-standard' geometric optics/WKB limit:

$$
\epsilon:=\frac{\text { wavelength } \approx \text { scale of variation of } V \text { (periodic) }}{\text { scale of variation of } W \text { (perturbation })} \ll 1 \text {. }
$$

- Re-scale: $\boldsymbol{x}^{\prime}:=\epsilon \boldsymbol{x}, t^{\prime}:=\epsilon t, \psi^{\epsilon \prime}\left(\boldsymbol{x}^{\prime}, t^{\prime}\right):=\psi^{\epsilon}(\boldsymbol{x}, t)$.

$$
\begin{align*}
& i \epsilon \partial_{t} \psi^{\epsilon}=-\epsilon^{2} \frac{1}{2} \Delta_{\boldsymbol{x}} \psi^{\epsilon}+V\left(\frac{\boldsymbol{x}}{\epsilon}\right) \psi^{\epsilon}+W(\boldsymbol{x}) \psi^{\epsilon} \\
& \forall \boldsymbol{v} \in \Lambda, V(\boldsymbol{z}+\boldsymbol{v})=V(\boldsymbol{z})
\end{align*}
$$

- Seek wavepacket solutions, wavelength $\propto \epsilon$, width $\propto \sqrt{\epsilon}$ \Longrightarrow extended with respect to scale of periodic variation $(\propto \epsilon)$, localized with respect to slow modulation $(\propto 1)$:

- Limit $\epsilon \downarrow 0$ a 'non-standard' geometric optics/WKB limit:

$$
\epsilon:=\frac{\text { wavelength } \approx \text { scale of variation of } V \text { (periodic) }}{\text { scale of variation of } W \text { (perturbation) }} \ll 1 .
$$

NB multi-scale WKB ansatz breaks down near degeneracies.

Wavepacket dynamics without periodicity

- 'Free' case $V=W=0$:

$$
\begin{equation*}
i \epsilon \partial_{t} \psi^{\epsilon}=-\frac{1}{2} \epsilon^{2} \Delta_{x} \psi^{\epsilon} \tag{F}
\end{equation*}
$$

Wavepacket dynamics without periodicity

- 'Free' case $V=W=0$:

$$
\begin{equation*}
i \epsilon \partial_{t} \psi^{\epsilon}=-\frac{1}{2} \epsilon^{2} \Delta_{x} \psi^{\epsilon} \tag{F}
\end{equation*}
$$

- Has (appropriately scaled) stationary, spreading Gaussian exact solutions. Define:

$$
\mathcal{G}(\boldsymbol{y}, t):=\frac{1}{(1+i t)^{d / 2}} \exp \left(\frac{-|y|^{2}}{2(1+i t)}\right)
$$

Then: $\psi^{\epsilon}(\boldsymbol{x}, t)=\epsilon^{-d / 4} \mathcal{G}\left(\frac{\boldsymbol{x}}{\epsilon^{1 / 2}}, t\right)$ satisfies (F).
Pre-factor ensures L^{2} norm preserved in the limit $\epsilon \downarrow 0$.

Wavepacket dynamics without periodicity

- 'Free' case $V=W=0$:

$$
\begin{equation*}
i \epsilon \partial_{t} \psi^{\epsilon}=-\frac{1}{2} \epsilon^{2} \Delta_{x} \psi^{\epsilon} \tag{F}
\end{equation*}
$$

- Has (appropriately scaled) stationary, spreading Gaussian exact solutions. Define:

$$
\mathcal{G}(\boldsymbol{y}, t):=\frac{1}{(1+i t)^{d / 2}} \exp \left(\frac{-|y|^{2}}{2(1+i t)}\right)
$$

Then: $\psi^{\epsilon}(\boldsymbol{x}, t)=\epsilon^{-d / 4} \mathcal{G}\left(\frac{\boldsymbol{x}}{\epsilon^{1 / 2}}, t\right)$ satisfies (F).
Pre-factor ensures L^{2} norm preserved in the limit $\epsilon \downarrow 0$.

- Galilean invariance of $(F) \Longrightarrow$ travelling Gaussian solutions with center at $\boldsymbol{q}(t):=\boldsymbol{q}_{0}+\boldsymbol{p}_{0} t$:

$$
\psi^{\epsilon}(\boldsymbol{x}, t)=\epsilon^{-d / 4} e^{i S(t) / \epsilon} e^{i \boldsymbol{p}_{0} \cdot(\boldsymbol{x}-\boldsymbol{q}(t)) / \epsilon} \mathcal{G}\left(\frac{\boldsymbol{x}-\boldsymbol{q}(t)}{\epsilon^{1 / 2}}, t\right)
$$

for any $\left(\boldsymbol{q}_{0}, \boldsymbol{p}_{0}\right) \in \mathbb{R}^{d} \times \mathbb{R}^{d} . S(t):=\frac{1}{2}\left|p_{0}\right|^{2} t$.

Gaussian exact solution of free Schrödinger, $d=1$:

$$
\psi^{\epsilon}(x, t)=\epsilon^{-d / 4} e^{i S(t) / \epsilon} e^{i p(t)(x-q(t)) / \epsilon} \mathcal{G}\left(\frac{x-q(t)}{\epsilon^{1 / 2}}, t\right)
$$

$q(t), p(t)$ satisfy Hamiltonian dynamics with $\mathcal{H}=p^{2}$:

Theorem (Hagedorn 1980, Heller 1976)
For any trajectory $(\boldsymbol{q}(t), \boldsymbol{p}(t))$ generated by the classical
Hamiltonian $\mathcal{H}:=\frac{|p|^{2}}{2}+W(\boldsymbol{q})$, there exists a solution of the PDE:

$$
i \epsilon \partial_{t} \psi^{\epsilon}=-\epsilon^{2} \frac{1}{2} \Delta_{\boldsymbol{x}} \psi^{\epsilon}+W(\boldsymbol{x}) \psi^{\epsilon}
$$

Theorem (Hagedorn 1980, Heller 1976)
For any trajectory $(\boldsymbol{q}(t), \boldsymbol{p}(t))$ generated by the classical Hamiltonian $\mathcal{H}:=\frac{|p|^{2}}{2}+W(\boldsymbol{q})$, there exists a solution of the PDE:

$$
i \epsilon \partial_{t} \psi^{\epsilon}=-\epsilon^{2} \frac{1}{2} \Delta_{\boldsymbol{x}} \psi^{\epsilon}+W(\boldsymbol{x}) \psi^{\epsilon}
$$

asymptotic as $\epsilon \downarrow 0$ to a semiclassical wavepacket up to
'Ehrenfest time' $t \sim \ln 1 / \epsilon$:
$\psi^{\epsilon}(\boldsymbol{x}, t)=\epsilon^{-d / 4} e^{i S(t) / \epsilon} e^{i \boldsymbol{p}(t) \cdot(\boldsymbol{x}-\boldsymbol{q}(t)) / \epsilon} a\left(\frac{\boldsymbol{x}-\boldsymbol{q}(t)}{\epsilon^{1 / 2}}, t\right)+O_{L_{x}^{2}\left(\mathbb{R}^{d}\right)}\left(\epsilon^{1 / 2} e^{C t}\right)$

