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Phase field or Diffuse interface models

• Sharp-interface models
• PDE for each phase + coupled interface conditions
• Very difficult numerically (interface tracking)

• Diffuse interface Phase-field models
• Phase function with distinct values (for instance +1 and -1) in

each phase, with a smooth change in the interface (of width
ε).

• Surface motion depending on the physical energy
dissipation.

• When interface width ε tends to zero, recover a sharp
interface model.
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Motivation

Design numerical schemes for diffuse-interface phase-field
problems:

1 Efficient in time (Linear schemes, adaptive time-step).
2 Suitable to use (standard) Finite Elements (mesh

adaptation)
3 Mimic properties of the continuous problem: Dissipative

Energy law, maximum principle, mass conservation, ...
4 Good finite and large time accuracy (infinite equilibrium

states)

Numerical analysis:
1 Large time Energy Stability
2 Unique Solvability of the schemes
3 Convergence of iterative algorithms approximating nonlinear

schemes
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Allen-Cahn and Cahn-Hilliard models
The Allen-Cahn and the Cahn-Hilliard models are gradient flows for
the same Free Energy (Liapunov functional):

E(φ) = Ephilic(φ) + Ephobic(φ) :=

∫
Ω

(
1
2
|∇φ|2 + F (φ)

)
dx

where F (φ) is a double-well potential taking two minimum (stable)
values:

F (φ) =
1

4ε2 (φ2 − 1)2 at φ = ±1 (polynomial potential: Ginzburg-Landau)

• Allen-Cahn : φt + γ
δE
δφ

= 0 ⇒ Maximum Principle

• Cahn-Hilliard: φt −∇ ·
(

M(φ)∇δE
δφ

)
= 0⇒ Mass Conservation

where
δE
δφ

= −∆φ+ f (φ) with f (φ) = F ′(φ) =
1
ε2 (φ3 − φ).

In both cases:
dtE(φ(t)) ≤ 0.
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Cahn-Hilliard Model

Weak formulation: Find (φ,w) such that

φ ∈ L∞((0,T ); H1(Ω)) and w ∈ L2((0,T ); H1(Ω))

satisfying
〈φt , w̄〉+ γ

(
∇w ,∇w̄

)
= 0 ∀ w̄ ∈ H1(Ω)(

∇φ,∇φ̄
)

+
(

f (φ), φ̄
)
−
(

w , φ̄
)

= 0 ∀ φ̄ ∈ H1(Ω).

Energy Law:

d
dt

E(φ(t)) + γ

∫
Ω
|∇w |2dx = 0.

Mathematical Analysis: Abels, Garcke, Grasselli, Miranville,
Schimperna, ...
Numerical Analysis: Boyer, Elliot, Feng, Gómez, Hughes, Prohl,
...
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Second Order Schemes for the Cahn-Hilliard model

Generic Second order Finite Difference schemes (Crank-Nicolson
for linear terms)
(
δtφ

n+1, w̄
)

+ γ
(
∇wn+ 1

2 ,∇w̄
)

= 0 ∀ w̄ ∈ H1(Ω)(
∇
(φn+1 + φn

2

)
,∇φ̄

)
+
(

f k (φn+1, φn), φ̄
)
−
(

wn+ 1
2 , φ̄
)

= 0 ∀ φ̄ ∈ H1(Ω),

where δtφ
n+1 = (φn+1 − φn)/k (discrete time derivative).

Discrete Energy Law: Testing by (w̄ , φ̄) = (wn+ 1
2 , δtφ

n+1)

δtE(φn+1) + γ‖∇wn+ 1
2 ‖2

L2 +((((((((hhhhhhhhNDphilic(φn+1, φn) + NDphobic(φn+1, φn) = 0,

where

NDphilic(φn+1, φn) :=
(
∇
(φn+1 + φn

2

)
,∇δtφ

n+1
)
−δt

(∫
Ω

1
2
|∇φn+1|2

)
= 0

and

NDphobic(φn+1, φn) :=
(

f k (φn+1, φn), δtφ
n+1
)
− δt

(∫
Ω

F (φn+1)

)
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Energy Stability

Definition
Numerical schemes are energy-stable if

δtE(φn+1) + γ

∫
Ω
|∇wn+ 1

2 |2 ≤ 0, ∀n.

