Long time behavior of solutions to the 2D Keller-Segel equation

Yao Yao Georgia Tech

based on joint works with José Carrillo, Sabine Hittmeir, Bruno Volzone and Katy Craig, Inwon Kim

KI-Net Young Researchers Workshop Nov 27, 2016

The Keller-Segel equation

 The Keller-Segel equation models the collective motion of cells attracted by a self-emitted chemical substance. The parabolic-elliptic Keller-Segel equation in 2D is

$$\rho_t = \Delta \rho + \nabla \cdot (\rho \nabla (\mathcal{N} * \rho)),$$

where $\mathcal{N} = \frac{1}{2\pi} \log |x|$ is the Newtonian potential in \mathbb{R}^2 . (Patlak '53, Keller-Segel '71)

- There exists a "critical mass" $M_c = 8\pi$ such that:
 - If the mass satisfies M < M_c, the solution remains globally bounded; if M > M_c, solutions blow-up in finite time.
 (Jager-Luckhaus '92, Nagai '01, Dolbeault-Perthame '04, Bedrossian-Masmoudi '14)

 If M = M_c, the global solution may aggregate in infinite time. (Blanchet-Carrillo-Masmoudi '08, Blanchet-Carlen-Carrillo '12, Carlen-Figalli '13)

Keller-Segel equation with nonlinear diffusion

• In \mathbb{R}^d with $d \ge 2$, the K-S equation with nonlinear diffusion is

$$\rho_t = \Delta \rho^m + \nabla \cdot (\rho \nabla (\mathcal{N} * \rho)),$$

where \mathcal{N} is the Newtonian potential in \mathbb{R}^d . Here we assume m > 1, which models the anti-overcrowding effect. (Boi-Capasso-Morale '00, Topaz-Bertozzi-Lewis '06)

- The behavior of solutions depends on *m*, with $m_c = 2 \frac{2}{d}$ being the critical power:
 - For m > m_c, for any ρ₀ ∈ L¹ ∩ L[∞](ℝ^d), the solution exists globally in time, and the L[∞] norm stays uniformly bounded in time. (Sugiyama '06)
 - For $m < m_c$, there might be a finite-time blow-up for initial data with arbitrarily small mass. (Sugiyama '06)
 - For $m = m_c$, the behavior of solution depends on its mass, and there is a critical mass M_c . (Blanchet-Carrillo-Laurençot '09)

- From now on, we focus on the "subcritical" case $m > 2 \frac{2}{d}$, where the solutions are known to exist globally in time.
- Question: long time behavior of solutions?
- If ρ is a solution the Keller-Segel equation, then E_m[ρ] is non-increasing in time:

$$E_m[\rho] = \frac{1}{m-1} \int_{\mathbb{R}^d} \rho^m dx + \frac{1}{2} \int_{\mathbb{R}^d} \rho(\mathcal{N} * \rho) dx.$$

- Let ρ_A be the global minimizer of E_m among all densities with mass A. Then ρ_A must be a stationary solution.
- The following are known about the global minimizer ρ_A :
 - Existence (Lions '84)
 - Radial symmetry (by Riesz's rearrangement inequality)
 - Uniqueness + compact support (Lieb-Yau '87)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Question

If ρ_0 has mass A, is it always true that $\rho(\cdot, t)$ converges to (a translation of) ρ_A as $t \to \infty$?

• The answer is yes ONLY IF we have a positive answer to the following question:

Question

Is ρ_A the unique stationary solution with mass A (up to a translation)?

 For Newtonian potential, it is known that radially symmetric stationary solution (with a fixed mass) is unique (Lieb-Yau '87), so the above question is equivalent with

Question

Is every stationary solution radially symmetric (up to a translation)?

イロト イポト イヨト イヨト

Stationary solutions for aggregation equation with nonlinear diffusion

Consider the equation with a general attracting kernel \mathcal{K} :

$$\rho_t = \Delta \rho^m + \nabla \cdot \big(\rho \nabla (\mathcal{K} * \rho) \big),$$

where \mathcal{K} is radial and is strictly increasing in |x|. Thus any stationary solution ρ_s satisfies

$$\frac{m}{m-1}\rho_s^{m-1} + \mathcal{K} * \rho_s = C_i$$

in each connected component of $\{\rho_s > 0\}$. (C_i can differ in different components).

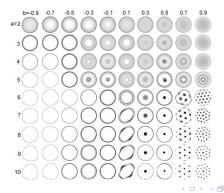
Theorem (Carrillo-Hittmeir-Volzone-Y., '16)

Let $\rho_s \in L^1_+(\mathbb{R}^d) \cap L^{\infty}(\mathbb{R}^d)$ be a stationary solution in the above sense. Then ρ_s must be radially decreasing up to a translation.