Theorem (Hagedorn 1980, Heller 1976)
For any trajectory $(\boldsymbol{q}(t), \boldsymbol{p}(t))$ generated by the classical
Hamiltonian $\mathcal{H}:=\frac{|p|^{2}}{2}+W(\boldsymbol{q})$, there exists a solution of the PDE:

$$
i \epsilon \partial_{t} \psi^{\epsilon}=-\epsilon^{2} \frac{1}{2} \Delta_{\boldsymbol{x}} \psi^{\epsilon}+W(\boldsymbol{x}) \psi^{\epsilon}
$$

asymptotic as $\epsilon \downarrow 0$ to a semiclassical wavepacket up to
'Ehrenfest time' $t \sim \ln 1 / \epsilon$:
$\psi^{\epsilon}(\boldsymbol{x}, t)=\epsilon^{-d / 4} e^{i S(t) / \epsilon} e^{i \boldsymbol{p}(t) \cdot(\boldsymbol{x}-\boldsymbol{q}(t)) / \epsilon} a\left(\frac{\boldsymbol{x}-\boldsymbol{q}(t)}{\epsilon^{1 / 2}}, t\right)+O_{L_{\chi}^{2}\left(\mathbb{R}^{d}\right)}\left(\epsilon^{1 / 2} e^{C t}\right)$
Envelope satisfies Schrödinger's equation with harmonic oscillator Hamiltonian driven by $\boldsymbol{q}(t)$:

$$
i \partial_{t} a=-\frac{1}{2} \Delta_{y} a+\frac{1}{2} \boldsymbol{y} \cdot D_{\boldsymbol{y}}^{2} W(\boldsymbol{q}(t)) \boldsymbol{y} a .
$$

Theorem (Hagedorn 1980, Heller 1976)
For any trajectory $(\boldsymbol{q}(t), \boldsymbol{p}(t))$ generated by the classical
Hamiltonian $\mathcal{H}:=\frac{|p|^{2}}{2}+W(\boldsymbol{q})$, there exists a solution of the PDE:

$$
i \epsilon \partial_{t} \psi^{\epsilon}=-\epsilon^{2} \frac{1}{2} \Delta_{\boldsymbol{x}} \psi^{\epsilon}+W(\boldsymbol{x}) \psi^{\epsilon}
$$

asymptotic as $\epsilon \downarrow 0$ to a semiclassical wavepacket up to
'Ehrenfest time' $t \sim \ln 1 / \epsilon$:
$\psi^{\epsilon}(\boldsymbol{x}, t)=\epsilon^{-d / 4} e^{i S(t) / \epsilon} e^{i \boldsymbol{p}(t) \cdot(\boldsymbol{x}-\boldsymbol{q}(t)) / \epsilon} a\left(\frac{\boldsymbol{x}-\boldsymbol{q}(t)}{\epsilon^{1 / 2}}, t\right)+O_{L_{\chi}^{2}\left(\mathbb{R}^{d}\right)}\left(\epsilon^{1 / 2} e^{C t}\right)$
Envelope satisfies Schrödinger's equation with harmonic oscillator Hamiltonian driven by $\boldsymbol{q}(t)$:

$$
i \partial_{t} a=-\frac{1}{2} \Delta_{y} a+\frac{1}{2} \boldsymbol{y} \cdot D_{\boldsymbol{y}}^{2} W(\boldsymbol{q}(t)) \boldsymbol{y} a .
$$

When W quadratic, solution exact! Error $\propto\left\|\partial_{q}^{3} W(q)\right\|_{L^{\infty}}$.

Theorem (Hagedorn 1980, Heller 1976)
For any trajectory $(\boldsymbol{q}(t), \boldsymbol{p}(t))$ generated by the classical
Hamiltonian $\mathcal{H}:=\frac{|p|^{2}}{2}+W(\boldsymbol{q})$, there exists a solution of the PDE:

$$
i \epsilon \partial_{t} \psi^{\epsilon}=-\epsilon^{2} \frac{1}{2} \Delta_{\boldsymbol{x}} \psi^{\epsilon}+W(\boldsymbol{x}) \psi^{\epsilon}
$$

asymptotic as $\epsilon \downarrow 0$ to a semiclassical wavepacket up to
'Ehrenfest time' $t \sim \ln 1 / \epsilon$:
$\psi^{\epsilon}(\boldsymbol{x}, t)=\epsilon^{-d / 4} e^{i S(t) / \epsilon} e^{i \boldsymbol{p}(t) \cdot(\boldsymbol{x}-\boldsymbol{q}(t)) / \epsilon} a\left(\frac{\boldsymbol{x}-\boldsymbol{q}(t)}{\epsilon^{1 / 2}}, t\right)+O_{L_{\chi}^{2}\left(\mathbb{R}^{d}\right)}\left(\epsilon^{1 / 2} e^{C t}\right)$
Envelope satisfies Schrödinger's equation with harmonic oscillator Hamiltonian driven by $\boldsymbol{q}(t)$:

$$
i \partial_{t} a=-\frac{1}{2} \Delta_{y} a+\frac{1}{2} \boldsymbol{y} \cdot D_{\boldsymbol{y}}^{2} W(\boldsymbol{q}(t)) \boldsymbol{y} a .
$$

When W quadratic, solution exact! Error $\propto\left\|\partial_{q}^{3} W(q)\right\|_{L^{\infty}}$. Can improve error bound: $O_{L_{x}^{2}\left(\mathbb{R}^{d}\right)}\left(\epsilon^{n / 2} e^{C t}\right)$, any positive integer n.

Gaussian exact solution of Schrödinger's equation with harmonic oscillator potential $W \propto q^{2}, d=1$:

$$
\psi^{\epsilon}(x, t)=\epsilon^{-d / 4} e^{i S(t) / \epsilon} e^{i p(t)(x-q(t)) / \epsilon} \mathcal{G}\left(\frac{x-q(t)}{\epsilon^{1 / 2}}, t\right)
$$

$q(t), p(t)$ satisfy Hamiltonian dynamics: $\mathcal{H}=p^{2}+q^{2}$.

Theorem \Longrightarrow Schrödinger's equation with an anharmonic oscillator potential $W \propto q^{4}, d=1$ has an approximate Gaussian solution:
$\psi^{\epsilon}(x, t)=\epsilon^{-d / 4} e^{i S(t) / \epsilon} e^{i p(t)(x-q(t)) / \epsilon} \mathcal{G}\left(\frac{x-q(t)}{\epsilon^{1 / 2}}, t\right)+O_{L_{x}^{2}}\left(\epsilon^{1 / 2} e^{C t}\right)$
$q(t), p(t)$ satisfy Hamiltonian dynamics: $\mathcal{H}=p^{2}+q^{4}$.

Wavepacket ansatz does not capture dynamics of PDE for t large.