In particular, the discrete energy decreases,

E(φn+1) ≤ E(φn), ∀n.
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Eyre’s decomposition

[Eyre]
Splitting the potential term

F (φ) = Fc(φ)+Fe(φ) with F ′′c ≥ 0 (convex) and F ′′e ≤ 0 (concave)

Taking implicitly the convex term and explicitly the non-convex one, i.e.

f k (φn+1, φn) = fc(φn+1) + fe(φn) =
1
ε2 ((φn+1)3 − φn),

Properties:

• First order accurate

• Nonlinear scheme

• Unconditionally unique solvable

• Unconditionally energy-stable
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Midpoint (MP)

Midpoint approximation of the potential term [Elliot], [Du],
[Lin],...

f k (φn+1, φn) =
F (φn+1)− F (φn)

φn+1 − φn

Then

NDphobic(φn+1, φn) = 0 ⇒ δtE(φn+1) + γ‖∇wn+ 1
2 ‖2L2 = 0

Properties:
• Second order accurate
• Nonlinear scheme
• Conditionally unique solvable (k < ε4/γ)

• Unconditionally energy-stable
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Midpoint (MP). Newton Scheme

Theorem

• Solvability hypothesis

k <
4ε4

γ

• Convergence hypothesis

k1/2

ε4 < C and l«ım
(k ,h)→0

k
h2 = 0.
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(US2)

[Wang et al.]
Splitting the potential term F (φ) = Fc(φ) + Fe(φ) with
F ′′c ≥ 0 (convex) and F ′′e ≤ 0 (concave), Taking MP for the
convex term and BDF2 for the non-convex:

f k (φn+1, φn, φn−1)=
Fc(φn+1)− Fc(φn)

φn+1 − φn +
1
2

(
3fe(φn)− fe(φn−1)

)
.

Properties:
• Second order accurate
• Nonlinear scheme
• Unconditionally unique solvable
• Unconditionally energy-stable for a perturbed energy

Ẽ(φn+1) = E(φn+1) + k2
∫

Ω

1
4ε2 |δtφ

n+1|2dx ,
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(US2). Newton Scheme

Theorem

• Unconditionally unique solvable
• Convergence hypothesis (Idem MP)

k1/2

ε4 < C and l«ım
(k ,h)→0

k
h2 = 0.
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Optimal Dissipation Scheme (OD2)

Aim: Design f k (φn+1, φn), linear, second order accurate and

NDphobic(φn+1, φn) = O(k2)

Idea: Using a Hermite quadrature formula,

F (φn+1)− F (φn)

φn+1 − φn =
1

φn+1 − φn

∫ φn+1

φn
f (φ)dφ

= f (φn) +
f ′(φn)

2
(φn+1 − φn) + C f ′′(φn+ζ) (φn+1 − φn)2

We define

f k (φn+1, φn) := f (φn) +
1
2

(φn+1 − φn)f ′(φn)

Properties:
• Second order
• Linear scheme
• Conditionally solvable (k < 8ε4/γ)

Remark: We can not control the sign of NDphobic(φn+1, φn)
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(OD2-BDF2)

Splitting the potential term F (φ) = Fc(φ) + Fe(φ) with
F ′′c ≥ 0 (convex) and F ′′e ≤ 0 (concave), OD2 approximation of the
convex term and BDF2 the non-convex one,

f k (φn+1, φn, φn−1)= fc(φn) +
1
2

(φn+1 − φn)f ′c(φn) +
1
2
(
3fe(φn)− fe(φn−1)

)
.

Properties:

• Second order

• Linear scheme

• Unconditionally solvable

Remark: We can not control the sign of NDphobic(φn+1, φn)
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Time step adaptivity.

We have developed a new adaptive-in-time algorithm by using a
criterion related to the ’residual energy law’.

