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3D Quasi-Geostrophic Flow




Physical Model

* QG - a model for large time-scale, rotating oceanic/atmospheric flows

* Derivation from Navier-Stokes/Euler equations with Boussinesq approximation

and Coriolis force. See Bourgeois-Beale (94), Desjardins-Grenier (98)

* The Rossby number and the geostrophic balance - wind velocity is orthogonal to

the gradient of the pressure in the asymptotic limit



The Equations

©W(t,x,y,2): [0,T] x Q x [0,00) = R (Q CRr?)
- The velocity (u, v, 0) is stratified and verifies
(U,v,0) = (—W, 8W,0) = Vv
- Notations -
V = (6x,0,0), Oy =—0:ls—0, A =0+ .

- Viscosity parameter r € {0,1} - inviscid model / viscous model

O +V V- V)AV) =0  [0,T] x Qx (0, 00)
O +V V- V)0,V) = AV [0,T] x Q x {z =0}
v(0,x,y,2) = W° t=0.



Main Results




Weak Solutions for The Inviscid Case for R,

Theorem (N., "17)

Choose an initial value VW° with AW, € LI(R3)for g € (£,3],

9,V € LP(R?) for p € (%,00]. Then there exists a global in time weak
solution such that VW € L(L% + L%(Ri)).
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Weak Solutions for The Inviscid Case for R,

Theorem (N., "17)

Choose an initial value VW° with AW, € LI(R3)for g € (£,3],

9,V € LP(R?) for p € (%,00]. Then there exists a global in time weak
solution such that VW € L(L% + L%(Ri)).

* Vasseur-Puel ("14) built weak solutions for AW?, Vw0 9, w0 ¢ |2
- Challenge is for small p and small g - how to define V"W - V(8, W) and
Vv v(av)?

- Need the right notion of "weak” solution
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Further Properties of Weak Solutions

2D SQG - A simplified model

+ AWO =0, implying that AW(t) = 0 for all t
SOV =0=(-A)2v,and VW = u = R0,
KONV + VU - V(O,W)=0 = df+u-Vo=0

- Weak solutions constructed by Resnick ('95) for 8° € L%(R?), Marchand for
0° € LP(R?) for p > % (08)
Theorem (N., 17)

1. When AW = 0, weak solutions to SQG are "weak solutions” to 3D QG and

vice versa
2. Under appropriate assumptions on p and g, "weak solutions” to 3D QG
satisfy the transport equations in the usual weak sense.

Theorem (N., 17)

When VW € C ([O,T); LZ(Ri)) nLe ([o, T) x [0, 00); égw(Rz)) fora > 1,

o
S IVY Ol = 0 )
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The Inviscid Case for Bounded Domains

* We consider a domain of the form Q x [0, co) for Q a smooth, bounded set in R?

- Natural lateral boundary conditions are a mix of Dirichlet and Neumann

Theorem (N.-Vasseur, "18)
The natural lateral boundary conditions are

. \U(t,X,y, Z)|£Q><[O,oo) = C(t,Z)
& Joaxin VV(2) s =0

With these boundary conditions, there exists a global weak solutions to inviscid QG
posed on [0,00) x Q X [0, c0).
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The Case with Dissipation

Theorem (N.-Vasseur, ("17))

Consider dissipative (QG) (diffusive term AV at z = 0) supplemented
with an initial value VWO € H3(R3 ) with s > 3. Then there exists a

unique, global in time solution VWV such that for every T > 0,
VV € C°(0, T; HS(R3)).

* In particular, if the initial data is smooth (C>), the unique solution is smooth

*+ Pure transport allows for propagation of regularity but no smoothing



Inviscid Models




A Priori Estimates

O+ V' V- V)AV) =0  [0,T] x Q x (0, 00)
O+ V' V- T)O,W) =0 [0,T]xQx {z=0}
v(0,x,y,2) = W° t=0.

+ Forany p € [1,00] and g € [1, o0], integrating by parts and using the divergence
free property yields

AV ()]l (0,00)) < 1AV [lp (0 (0,00))

100 W(8)llia@) < 1AV |[agax(0,00))

- Lack of compactness at z= 0 - no strong convergence for ﬁlwzzo or g, ¥
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The Reformulated Problem

(B +V W V) AW) =0  [0,T] x Q x (0,00)
(B + VW V) (0,W) =0 [0,T]xQx {z=0}

- The first equation is equal to the divergence of
(0+ ¥ w-¥) (V) =0

- The second equation is the trace of the third component at z = 0 of
(04 ¥ w-9) (V) =0

- Inverting the divergence operator with a Neumann condition is not unique
- There exists (V x Q) - v = 0 such that the reformulated equation is actually

(8 + VW V) (VV) = V x (Q)

- Weak solutions are defined for VW - compactness available
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o0+ u - Vo =0
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Boundary Conditions When Q # R?

- Back to inviscid SQG - 9, W = 0 = (—=A)2 W, u =V W = RL0
o0+ u - Vo =0

- When Q # R?, how to define u = R+0 = (—Z)*%WL?
- Spectral fractional Laplacian - see work of Constantin, Ignatova, Nguyen
- Requires# =00n9Q = W =00n 92 x [0, c0)
- Our boundary conditions
S V(L X,y 2) oax0.00) = C(t.2)
-2 Joariy VV(@) v =0
- Our solutions do not coincide with those of Constantin-Nguyen

1



Viscous Model




Regularity for 2D Critical SQG

- Critical SQG - 9, W = 0 = (—=A)2 W, u =V W = RL0, AV = —(—A)20
B0 +u-VO+ (—B)20 =0

- Global regularity for L2 initial data established by Caffarelli-Vasseur ("10). Several
other proofs by Kiselev-Nazarov-Volberg, Constantin-Vicol,
Constantin-Vicol-Tarfulea



Difficulties in 3 Dimensions

* The transport equation for AW is hyperbolic - no regularization
- Beale-Kato-Majda criterion is necessary (VJ‘\U is a log-Lipschitz velocity field)

- The regularization effects for 8, W are only C* - how to bootstrap higher?
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Difficulties in 3 Dimensions

* The transport equation for AW is hyperbolic - no regularization

- Beale-Kato-Majda criterion is necessary (VJ‘\II is a log-Lipschitz velocity field)
- The regularization effects for 8, W are only C* - how to bootstrap higher?

- Interior vorticity - u = R0+ 0, AW = —(~A)260 + f

B0 +u-VO+ (—B)10=F
- A priori bound on fis only Lf® (ng) - the equation is critical

- Showingthat 6 € L®° (B]x),oo> requires a combination of De Giorgi, potential
theory, Littlewood-Paley techniques

13
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Directions




Ongoing Work

Theorem (N.)

Let o < 1. Then weak solutions to inviscid QG on the torus T? in the
class C, are not unique and may dissipate energy.

- Recall energy is conserved when o > % (N.,"17). This is referred
to as rigidity. Conversely, when a < % this theorem

demonstrates flexibility.

14



Future Directions

* Smooth solutions to the inviscid model on bounded domains and the validity of
our boundary conditions

- Blow-up on bounded domains?

- Non-uniqueness in other regularity classes

15



Thanks for your attention!
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