Wavepacket dynamics in locally periodic media

$$
i \epsilon \partial_{t} \psi^{\epsilon}=-\epsilon^{2} \frac{1}{2} \Delta_{x} \psi^{\epsilon}+V\left(\frac{\boldsymbol{x}}{\epsilon}\right) \psi^{\epsilon}+W(x) \psi^{\epsilon}
$$

$$
\forall v \in \Lambda, V(z+v)=V(z)
$$

Wavepacket dynamics in locally periodic media

$$
\begin{align*}
& i \epsilon \partial_{t} \psi^{\epsilon}=-\epsilon^{2} \frac{1}{2} \Delta_{\boldsymbol{x}} \psi^{\epsilon}+V\left(\frac{\boldsymbol{x}}{\epsilon}\right) \psi^{\epsilon}+W(\boldsymbol{x}) \psi^{\epsilon} \\
& \forall \boldsymbol{v} \in \Lambda, V(\boldsymbol{z}+\boldsymbol{v})=V(\boldsymbol{z}) .
\end{align*}
$$

- When $V \neq 0$, dynamics depends crucially on Bloch band structure (spectral theory) of periodic operator obtained by taking $W=0$ in (\star):

$$
H:=-\frac{1}{2} \Delta_{z}+V(z)
$$

and spectral localization of the wavepacket in phase space.

Spectral theory of periodic operators

- Recall the spectral theory of the operator with periodic potential:

$$
\begin{aligned}
& H:=-\frac{1}{2} \Delta_{z}+V(z) \\
& \forall \boldsymbol{v} \in \Lambda, V(\boldsymbol{z}+\boldsymbol{v})=V(\boldsymbol{z})
\end{aligned}
$$

Spectral theory of periodic operators

- Recall the spectral theory of the operator with periodic potential:

$$
\begin{aligned}
& H:=-\frac{1}{2} \Delta_{z}+V(z) \\
& \forall \boldsymbol{v} \in \Lambda, V(\boldsymbol{z}+\boldsymbol{v})=V(\boldsymbol{z})
\end{aligned}
$$

- Bloch's theorem: bounded eigenfunctions of H satisfy the p-quasi-periodic boundary condition:

$$
\begin{aligned}
& H \Phi(\boldsymbol{z} ; \boldsymbol{p})=E(\boldsymbol{p}) \Phi(\boldsymbol{z} ; \boldsymbol{p}) \\
& \forall \boldsymbol{v} \in \Lambda, \Phi(\boldsymbol{z}+\boldsymbol{v})=e^{i \boldsymbol{p} \cdot \boldsymbol{v}} \Phi(\boldsymbol{z} ; \boldsymbol{p})
\end{aligned}
$$

symmetry of $B C \Longrightarrow$ restrict \boldsymbol{p} to a primitive cell of the reciprocal lattice: first Brillouin zone \mathcal{B}

Spectral theory of periodic operators

- Recall the spectral theory of the operator with periodic potential:

$$
\begin{aligned}
& H:=-\frac{1}{2} \Delta_{z}+V(z) \\
& \forall \boldsymbol{v} \in \Lambda, V(\boldsymbol{z}+\boldsymbol{v})=V(\boldsymbol{z})
\end{aligned}
$$

- Bloch's theorem: bounded eigenfunctions of H satisfy the p-quasi-periodic boundary condition:

$$
\begin{aligned}
& H \Phi(\boldsymbol{z} ; \boldsymbol{p})=E(\boldsymbol{p}) \Phi(\boldsymbol{z} ; \boldsymbol{p}) \\
& \forall \boldsymbol{v} \in \Lambda, \Phi(\boldsymbol{z}+\boldsymbol{v})=e^{i \boldsymbol{p} \cdot \boldsymbol{v}} \Phi(\boldsymbol{z} ; \boldsymbol{p})
\end{aligned}
$$

symmetry of $B C \Longrightarrow$ restrict \boldsymbol{p} to a primitive cell of the reciprocal lattice: first Brillouin zone \mathcal{B}

- Fixed quasi-momentum \boldsymbol{p}, self-adjoint elliptic eigenvalue problem \Longrightarrow discrete real spectrum:

$$
E_{1}(\boldsymbol{p}) \leq E_{2}(\boldsymbol{p}) \leq \ldots \leq E_{n}(\boldsymbol{p}) \leq \ldots
$$

Spectral theory of periodic operators

- Maps $\boldsymbol{p} \in \mathcal{B} \rightarrow E_{n}(\boldsymbol{p}) \in \mathbb{R}$ are the Bloch band dispersion functions (surfaces).

Spectral theory of periodic operators

- Maps $\boldsymbol{p} \in \mathcal{B} \rightarrow E_{n}(\boldsymbol{p}) \in \mathbb{R}$ are the Bloch band dispersion functions (surfaces).

- Spectrum of $H=-\frac{1}{2} \Delta_{z}+V(z)$ is then the union of real intervals swept out by $E_{n}(\boldsymbol{p})$.

Spectral theory of periodic operators

- The set of associated eigenfunctions (Bloch waves) $\left\{\Phi_{n}(\boldsymbol{z} ; \boldsymbol{p}): n \in \mathbb{N}, \boldsymbol{p} \in \mathcal{B}\right\}$ is complete in $L^{2}\left(\mathbb{R}^{d}\right)$.

Spectral theory of periodic operators

- The set of associated eigenfunctions (Bloch waves) $\left\{\Phi_{n}(\boldsymbol{z} ; \boldsymbol{p}): n \in \mathbb{N}, \boldsymbol{p} \in \mathcal{B}\right\}$ is complete in $L^{2}\left(\mathbb{R}^{d}\right)$.
- Can decompose $\Phi_{n}(\boldsymbol{z} ; \boldsymbol{p})=e^{i \boldsymbol{p} \cdot \boldsymbol{z}} \chi_{n}(\boldsymbol{z} ; \boldsymbol{p})$ where $\chi_{n}(\boldsymbol{z} ; \boldsymbol{p})$ satisfies another self-adjoint elliptic eigenvalue problem with periodic boundary conditions:

$$
\begin{align*}
& H(\boldsymbol{p}) \chi(\boldsymbol{z} ; \boldsymbol{p})=E(\boldsymbol{p}) \chi(\boldsymbol{z} ; \boldsymbol{p}) \\
& \forall \boldsymbol{v} \in \Lambda, \chi(\boldsymbol{z}+\boldsymbol{v})=\chi(\boldsymbol{z} ; \boldsymbol{p}) \tag{P}\\
& H(\boldsymbol{p}):=\frac{1}{2}\left(\boldsymbol{p}-i \nabla_{\boldsymbol{z}}\right)^{2}+V(\boldsymbol{z})
\end{align*}
$$

(P) is the reduced Bloch eigenvalue problem.