Generic Algorithm:
Given φn, φn−1,dtn−1, dtn, resmax and resmin:

1 Compute φn+1 and

REn+1 :=
E(φn+1)− E(φn)

dtn + ‖∇wn+1/2‖2L2 .

2 If |REn+1| > resmax, take dtn = dtn/θ and go to 1).
(θ > 1)

3 If |REn+1| < resmin, take dtn+1 = θdtn.
4 Take tn+1 = tn + dtn and go to next time step.
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Numerical Simulations. Spinodal decomposition.

Comparative: OD2, MP, US2 and OD2-BDF2

• P1-cont. FE for φh, wh.

• Ω = [0,1]2, h = 1/90, γ = 10−4, ε = 10−2, resmax = 10 and
resmin = 1.

• In Newton’s method, a tolerance parameter tol = 10−3. The
time-step is reduced in the case that the method does not
converge in 10 iterations.

• Random initial data (the same for all the schemes).
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Numerical Simulations. Dynamic

Figura: Dynamic of the model for the random initial condition
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Numerical Simulations.

Mixing energy
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Figura: Mixing energy in [0, 0.5]

May 2016 Giordano Tierra Approximating energy-based models

18/68



Numerical Simulations.

Mixing energy
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Figura: Mixing energy in [0.5, 1]
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Numerical Simulations.

Mixing energy
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Figura: Mixing energy in [1, 5]
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Numerical Simulations.

Mixing energy
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Figura: Mixing energy in [5, 8.5]
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Numerical Simulations. Equilibrium solution of MP

Figura: Equilibrium solution of MP
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Numerical Simulations.

Time steps
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Figura: Time steps in [0, 0.5]
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Numerical Simulations. Time step
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Numerical Simulations.

Time steps
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Figura: Time steps in [1, 5]
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Numerical Simulations.

Time steps
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Figura: Time steps in [5, 8.5]
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Numerical Simulations.

Time steps
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Numerical Simulations. Efficiency

Computational cost:

MP OD2 OD2-BDF2 US2
# Time steps 339 2642 4340 3691

# Linear systems solved 3896 3533 5687 12812

(OD2 with constant time step k = 10−4 ⇒' 80000 iterations)
Conclusions:

Figura: Features of schemes
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3D Numerical Simulations.

• OD2 time scheme.
• Finite element discretization in space, with φh and wh in
P1-cont. FE

• Ω = [0,1]3, h = 1/30, γ = 10−4, ε = 10−2, resmax = 10
and resmin = 1.

• Random initial data.
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Applications

LINEAR UNCONDITIONAL ENERGY-STABLE SPLITTING
SCHEMES FOR A PHASE-FIELD MODEL FOR
NEMATIC-ISOTROPIC FLOWS WITH ANCHORING EFFECTS
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Types of Liquid Crystals

Figura: Types of Liquid Crystals
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Types of Liquid Crystals
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Figura: Types of Liquid Crystals
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Nematic Liquid Crystals
Ginzburg-Landau formulation (penalized version of Ericksen-Leslie system):

ut + u · ∇u +∇p −∇ · σvis −∇ · σnem = 0,

∇ · u = 0 ,

d t + (u · ∇)d + γnemw = 0 ,

w = δEnem
δd ,

(1)

where (δ · /δd) denotes the variational derivative with respect to d , γnem > 0 is the
relaxation time coefficient,

σvis = 2νDu ,

σnem = −λnem(∇d)t∇d ,

and

Enem(d) =

∫
Ω

(
1
2
|∇d |2 + G(d)

)
dx with G(d) =

1
4η2

(|d |2 − 1)2 .

It is known that this system satisfies the following energy law,

d
dt

[Ekin(u) + λnemEnem(d)] + 2
∫

Ω
ν|Du|2dx + λnem

∫
Ω
γnem

∣∣∣∣ δEnem

δd

∣∣∣∣2 dx = 0 .
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Nematic-Isotropic. The variables of the problem

The following variable will take part in the description of the
model:
• the solenoidal velocity u(t ,x), t ∈ (0,T ), x ∈ Ω ⊂ R3

• the pressure of the fluid p(t ,x),
• the director field d(t ,x), that represents the average

orientation of the liquid crystal molecules,
• the function c(t ,x) localizing the two components along the

domain Ω ⊂ Rd (d = 2 or 3) filled by the mixture,

c(t ,x) =


−1 in the Newtonian Fluid part,

∈ (−1,1) in the interface part,
1 in the Nematic Liquid Crystal part.
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Nematic-Isotropic. Energy
The total energy of the system is given by

Etot(u,d , c) = Ekin(u) + λmixEmix(c) + λnemEnem(d , c) + λanch Eanch(d , c)

with

Ekin(u) =
1
2

∫
Ω

|u|2 dx kinetic energy,

Emix(c) =

∫
Ω

(
1
2
|∇c|2 + F (c)

)
dx mixing energy,

Enem(d , c) =

∫
Ω

I(c)

(
1
2
|∇d |2 + G(d)

)
dx elastic energy,

where

F (c) =
1

4ε2 (c2 − 1)2, G(d) =
1

4η2 (|d |2 − 1)2,

and we represent their derivatives as f (c) := F ′(c) and g(d) := G′(d).
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Nematic-Isotropic. The anchoring effect

At the interface between the nematic and newtonian fluids, liquid
crystals prefer to orientate following a certain direction (called as
easy direction).
Three effects can be described:
• the parallel case, where the director vector is parallel to the

interface,
• the homeotropic case, where the director vector is normal to

the interface,
• no anchoring.

NO	  
ANCHORING	  

PARALLEL	  
ANCHORING	  

HOMEOTROPIC	  
ANCHORING	  
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Nematic-Isotropic. The anchoring effect

Eanch(d , c) =
1
2

∫
Ω

(
δ1 |d |2|∇c|2 + δ2 |d · ∇c|2

)
dx

where the anchoring energy will take different forms depending
on the anchoring effect considered, that is,

(δ1, δ2) =


(0,0) no anchoring,
(0,1) parallel anchoring,
(1,−1) homeotropic anchoring.

(2)
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Nematic-Isotropic. The localizing functional I(c)
It represents the volume fraction of liquid crystal at each point x ∈ Ω and its derivative
will be denoted by i(c) := I′(c). It could take different forms but any admissible form
must satisfy the following properties:
• I ∈ C2(R),
• I(c) = 0 if c ≤ −1,
• I(c) = 1 if c ≥ 1,
• I(c) ∈ (0, 1) if c ∈ (−1, 1).

We consider the following interpolation function

I(c) :=


0 if c ≤ −1,
1
16

(c + 1)3 (3c2 − 9c + 8) if c ∈ (−1, 1),

1 if c ≥ 1,

and its derivative is defined as

i(c) := I′(c) =


15
16

(c + 1)2 (c − 1)2 if c ∈ (−1, 1) ,

0 otherwise .
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x

Figura: Interpolator I(c) in interval [0,1]
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Nematic-Isotropic. The model

Combining the Least Action Principle (LAP) and the Maximum
Dissipation Principle (MDP), we arrive to the following PDE
system, fulfilled in the time space domain (0,T )× Ω:

ut + u · ∇u +∇p −∇ · σtot = 0,

∇ · u = 0,

d t + (u · ∇)d + γnemw = 0,

w = δEtot
δd ,

ct + u · ∇c −∇ · (γmix∇µ) = 0,

µ = δEtot
δc .

(3)
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Nematic-Isotropic. The total stress tensor

The total tensor reads,

σtot = σvis + σmix + σnem + σanch,

being:

σvis = 2νDu viscosity,
σmix = −λmix∇c ⊗∇c mixing tensor,
σnem = −λnemI(c)(∇d)t∇d nematic tensor,

and the anchoring tensor σanch has the form:

(σanch)ij = λanch

[
δ1 |d |2∇c ⊗∇c + δ2 (d · ∇c) (∇c ⊗ d)

]
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Nematic-Isotropic. The expression for w and µ