Theorem (Carles-Sparber 2008, Hagedorn 1980, Heller 1976) Let $(\boldsymbol{q}(t), \boldsymbol{p}(t))$ denote any classical trajectory generated by the Bloch band Hamiltonian $\mathcal{H}=E_{n}(\boldsymbol{p})+W(\boldsymbol{q})$ such that the band E_{n} is non-degenerate at each $\boldsymbol{p}(t)$:

$$
\forall t \geq 0, E_{n-1}(\boldsymbol{p}(t))<E_{n}(\boldsymbol{p}(t))<E_{n+1}(\boldsymbol{p}(t)) .
$$

Theorem (Carles-Sparber 2008, Hagedorn 1980, Heller 1976) Let $(\boldsymbol{q}(t), \boldsymbol{p}(t))$ denote any classical trajectory generated by the Bloch band Hamiltonian $\mathcal{H}=E_{n}(\boldsymbol{p})+W(\boldsymbol{q})$ such that the band E_{n} is non-degenerate at each $\boldsymbol{p}(t)$:

$$
\forall t \geq 0, E_{n-1}(\boldsymbol{p}(t))<E_{n}(\boldsymbol{p}(t))<E_{n+1}(\boldsymbol{p}(t)) .
$$

Then there exists a solution $\psi^{\epsilon}(\boldsymbol{x}, t)$ which is asymptotic as $\epsilon \downarrow 0$ to a semiclassical wavepacket up to 'Ehrenfest time' $t \sim \ln 1 / \epsilon$:

$$
\begin{aligned}
\psi^{\epsilon}(\boldsymbol{x}, t)= & \epsilon^{-d / 4} e^{i S(t) / \epsilon} e^{i \boldsymbol{p}(t) \cdot(\boldsymbol{x}-\boldsymbol{q}(t)) / \epsilon} a\left(\frac{\boldsymbol{x}-\boldsymbol{q}(t)}{\epsilon^{1 / 2}}, t\right) \chi_{n}\left(\frac{\boldsymbol{x}}{\epsilon} ; \boldsymbol{p}(t)\right) \\
& +O_{L_{x}^{2}\left(\mathbb{R}^{d}\right)}\left(\epsilon^{1 / 2} e^{C t}\right) .
\end{aligned}
$$

Theorem (Carles-Sparber 2008, Hagedorn 1980, Heller 1976) Let $(\boldsymbol{q}(t), \boldsymbol{p}(t))$ denote any classical trajectory generated by the Bloch band Hamiltonian $\mathcal{H}=E_{n}(\boldsymbol{p})+W(\boldsymbol{q})$ such that the band E_{n} is non-degenerate at each $\boldsymbol{p}(t)$:

$$
\forall t \geq 0, E_{n-1}(\boldsymbol{p}(t))<E_{n}(\boldsymbol{p}(t))<E_{n+1}(\boldsymbol{p}(t)) .
$$

Then there exists a solution $\psi^{\epsilon}(\boldsymbol{x}, t)$ which is asymptotic as $\epsilon \downarrow 0$ to a semiclassical wavepacket up to 'Ehrenfest time' $t \sim \ln 1 / \epsilon$:

$$
\begin{aligned}
\psi^{\epsilon}(\boldsymbol{x}, t)= & \epsilon^{-d / 4} e^{i S(t) / \epsilon} e^{i \boldsymbol{p}(t) \cdot(\boldsymbol{x}-\boldsymbol{q}(t)) / \epsilon}\left(\frac{\boldsymbol{x}-\boldsymbol{q}(t)}{\epsilon^{1 / 2}}, t\right) \chi_{n}\left(\frac{\boldsymbol{x}}{\epsilon} ; \boldsymbol{p}(t)\right) \\
& +O_{L_{x}^{2}\left(\mathbb{R}^{d}\right)}\left(\epsilon^{1 / 2} e^{C t}\right) .
\end{aligned}
$$

Wavepacket envelope a($\boldsymbol{y}, t)$ satisfies a Schrödinger equation with harmonic oscillator Hamiltonian, driven by $\boldsymbol{q}(t), \boldsymbol{p}(t)$:

$$
i \partial_{t} a=-\frac{1}{2} \nabla_{\boldsymbol{y}} \cdot D_{\boldsymbol{p}}^{2} E_{n}(\boldsymbol{p}(t)) \nabla_{\boldsymbol{y}} a+\frac{1}{2} \boldsymbol{y} \cdot D_{\boldsymbol{q}}^{2} W(\boldsymbol{q}(t)) \boldsymbol{y} a
$$

Wavepacket dynamics in locally periodic structures

Results:

1. A new Hamiltonian system controlling the dynamics of wavepackets which are spectrally localized away from Bloch band degeneracies.
2. The dynamics of a wavepacket incident on a Bloch band degeneracy.

Hamiltonian system for dynamics away from degeneracies

- We derive the equations of motion of the center of mass $\mathcal{Q}^{\epsilon}(t)$ and expected (quasi-)momentum $\mathcal{P}^{\epsilon}(t)$ of the wavepacket with corrections $\propto \epsilon$.

Hamiltonian system for dynamics away from degeneracies

- We derive the equations of motion of the center of mass $\mathcal{Q}^{\epsilon}(t)$ and expected (quasi-)momentum $\mathcal{P}^{\epsilon}(t)$ of the wavepacket with corrections $\propto \epsilon$.
- Of particular interest, a correction due to Berry curvature \mathcal{F}_{n} which takes the form of a monopole at degeneracies:

$$
\mathcal{F}_{n}(\boldsymbol{p})=\operatorname{Im} \sum_{m \neq n} \frac{\left\langle\psi_{n}(\boldsymbol{p}) \mid \nabla_{\boldsymbol{p}} H(\boldsymbol{p}) \psi_{m}(\boldsymbol{p})\right\rangle \times(n \leftrightarrow m)}{\left(E_{m}(\boldsymbol{p})-E_{n}(\boldsymbol{p})\right)^{2}}
$$

Hamiltonian system for dynamics away from degeneracies

- We derive the equations of motion of the center of mass $\mathcal{Q}^{\epsilon}(t)$ and expected (quasi-)momentum $\mathcal{P}^{\epsilon}(t)$ of the wavepacket with corrections $\propto \epsilon$.
- Of particular interest, a correction due to Berry curvature \mathcal{F}_{n} which takes the form of a monopole at degeneracies:

$$
\mathcal{F}_{n}(\boldsymbol{p})=\operatorname{Im} \sum_{m \neq n} \frac{\left\langle\psi_{n}(\boldsymbol{p}) \mid \nabla_{\boldsymbol{p}} H(\boldsymbol{p}) \psi_{m}(\boldsymbol{p})\right\rangle \times(n \leftrightarrow m)}{\left(E_{m}(\boldsymbol{p})-E_{n}(\boldsymbol{p})\right)^{2}}
$$

- Experimentally measured in photonics, where polarization condition $\boldsymbol{p} \cdot \boldsymbol{e}(\boldsymbol{p})=0$ degenerate at $\boldsymbol{p}=0$:

Strategy of proof

- Recall form of the asymptotic solution:

$$
\begin{aligned}
& \psi^{\epsilon}(\boldsymbol{x}, t)= \\
& \epsilon^{-d / 4} e^{i S(t) / \epsilon} e^{i \boldsymbol{p}(t) \cdot(\boldsymbol{x}-\boldsymbol{q}(t)) / \epsilon} a\left(\frac{\boldsymbol{x}-\boldsymbol{q}(t)}{\epsilon^{1 / 2}}, t\right) \chi_{n}\left(\frac{\boldsymbol{x}}{\epsilon} ; \boldsymbol{p}(t)\right) \\
& +O_{L_{x}^{2}\left(\mathbb{R}^{d}\right)}\left(\epsilon^{1 / 2} e^{C t}\right) .
\end{aligned}
$$

Strategy of proof

- Recall form of the asymptotic solution:

$$
\begin{align*}
& \psi^{\epsilon}(\boldsymbol{x}, t)= \\
& \epsilon^{-d / 4} e^{i S(t) / \epsilon} e^{i \boldsymbol{p}(t) \cdot(\boldsymbol{x}-\boldsymbol{q}(t)) / \epsilon} a\left(\frac{\boldsymbol{x}-\boldsymbol{q}(t)}{\epsilon^{1 / 2}}, t\right) \chi_{n}\left(\frac{\boldsymbol{x}}{\epsilon} ; \boldsymbol{p}(t)\right) \\
& +O_{L_{x}^{2}\left(\mathbb{R}^{d}\right)}\left(\epsilon^{1 / 2} e^{C t}\right) . \tag{AS}
\end{align*}
$$

- Using (AS), we obtain expansions of the center of mass \mathcal{Q}^{ϵ} and average quasi-momentum \mathcal{P}^{ϵ} in powers of $\epsilon^{1 / 2}$:

$$
\begin{aligned}
& \mathcal{Q}^{\epsilon}(t)=\boldsymbol{q}(t)+\epsilon^{1 / 2} \int_{\mathbb{R}^{d}} \boldsymbol{y}|a(\boldsymbol{y}, t)|^{2} \mathrm{~d} \boldsymbol{y}+O(\epsilon) \\
& \mathcal{P}^{\epsilon}(t)=\boldsymbol{p}(t)+\epsilon^{1 / 2} \int_{\mathbb{R}^{d}} \overline{a(\boldsymbol{y}, t)}\left(-i \nabla_{\boldsymbol{y}}\right) a(\boldsymbol{y}, t) \mathrm{d} \boldsymbol{y}+O(\epsilon)
\end{aligned}
$$

Strategy of proof

- Recall form of the asymptotic solution:

$$
\begin{align*}
& \psi^{\epsilon}(\boldsymbol{x}, t)= \\
& \epsilon^{-d / 4} e^{i S(t) / \epsilon} e^{i \boldsymbol{p}(t) \cdot(\boldsymbol{x}-\boldsymbol{q}(t)) / \epsilon} a\left(\frac{\boldsymbol{x}-\boldsymbol{q}(t)}{\epsilon^{1 / 2}}, t\right) \chi_{n}\left(\frac{\boldsymbol{x}}{\epsilon} ; \boldsymbol{p}(t)\right) \\
& +O_{L_{\chi}^{2}\left(\mathbb{R}^{d}\right)}\left(\epsilon^{1 / 2} e^{C t}\right) . \tag{AS}
\end{align*}
$$

- Using (AS), we obtain expansions of the center of mass \mathcal{Q}^{ϵ} and average quasi-momentum \mathcal{P}^{ϵ} in powers of $\epsilon^{1 / 2}$:

$$
\begin{aligned}
& \mathcal{Q}^{\epsilon}(t)=\boldsymbol{q}(t)+\epsilon^{1 / 2} \int_{\mathbb{R}^{d}} \boldsymbol{y}|a(\boldsymbol{y}, t)|^{2} \mathrm{~d} \boldsymbol{y}+O(\epsilon) \\
& \mathcal{P}^{\epsilon}(t)=\boldsymbol{p}(t)+\epsilon^{1 / 2} \int_{\mathbb{R}^{d}} \overline{a(\boldsymbol{y}, t)}\left(-i \nabla_{\boldsymbol{y}}\right) a(\boldsymbol{y}, t) \mathrm{d} \boldsymbol{y}+O(\epsilon)
\end{aligned}
$$

Dynamics of $\mathcal{Q}^{\epsilon}, \boldsymbol{P}^{\epsilon}$ couples to evolution of $\boldsymbol{q}, \boldsymbol{p}$, a (complicated) as well as the Bloch functions $\chi_{n}(\boldsymbol{z} ; \boldsymbol{p})$.

Theorem (Watson-Weinstein-Lu 2016)

1) Let $\mathcal{Q}^{\epsilon}, \mathcal{P}^{\epsilon}$ denote the center of mass and averaged quasi-momentum of the wavepacket asymptotic solution. Then, after making the near-identity change of variables:

$$
(\boldsymbol{q}, \boldsymbol{p}, a) \mapsto\left(\mathcal{Q}^{\epsilon}, \boldsymbol{P}^{\epsilon}, a^{\epsilon}\right)
$$

where $a^{\epsilon}(\boldsymbol{y}, t)$ satisfies:

$$
\begin{equation*}
i \partial_{t} a^{\epsilon}=-\frac{1}{2} \nabla_{\boldsymbol{y}} \cdot D_{\mathcal{P}^{\epsilon}}^{2} E_{n}\left(\mathcal{P}^{\epsilon}(t)\right) \nabla_{\boldsymbol{y}} a^{\epsilon}+\frac{1}{2} \boldsymbol{y} \cdot D_{\mathcal{Q}^{\epsilon}}^{2} W\left(\mathcal{Q}^{\epsilon}(t)\right) \boldsymbol{y} a^{\epsilon} \tag{E}
\end{equation*}
$$

Theorem (Watson-Weinstein-Lu 2016)

1) Let $\mathcal{Q}^{\epsilon}, \mathcal{P}^{\epsilon}$ denote the center of mass and averaged quasi-momentum of the wavepacket asymptotic solution. Then, after making the near-identity change of variables:

$$
(\boldsymbol{q}, \boldsymbol{p}, a) \mapsto\left(\mathcal{Q}^{\epsilon}, \boldsymbol{\mathcal { P }}^{\epsilon}, a^{\epsilon}\right)
$$

where $a^{\epsilon}(\boldsymbol{y}, t)$ satisfies:

$$
\begin{equation*}
i \partial_{t} a^{\epsilon}=-\frac{1}{2} \nabla_{\boldsymbol{y}} \cdot D_{\mathcal{P}^{\epsilon}}^{2} E_{n}\left(\mathcal{P}^{\epsilon}(t)\right) \nabla_{\boldsymbol{y}} a^{\epsilon}+\frac{1}{2} \boldsymbol{y} \cdot D_{\boldsymbol{\mathcal { Q }}^{\epsilon}}^{2} W\left(\mathcal{Q}^{\epsilon}(t)\right) \boldsymbol{y} a^{\epsilon} \tag{E}
\end{equation*}
$$