Taking into account that the total energy of the system is given by

Etot(u,d , c) = Ekin(u) + λmixEmix(c) + λnemEnem(d , c) + λanch Eanch(d , c)

then the variational derivatives of Etot are

w =
δEtot

δd
= λnem[−∇ · (I(c)∇d) + I(c) G′(d)] + λanch

δEanch

δd
,

and

µ =
δEtot

δc
= λmix[−∆c + F ′(c)] + λnemI′(c)

(
1
2
|∇d |2 + G(d)

)
+ λanch

δEanch

δc
,

where the anchoring terms will depend on each case:

δEanch

δd
=


0 No anchoring ,

(d · ∇c)∇c Parallel anch. ,

|∇c|2d − (d · ∇c)∇c Homeotropic anch. .

(4)

and

δEanch

δc
=


0 No anchoring ,

−∇ · [(d · ∇c) d] Parallel anch. ,

−∇ · [|d |2∇c − (d · ∇c) d] Homeotropic anch.

(5)
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Nematic-Isotropic. The model

The PDE system (3) is closed with the following initial and
boundary conditions:

u|t=0 = u0, d |t=0 = d0, c|t=0 = c0 in Ω,

u|∂Ω =
(
I(c)∇d

)
n
∣∣
∂Ω

= 0 in (0,T ),

∂c
∂n

∣∣∣∣
∂Ω

=

(
∇δEtot

δc

)
· n
∣∣∣∣
∂Ω

= 0 in (0,T ),

(6)
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Nematic-Isotropic. Reformulation of the stress
tensor

Lemma
The following relation holds:

−∇ · σmix −∇ · σnem −∇ · σanch = −µ∇c − (∇d)tw +∇ϕ

where

ϕ = λnem I(c)

(
1
2
|∇d |2 + G(d)

)
+λmix

(
1
2
|∇c|2 + F (c)

)
+
λanch

2
W (d , c),

with W (d , c) =
(
δ1 |d |2 |∇c|2 + δ2 |d · ∇c|2

)
.
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Nematic-Isotropic. The variational formulation

〈ut , ū〉+ ((u · ∇)u, ū) + (ν(c)Du,Dū)− (p̃,∇ · ū)−
(

(∇d)t w , ū
)

+ (c∇µ, ū) = 0,

(∇ · u, p̄) = 0,

〈d t , w̄〉+ ((u · ∇)d , w̄) + γnem(w , w̄) = 0,

λnem(I(c)∇d ,∇d̄) + λnem(I(c) g(d), d̄) + λanch
δEanch

δd
= (w , d̄),

(ct , µ̄)− (c u,∇µ̄) + γmix(∇µ,∇µ̄) = 0,

λmix(∇c,∇c̄) + λmix(f (c), c̄) + λnem

(
i(c)

[
|∇d |2

2
+ G(d)

]
, c̄

)
+ λanch

δEanch

δc
= (µ, c̄),

for each (ū, p̄, w̄ , d̄ , µ̄, c̄) ∈ H1
0(Ω)× L2

0(Ω)× H1(Ω)× H1(Ω)× H1(Ω)× H1(Ω).
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Nematic-Isotropic. Continuous energy law
Using adequate test functions, we can prove that the previous system satisfies the
following (dissipative) energy law:

d
dt

Etot(u,d , c) +

∫
Ω
ν(c)|Du|2 dx + γnem

∫
Ω
|w |2 dx + γmix

∫
Ω
|∇µ|2 dx = 0.

From the energy law, we deduce the following regularity for a (possible) solution:

u ∈ L∞(0,T ; L2(Ω)) ∩ L2(0,T ; H1(Ω)),

w ∈ L2(0,T ; L2(Ω)),

∇c ∈ L∞(0,T ; L2(Ω)),

∇µ ∈ L2(0,T ; L2(Ω)),∫
Ω F (c)dx ∈ L∞(0,T ),∫
Ω I(c)

(
1
2 |∇d |2 + G(d)

)
dx ∈ L∞(0,T )

Eanch(c,d) ∈ L∞(0,T ),

c ∈ L∞(0,T ; H1(Ω)),∫
Ω I(c) |d |4 ∈ L∞(0,T ),

d ∈ L∞(0,T ; L2(Ω)).

(7)
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Nematic-Isotropic. Numerical schemes

For simplicity, we describe our numerical scheme using an
uniform partition of the time interval: tn = nk , where k > 0
denotes the (fixed) time step. Moreover, hereafter we denote

δtan+1 :=
an+1 − an

k
.
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Nematic-Isotropic. Numerical schemes

Definition
A numerical scheme is energy-stable if it satisfies

δtEtot(un+1,dn+1, cn+1) +

∫
Ω
ν(cn+1)|Dun+1|2 dx

+γnem

∫
Ω
|wn+1|2 dx + γmix

∫
Ω
|∇µn+1|2 dx ≤ 0, ∀n.

In particular, energy-stable schemes satisfy the energy
decreasing in time property, i.e.,

Etot(un+1,dn+1, cn+1) ≤ Etot(un,dn, cn), ∀n.
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Nematic-Isotropic. Coupled Nonlinear Implicit Scheme

Given (un, pn, dn,wn, cn, µn), find (un+1, pn+1, dn+1,wn+1, cn+1, µn+1) such that,



(
un+1 − un

k
, ū

)
+
(

(un+1 · ∇)un+1
, ū
)
− (pn+1

,∇ · ū) + 2(νDun+1
,Dū)

−
(

(∇dn+1)t wn+1
, ū
)

+ (cn+1∇µn+1
, ū) = 0 ,

(∇ · un+1, p̄) = 0 ,(
dn+1 − dn

k
, w̄

)
+
(

(un+1 · ∇)dn+1
, w̄
)

+ γnem(wn+1
, w̄) = 0 ,

λnem(I(cn+1)∇dn+1
,∇d̄) + λnem(I(cn+1) g(dn+1), d̄) + λanch

(
δEanch

δd
(cn+1

, dn+1), d̄
)
− (wn+1

, d̄) = 0 ,

(
cn+1 − cn

k
, µ̄

)
− (cn+1 un+1

,∇µ̄) + γmix (∇µn+1
,∇µ̄) = 0 ,

λmix (∇cn+1
,∇c̄) + λmix (f (cn+1), c̄) + λnem

(
i(cn+1)

[
|∇dn+1|2

2
+ G(dn+1)

]
, c̄

)

+λanch

(
δEanch

δc
(cn+1

, dn+1), c̄
)
− (µn+1

, c̄) = 0 ,

(8)
Disadvantages of this scheme:

• High computational cost (Coupled + Nonlinear system)
• it is not clear that any iterative method to approximate the nonlinear scheme will converge(several

nonlinearities)
• Energy-stability ?
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Nematic-Isotropic. Splitting schemes

We have designed two splitting first-order schemes, denoted by

(dn+1,wn+1) → (cn+1, µn+1) → (un+1,pn+1),

or

(cn+1, µn+1) → (dn+1,wn+1) → (un+1,pn+1),

decoupling computations for nematic part (d ,w) from the
phase-field part (c, µ) (or the contrary in the second case) and
from the fluid part (u,p).
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Nematic-Isotropic. Splitting schemes

STEP 1:
Find (dn+1,wn+1) ∈ Dh ×W h s. t, for each (d̄ , w̄) ∈ Dh ×W h

(
dn+1 − dn

k
, w̄
)

+ ((u? · ∇)dn, w̄) + γnem(wn+1, w̄) = 0,

λnem

(
I(cn)∇dn+1,∇d̄

)
+ λnem

(
I(cn)gk (dn+1,dn), d̄

)
+λanch

(
Λd (dn+1, cn), d̄

)
− (wn+1, d̄) = 0,

where u? := un + 2 k (∇dn)twn+1,

gk (dn+1,dn) is an approximation of g(d(tn+1)) and
Λd (dn+1, cn) is the discrete approximation of δEanch

δd
(d(tn+1), c(tn+1)):