the observables $\mathcal{Q}^{\epsilon}(t)$ and $\mathcal{P}^{\epsilon}(t)$ satisfy:
$\dot{\mathcal{Q}}^{\epsilon}(t)=\nabla_{\mathcal{P}^{\epsilon}} E_{n}\left(\mathcal{P}^{\epsilon}(t)\right)-\underbrace{\epsilon \dot{\mathcal{P}}^{\epsilon}(t) \times \mathcal{F}_{n}\left(\mathcal{P}^{\epsilon}(t)\right)}_{\text {Anomalous velocity }}+\epsilon \boldsymbol{C}_{1}\left[a^{\epsilon}\right](t)+O\left(\epsilon^{3 / 2}\right)$

$$
\begin{equation*}
\dot{\mathcal{P}}^{\epsilon}(t)=-\nabla_{\boldsymbol{\mathcal { Q }}^{\epsilon}} W\left(\boldsymbol{\mathcal { Q }}^{\epsilon}(t)\right)+\epsilon \boldsymbol{C}_{2}\left[a^{\epsilon}\right](t)+O\left(\epsilon^{3 / 2}\right) \tag{0}
\end{equation*}
$$

where $\mathcal{F}_{n}\left(\mathcal{P}^{\epsilon}\right)$ denotes the Berry curvature of the Bloch band.

Theorem (Watson-Weinstein-Lu 2016 continued)

2) The coupled dynamics of $\mathcal{Q}^{\epsilon}(t), \mathcal{P}^{\epsilon}(t), a^{\epsilon}(\boldsymbol{y}, t)$ can be derived from the ϵ-dependent Hamiltonian:

$$
\begin{aligned}
& \mathcal{H}^{\epsilon}:=E_{n}\left(\mathcal{P}^{\epsilon}\right)+W\left(\mathcal{Q}^{\epsilon}\right)+\epsilon \nabla_{\mathcal{Q}^{\epsilon}} W\left(\mathcal{Q}^{\epsilon}\right) \cdot \mathcal{A}_{n}\left(\mathcal{P}^{\epsilon}\right) \\
& +\epsilon \frac{1}{2} \int_{\mathbb{R}^{d}} \nabla_{\boldsymbol{y}} \overline{a^{\epsilon}} \cdot D_{\mathcal{P}^{\epsilon}}^{2} E_{n}\left(\mathcal{P}^{\epsilon}\right) \nabla_{\boldsymbol{y}} \boldsymbol{a}^{\epsilon} d \boldsymbol{y}+\epsilon \frac{1}{2} \int_{\mathbb{R}^{d}} \boldsymbol{y} \overline{a^{\epsilon}} \cdot D_{\mathcal{Q}^{\epsilon}}^{2} W\left(\mathcal{Q}^{\epsilon}\right) \boldsymbol{y} a^{\epsilon} d \boldsymbol{y}
\end{aligned}
$$

where $\mathcal{A}_{n}\left(\mathcal{P}^{\epsilon}\right)$ is the n-th band Berry connection.

$$
\begin{array}{ll}
\dot{\mathcal{Q}}^{\epsilon}=\nabla_{\mathcal{P}^{\epsilon}} \mathcal{H}^{\epsilon} & i \partial_{t} a^{\epsilon}=\frac{\delta \mathcal{H}}{\delta \overline{a^{\epsilon}}} \\
\dot{\mathcal{P}}^{\epsilon}=-\nabla_{\mathcal{Q}^{\epsilon}} \mathcal{H}^{\epsilon} &
\end{array}
$$

${ }^{1}$ Chang et al. Phys. Rev. B 1996; Xiao et al. Rev. Mod. Phys. $2010=$

Theorem (Watson-Weinstein-Lu 2016 continued)

2) The coupled dynamics of $\mathcal{Q}^{\epsilon}(t), \mathcal{P}^{\epsilon}(t), a^{\epsilon}(\boldsymbol{y}, t)$ can be derived from the ϵ-dependent Hamiltonian:

$$
\begin{aligned}
& \mathcal{H}^{\epsilon}:=E_{n}\left(\mathcal{P}^{\epsilon}\right)+W\left(\mathcal{Q}^{\epsilon}\right)+\epsilon \nabla_{\mathcal{Q}^{\epsilon}} W\left(\mathcal{Q}^{\epsilon}\right) \cdot \mathcal{A}_{n}\left(\mathcal{P}^{\epsilon}\right) \\
& +\epsilon \frac{1}{2} \int_{\mathbb{R}^{d}} \nabla_{\boldsymbol{y}} \overline{a^{\epsilon}} \cdot D_{\mathcal{P}^{\epsilon}}^{2} E_{n}\left(\mathcal{P}^{\epsilon}\right) \nabla_{\boldsymbol{y}} \boldsymbol{a}^{\epsilon} d \boldsymbol{y}+\epsilon \frac{1}{2} \int_{\mathbb{R}^{d}} \boldsymbol{y} \overline{a^{\epsilon}} \cdot D_{\mathcal{Q}^{\epsilon}}^{2} W\left(\mathcal{Q}^{\epsilon}\right) \boldsymbol{y} a^{\epsilon} d \boldsymbol{y}
\end{aligned}
$$

where $\mathcal{A}_{n}\left(\mathcal{P}^{\epsilon}\right)$ is the n-th band Berry connection.

$$
\begin{array}{ll}
\dot{\mathcal{Q}}^{\epsilon}=\nabla_{\mathcal{P}^{\epsilon}} \mathcal{H}^{\epsilon} & i \partial_{t} a^{\epsilon}=\frac{\delta \mathcal{H}}{\delta \overline{\boldsymbol{a}^{\epsilon}}} \\
\dot{\mathcal{P}}^{\epsilon}=-\nabla_{\mathcal{Q}^{\epsilon} \mathcal{H}^{\epsilon}}
\end{array}
$$

- The system (S) contains terms which do not appear in the works of Niu et al. ${ }^{1}$

[^0]
Aside: dynamics of a particle coupled to a wave-field

- When $V=0$, system reduces to:
$\dot{\mathcal{Q}}^{\epsilon}(t)=\mathcal{P}^{\epsilon}(t)$
$\dot{\mathcal{P}}^{\epsilon}(t)=-\nabla_{\mathcal{Q}^{\epsilon}} W\left(\mathcal{Q}^{\epsilon}(t)\right) \underbrace{-\epsilon \frac{1}{2} \partial_{\mathcal{Q}^{\epsilon}}^{3} W\left(\mathcal{Q}^{\epsilon}\right)\left\langle a^{\epsilon}(y, t) \mid y^{2} a^{\epsilon}(y, t)\right\rangle_{L_{y}^{2}}}_{\text {coupling of discrete degrees of freedom to wave-field }}$
$i \partial_{t} a^{\epsilon}=-\frac{1}{2} \partial_{\mathcal{P}^{\epsilon}}^{2} E_{n}\left(\mathcal{P}^{\epsilon}(t)\right) \partial_{y}^{2} a^{\epsilon}+\frac{1}{2} \partial_{\mathcal{Q}^{\epsilon}}^{2} W\left(\mathcal{Q}^{\epsilon}(t)\right) y^{2} a^{\epsilon}$