Λd (dn+1, cn) := δ1 |∇cn|2 dn+1 + δ2 (dn+1 · ∇cn)∇cn
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Nematic-Isotropic. Splitting schemes
STEP 2:
Find (cn+1, µn+1) ∈ Ch ×Mh s. t., for (c̄, µ̄) ∈ Ch ×Mh

(
cn+1 − cn

k
, µ̄

)
− (cnu??,∇µ̄) + γmix(∇µn+1,∇µ̄) = 0,

λmix(∇cn+1,∇c̄) + λmix(fk (cn+1, cn), c̄)

+λnem

(
ik (cn+1, cn)

[
1
2
|∇dn+1|2 + G(dn+1)

]
, c̄
)

+λanch

(
Λc(dn+1, cn+1),∇c̄

)
− (µn+1, c̄) = 0,

where u?? := un − 2 k cn∇µn+1,

fk (cn+1, cn) and ik (cn+1, cn) are approximations of f (c(tn+1)) and
i(c(tn+1)), resp. and Λc(dn+1, cn+1) is the discrete approximation of
δEanch

δc
(d(tn+1), c(tn+1)):

Λc(dn+1, cn+1) := δ1 |dn+1|2∇cn+1 + δ2 (dn+1 · ∇cn+1) dn+1
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Nematic-Isotropic. Splitting schemes

STEP 3:
Find (un+1,pn+1) ∈ V h × Ph s. t., for each (ū, p̄) ∈ V h × Ph

(
un+1 − û

k
, ū
)

+ c(un,un+1, ū)− (pn+1,∇ · ū)

+(ν(cn+1)Dun+1,Dū) = 0,

(∇ · un+1, p̄) = 0,

where
û :=

u? + u??

2
,

and
c(u,v ,w) :=

(
(u · ∇)v ,w

)
+

1
2

(
∇ · u,v ·w

)
.

May 2016 Giordano Tierra Approximating energy-based models

52/68



Nematic-Isotropic. Local (in time) discrete energy law

Scheme given by STEPS 1-3 satisfies the following local
discrete energy law:

δtE(dn+1, cn+1,un+1) + γnem ‖wn+1‖2L2

+γmix‖∇µn+1‖2L2 + ‖ν(cn+1)1/2Dun+1‖2L2

+NDn+1
u + NDn+1

elast (cn) + NDn+1
penal(c

n)

+NDn+1
philic + NDn+1

phobic + NDn+1
interp + NDn+1

anch = 0.
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Nematic-Isotropic. Local (in time) discrete energy law

The numerical dissipation terms are:

NDn+1
u =

1
2k

(
‖un+1 − û‖2L2 +

‖û − u?‖2L2 + ‖û − u??‖2L2

2

+
‖u? − un‖2L2 + ‖u?? − un‖2L2

2

)

NDn+1
elast (cn) = λnem

k
2

∫
Ω

i(cn)
∣∣∣δt∇dn+1

∣∣∣2 dx ,

NDn+1
penal(c

n) = λnem

∫
Ω

i(cn)
(

gk (dn+1,dn) · δtdn+1 − δtG(dn+1)
)

dx ,

NDn+1
philic = λmix

k
2

∫
Ω

∣∣∣δt∇cn+1
∣∣∣2 dx ,

NDn+1
phobic = λmix

∫
Ω

(
fk (cn+1, cn) δtcn+1 − δtF (cn+1)

)
dx ,
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Nematic-Isotropic. Local (in time) discrete energy law

NDn+1
interp = λnem

∫
Ω

(
|∇dn+1|2

2
+ G(dn+1)

)
×
(
ik (cn+1, cn) δtcn+1 − δt I(cn+1)

)
dx ,

and

NDn+1
anch

= λanch
k
2

∫
Ω

(
δ1

(
|δtdn+1|2|∇cn|2 + |dn+1|2|δt∇cn+1|2

)
+δ2

(
|δtdn+1 · ∇cn|2 + |dn+1 · ∇δtcn+1|2

) )
dx .

with (δ1, δ2) defined in (2) depending on the type of anchoring.
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Nematic-Isotropic. The functions fk , gk and ik

QUESTION:
How to define fk (cn+1, cn), gk (dn+1,dn), ik (cn+1, cn) to obtain
linear unconditionally energy-stable schemes ?

That is, we want fk (cn+1, cn), gk (dn+1,dn), ik (cn+1, cn) linear
such that

NDn+1
penal(c

n) ≥ 0, NDn+1
phobic ≥ 0, and NDn+1

interp ≥ 0 .
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Nematic-Isotropic. The function fk

fk (cn+1, cn) := f̃ (cn) +
1
2
‖f̃ ′‖∞ (cn+1 − cn), (9)

in our case reduces to

fk (cn+1, cn) = f̃ (cn) + (cn+1 − cn) (10)

where f̃ (c) is the C1-truncation of F ′(c):

f̃ (c) =



2
ε2 (c + 1) if c ≤ −1,

1
ε2 (c2 − 1) c if c ∈ [−1,1],

2
ε2 (c − 1) if c ≥ 1,

(11)
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Nematic-Isotropic. The functions gk and ik

gk (dn+1,dn) = g̃(dn) +

√
51
2

(dn+1 − dn), (12)

where g̃(d) is the C1-truncation of g(d):

g̃(d) =

 2 (|d | − 1)
d
|d |

if |d | ≥ 1,

(|d |2 − 1) d if |d | ≤ 1,

and we also take

ik (cn+1, cn) = i(cn) +
5
√

3
12

(cn+1 − cn). (13)
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Nematic-Isotropic. Well-Posedness of the Schemes

Lemma
If Dh ⊆ W h, then there exist a unique solution (dn+1,wn+1) of STEP 1 using the
potential approximation (12) for gk (dn+1,dn).

Lemma
If 1 ∈ Ch, then there exist a unique solution (cn+1, µn+1) of STEP 2 using the potential
approximations (10) and (13) for fk (cn+1, cn) and ik (cn+1, cn), respectively.

Lemma
If the pair of FE spaces (V h,Ph) satisfies the discrete inf-sup condition

∃β > 0 such that ‖p‖L2 ≤ β sup
ū∈Vh\{Θ}

(p,∇ · ū)

‖ū‖H1
∀ p ∈ Ph , (14)

then there exist a unique solution (un+1, pn+1) of STEP 3.

We propose the following choice for the discrete spaces:

(u, p) ∼ P2 × P1 , (c, µ) ∼ P1 × P1 and (d ,w) ∼ P1 × P1 , (15)

that satisfy the assumptions of Lemmas 6, 7 and 8.
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Nematic-Isotropic. Numerical simulations

The newtonian fluid is represented by blue color while the
nematic fluid is represented by red one.
For simplicity we are considering constant viscosity ν(c) = ν0.

Ω [0,T ] h dt ν0 η

[−1,1]2 [0,10] 2/90 0,001 1,0 0,075

λnem λmix λanch γnem γmix ε

0,1 0,01 0,1 0,5 0,01 0,05
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Nematic-Isotropic. Circular droplet and director
field parallel to the y-axis
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Nematic-Isotropic. Circular droplet and director
field parallel to the y-axis
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Nematic-Isotropic. Elliptic droplet with two points
defects at (±1/2,0)

• A Hedgehog defect at (1/2,0) and an Antihedgehog defect
at (−1/2,0)

d0(x) = d̂/
√
|d̂ |2 + 0,052, with d̂ = (x2 + y2 − 0,25, y) .

Defect annihilation in Nematic Liquid Crystals

Defect annihilation in Nematic Liquid Crystals Drops
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Nematic-Isotropic. Circular droplet and director
field parallel to the y-axis
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Nematic-Isotropic. Spinodal Decomposition

• Random initial data for c, i.e., c ∈ [−10−2,10−2] in
Ω = [0,1]× [0,1], t ∈ [0,1] and dt = 10−4.

• The initial director vector is computed using the function:

d = I(c)
(

sin(x y) sin(x y), cos(x y) cos(x y)
)
.
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Nematic-Isotropic. Spinodal Decomposition
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