Aside: dynamics of a particle coupled to a wave-field

- When $V=0$, system reduces to:

$$
\dot{\mathcal{Q}}^{\epsilon}(t)=\mathcal{P}^{\epsilon}(t)
$$

$$
\dot{\mathcal{P}}^{\epsilon}(t)=-\nabla_{\mathcal{Q}^{\epsilon}} \mathcal{W}\left(\mathcal{Q}^{\epsilon}(t)\right) \underbrace{-\epsilon \frac{1}{2} \partial_{\mathcal{Q}^{\epsilon}}^{3} W\left(\mathcal{Q}^{\epsilon}\right)\left\langle a^{\epsilon}(y, t) \mid y^{2} a^{\epsilon}(y, t)\right\rangle_{L_{2}^{2}}}_{\text {coupling of discrete degrees of freedom to wave-field }}
$$

$$
i \partial_{t} a^{\epsilon}=-\frac{1}{2} \partial_{\mathcal{P}}^{2} E_{n}\left(\mathcal{P}^{\epsilon}(t)\right) \partial_{y}^{2} a^{\epsilon}+\frac{1}{2} \partial_{\mathcal{Q}^{\epsilon}}^{2} W\left(\mathcal{Q}^{\epsilon}(t)\right) y^{2} a^{\epsilon}
$$

- Center of mass dynamics when potential $W \propto q^{4}$:

Wavepacket dynamics in locally periodic structures

Results:

1. A new Hamiltonian system controlling the dynamics of wavepackets which are spectrally localized away from Bloch band degeneracies.
2. The dynamics of a wavepacket incident on a Bloch band degeneracy.

Dynamics at Bloch band degeneracies

- So far, assumed that the wavepacket avoids degeneracies:

$$
\forall t \geq 0, E_{n-1}(\boldsymbol{p}(t))<E_{n}(\boldsymbol{p}(t))<E_{n+1}(\boldsymbol{p}(t))
$$

Dynamics at Bloch band degeneracies

- So far, assumed that the wavepacket avoids degeneracies:

$$
\forall t \geq 0, E_{n-1}(\boldsymbol{p}(t))<E_{n}(\boldsymbol{p}(t))<E_{n+1}(\boldsymbol{p}(t))
$$

- Degeneracies, where $E_{n}\left(\boldsymbol{p}^{*}\right)=E_{n+1}\left(\boldsymbol{p}^{*}\right)$, usually associated with symmetries of periodic structure. In $d=1$, rich set of examples: Jacobi elliptic functions.

Dynamics at Bloch band degeneracies

- So far, assumed that the wavepacket avoids degeneracies:

$$
\forall t \geq 0, E_{n-1}(\boldsymbol{p}(t))<E_{n}(\boldsymbol{p}(t))<E_{n+1}(\boldsymbol{p}(t))
$$

- Degeneracies, where $E_{n}\left(\boldsymbol{p}^{*}\right)=E_{n+1}\left(\boldsymbol{p}^{*}\right)$, usually associated with symmetries of periodic structure. In $d=1$, rich set of examples: Jacobi elliptic functions.

- New degree of freedom: coupling between degenerate states

Dynamics at Bloch band degeneracies

- So far, assumed that the wavepacket avoids degeneracies:

$$
\forall t \geq 0, E_{n-1}(\boldsymbol{p}(t))<E_{n}(\boldsymbol{p}(t))<E_{n+1}(\boldsymbol{p}(t))
$$

- Degeneracies, where $E_{n}\left(\boldsymbol{p}^{*}\right)=E_{n+1}\left(\boldsymbol{p}^{*}\right)$, usually associated with symmetries of periodic structure. In $d=1$, rich set of examples: Jacobi elliptic functions.

- New degree of freedom: coupling between degenerate states
- At crossings, Bloch band functions: $\boldsymbol{p} \rightarrow E_{n}(\boldsymbol{p})$ not smooth

Theorem (Watson-Weinstein 2016)

- p^{*} a degenerate point in $d=1 . E_{+}(p), E_{-}(p)$ smooth band functions in a neighborhood of p^{*} (always exist in $d=1$).

Theorem (Watson-Weinstein 2016)

- p^{*} a degenerate point in $d=1 . E_{+}(p), E_{-}(p)$ smooth band functions in a neighborhood of p^{*} (always exist in $d=1$).

- Consider a wavepacket associated with the band E_{+}with quasi-momentum $p_{+}(t)$ that is driven towards the degeneracy i.e. there exists t^{*} such that: $\lim _{t \uparrow t^{*}} p_{+}(t)=p^{*}$.

Theorem (Watson-Weinstein 2016)

- p^{*} a degenerate point in $d=1 . E_{+}(p), E_{-}(p)$ smooth band functions in a neighborhood of p^{*} (always exist in $d=1$).

- Consider a wavepacket associated with the band E_{+}with quasi-momentum $p_{+}(t)$ that is driven towards the degeneracy i.e. there exists t^{*} such that: $\lim _{t \uparrow t^{*}} p_{+}(t)=p^{*}$.
- As $t \uparrow t^{*}$, error in single band approximation blows up:

$$
\left\|\psi^{\epsilon}(\cdot, t)-W P(\cdot, t)\right\|_{L^{2}} \sim \frac{\sqrt{\epsilon}}{\left|t-t^{*}\right|}+\frac{\epsilon}{\left|t-t^{*}\right|^{2}}
$$

\Longrightarrow emergent time-scale: $s \sim \frac{t-t^{*}}{\sqrt{\epsilon}}$.

Theorem (Watson-Weinstein 2016 continued)

- By studying in detail the dynamics of the PDE on the emergent time-scale $s=\frac{t-t^{*}}{\sqrt{\epsilon}}$, we find that the blow-up may be resolved by allowing coupling between degenerate states.

Theorem (Watson-Weinstein 2016 continued)

- By studying in detail the dynamics of the PDE on the emergent time-scale $s=\frac{t-t^{*}}{\sqrt{\epsilon}}$, we find that the blow-up may be resolved by allowing coupling between degenerate states.
\Longrightarrow at $t=t^{*}$ a second wavepacket associated with the band E_{-}is excited.

Theorem (Watson-Weinstein 2016 continued)

- By studying in detail the dynamics of the PDE on the emergent time-scale $s=\frac{t-t^{*}}{\sqrt{\epsilon}}$, we find that the blow-up may be resolved by allowing coupling between degenerate states.
\Longrightarrow at $t=t^{*}$ a second wavepacket associated with the band E_{-}is excited.
- 'Excited' wavepacket has size $\propto \sqrt{\epsilon}$ (in L^{2}), may be explicitly characterized. Group velocity opposite sign: 'reflected' wave.

Theorem (Watson-Weinstein 2016 continued)

- By studying in detail the dynamics of the PDE on the emergent time-scale $s=\frac{t-t^{*}}{\sqrt{\epsilon}}$, we find that the blow-up may be resolved by allowing coupling between degenerate states.
\Longrightarrow at $t=t^{*}$ a second wavepacket associated with the band E_{-}is excited.
- 'Excited' wavepacket has size $\propto \sqrt{\epsilon}$ (in L^{2}), may be explicitly characterized. Group velocity opposite sign: 'reflected' wave.

Theorem (Watson-Weinstein 2016 continued)

- By studying in detail the dynamics of the PDE on the emergent time-scale $s=\frac{t-t^{*}}{\sqrt{\epsilon}}$, we find that the blow-up may be resolved by allowing coupling between degenerate states.
\Longrightarrow at $t=t^{*}$ a second wavepacket associated with the band E_{-}is excited.
- 'Excited' wavepacket has size $\propto \sqrt{\epsilon}$ (in L^{2}), may be explicitly characterized. Group velocity opposite sign: 'reflected' wave.

Result is an analog of those obtained by Hagedorn (B-O approx. $)_{\overline{\overline{1}}}$

Consistency with Landau-Zener theory

- Schrödinger's equation with a time-dependent Hamiltonian:

$$
i \epsilon \partial_{t} \psi^{\epsilon}=H(t) \psi^{\epsilon}
$$

with $\operatorname{Spec}[H(t)]=E_{+}(t) \cup E_{-}(t)$, linear crossing at $t=t^{*}$.

Consistency with Landau-Zener theory

- Schrödinger's equation with a time-dependent Hamiltonian:

$$
i \epsilon \partial_{t} \psi^{\epsilon}=H(t) \psi^{\epsilon}
$$

with $\operatorname{Spec}[H(t)]=E_{+}(t) \cup E_{-}(t)$, linear crossing at $t=t^{*}$.

- Seek a solution: $\psi^{\epsilon}(t)=\sum_{\sigma= \pm} c_{\sigma}(t) \chi_{\sigma}(t) e^{-i \int_{t^{*}}^{t} E_{\sigma}(\tau) \mathrm{d} \tau}$,

Consistency with Landau-Zener theory

- Schrödinger's equation with a time-dependent Hamiltonian:

$$
i \epsilon \partial_{t} \psi^{\epsilon}=H(t) \psi^{\epsilon}
$$

with $\operatorname{Spec}[H(t)]=E_{+}(t) \cup E_{-}(t)$, linear crossing at $t=t^{*}$.

- Seek a solution: $\psi^{\epsilon}(t)=\sum_{\sigma= \pm} c_{\sigma}(t) \chi_{\sigma}(t) e^{-i \int_{t^{*}}^{t} E_{\sigma}(\tau) \mathrm{d} \tau}$, obtain system for co-efficients:

$$
\begin{aligned}
& \dot{c}_{+}(t)=\left\langle\chi_{+}(t) \mid \dot{\chi}_{-}(t)\right\rangle e^{\frac{i \int_{t^{*}}^{t} E_{+}(\tau)-E_{-}(\tau) \mathrm{d} \tau}{\epsilon}} c_{-}(t) \\
& \dot{c}_{-}(t)=\left\langle\chi_{-}(t) \mid \dot{\chi}_{+}(t)\right\rangle e^{\frac{i \int_{t^{*}}^{t} E_{-}(\tau)-E_{+}(\tau) \mathrm{d} \tau}{\epsilon}} c_{+}(t) .
\end{aligned}
$$

Consistency with Landau-Zener theory

- Schrödinger's equation with a time-dependent Hamiltonian:

$$
i \epsilon \partial_{t} \psi^{\epsilon}=H(t) \psi^{\epsilon}
$$

with $\operatorname{Spec}[H(t)]=E_{+}(t) \cup E_{-}(t)$, linear crossing at $t=t^{*}$.

- Seek a solution: $\psi^{\epsilon}(t)=\sum_{\sigma= \pm} c_{\sigma}(t) \chi_{\sigma}(t) e^{-i \int_{t^{*}}^{t} E_{\sigma}(\tau) \mathrm{d} \tau}$, obtain system for co-efficients:

$$
\begin{aligned}
& \dot{c}_{+}(t)=\left\langle\chi_{+}(t) \mid \dot{\chi}_{-}(t)\right\rangle e^{\frac{i \int_{t^{*}}^{t} E_{+}(\tau)-E_{-}(\tau) \mathrm{d} \tau}{\epsilon}} c_{-}(t) \\
& \dot{c}_{-}(t)=\left\langle\chi_{-}(t) \mid \dot{\chi}_{+}(t)\right\rangle e^{\frac{i \int_{t^{*}}^{t} E_{-}(\tau)-E_{+}(\tau) \mathrm{d} \tau}{\epsilon}} c_{+}(t) .
\end{aligned}
$$

- Suppose $c_{+}(0)=1, c_{-}(0)=0$. Integrating in time, using oscillations \Longrightarrow

$$
\left\|c_{-}(t)\right\|^{2}=\frac{2 \pi\left|\left\langle\chi_{-}\left(t^{*}\right) \mid \dot{\chi}_{+}\left(t^{*}\right)\right\rangle\right|^{2}}{\left|\dot{E}_{+}\left(t^{*}\right)-\dot{E}_{-}\left(t^{*}\right)\right|} \sqrt{\epsilon}+o(\sqrt{\epsilon})
$$

Ongoing work/future directions

- What are the Berry curvature-induced dynamics at and after the Ehrenfest timescale of validity of the semiclassical wavepacket ansatz $t \sim \ln 1 / \epsilon$?

Ongoing work/future directions

- What are the Berry curvature-induced dynamics at and after the Ehrenfest timescale of validity of the semiclassical wavepacket ansatz $t \sim \ln 1 / \epsilon$?
- Extension of band crossing theory to conical band crossings, which appear in dispersion surfaces of honeycomb lattice potentials, anisotropic photonic media:

Ongoing work/future directions

- What are the Berry curvature-induced dynamics at and after the Ehrenfest timescale of validity of the semiclassical wavepacket ansatz $t \sim \ln 1 / \epsilon$?
- Extension of band crossing theory to conical band crossings, which appear in dispersion surfaces of honeycomb lattice potentials, anisotropic photonic media:

and to avoided crossings, gap $\propto \sqrt{\epsilon}$.

Ongoing work/future directions

- What are the Berry curvature-induced dynamics at and after the Ehrenfest timescale of validity of the semiclassical wavepacket ansatz $t \sim \ln 1 / \epsilon$?
- Extension of band crossing theory to conical band crossings, which appear in dispersion surfaces of honeycomb lattice potentials, anisotropic photonic media:

and to avoided crossings, gap $\propto \sqrt{\epsilon}$.
Expect $O(1)$ coupling between bands in these cases; proved by Hagedorn (B-O approximation).

Thanks for listening!

[^0]: ${ }^{1}$ Chang et al. Phys. Rev. B 1996; Xiao et al. Rev. Mod. Phys. 2010