Contrast with the attractive-repulsive kernel

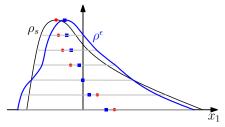
If K is repulsive in short-range and attracting in long-range, then stationary solutions to $\rho_t = \nabla \cdot (\rho \nabla (\mathcal{K} * \rho))$ can have many non-radial patterns.

For example, when $\mathcal{K}'(r) = \tanh((1-r)a) + b$ with parameters a, b, below are the patterns of stationary solutions for some a, b: (Kolokolnikov-Sun-Uminsky-Bertozzi, '11)



Sketch of the proof

• If a stationary solution ρ_s that is NOT radially decreasing after any translation, we perturb it using its continuous Steiner symmetrization about some hyperplane H:



• Since $\int \rho_s^m = \int (\rho^{\epsilon})^m$, and interaction energy decreases in the first order for a short time (need some work to check this!),

$$E_m[\rho^{\epsilon}] - E_m[\rho_s] < -c\epsilon$$
 for all sufficiently small $\epsilon > 0$,

where c > 0 depending on ρ_s and \mathcal{K} .

Working towards a contradiction

- $E_m[\rho^{\epsilon}] E_m[\rho_s] < -c\epsilon$ does not directly lead to a contradiction: ρ_s is only Hölder continuous near the zero levelset, hence we may have $\|\rho^{\epsilon} \rho_s\|_{\infty} \sim \epsilon^{1/(m-1)}$.
- Let us now slow down the "velocity" at low density h < h₀ as v(h) = (h/h₀)^{m-1}, and call the perturbation μ^ε. We still have E_m[μ^ε] - E_m[ρ_s] < -cε for all sufficiently small ε > 0, and using a priori regularity estimates on ρ_s gives |μ^ε(x) - ρ_s(x)| ≤ Cε|ρ_s(x)| for all sufficiently small ε > 0.
- Combining the above pointwise estimate with the assumption that ρ_s is stationary, we have $|E_m[\mu^{\epsilon}] E_m[\rho_s]| < C\epsilon^2$, contradicting the first inequality if $\epsilon > 0$ is sufficiently small. So there cannot be such a ρ_s !

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Convergence of dynamical solution in 2D

- For any t_n → ∞, weak lower semicontinuity of the entropy dissipation (Bian-Liu '13) gives that ||ρ(·, t_{nk}) ρ_∞||_{L¹} → 0 for some stationary solution ρ_∞ along a subsequence t_{nk} → ∞.
- ρ_{∞} has the same center of mass as ρ_0 : center of mass is preserved during evolution.
- ρ_{∞} also has the same mass as ρ_0 : the second moment $\int |x|^2 \rho(x, t) dx$ is uniformly bounded in time. (This argument works in 2D only!)

Theorem (Carrillo-Hittmeir-Volzone-Y., '16)

For any $ho_0 \in L^\infty(\mathbb{R}^2) \cap L^1((1+|x|^2)dx)$, we have

 $\lim_{t\to\infty}\|\rho(\cdot,t)-\rho_s\|_{L^q}=0 \text{ for any } 1\leq q<\infty,$

where ρ_s is the (unique) stationary solution with the same mass and same center of mass as ρ_0 .

• But we are unable to obtain any convergence rates.

→ ∃ → → ∃ →

The " $m = \infty$ " limit (joint with K.Craig and I.Kim)

If we take the " $m \to \infty$ " limit in $\rho_t = \Delta \rho^m + \nabla \cdot (\rho \nabla (\rho * \mathcal{N}))$, $\rho(\cdot, t)$ should intuitively evolve like congested penguins:

Yao Yao (Georgia Tech) Long time behavior of solutions to the 2D Keller-Segel equation

Gradient flow with density constraint

• Recall: For Keller-Segel equation with power *m*, its associated free energy functional is

$$E_m[\rho] = \frac{1}{m-1} \int_{\mathbb{R}^d} \rho^m dx + \frac{1}{2} \int_{\mathbb{R}^d} \rho(\mathcal{N} * \rho) dx.$$

One can easily check that $\lim_{m\to\infty} E_m[\rho] = E_\infty[\rho]$ for any ρ , where

$$egin{aligned} \mathcal{E}_\infty[
ho] &:= egin{cases} rac{1}{2} \int_{\mathbb{R}^d}
ho(\mathcal{N}*
ho) dx & ext{if } \|
ho\|_\infty \leq 1 \ +\infty & ext{otherwise.} \end{aligned}$$

- Our goal is to study the properties of gradient flow of E_{∞} .
- Such problem has been studied when $\mathcal{N} * \rho$ is replaced by a fixed potential Φ . (Maury-RoudneffChupin-Santambrogio '10, Alexander-Kim-Yao '14)

$$\mathcal{E}_{\infty}[
ho] := egin{cases} rac{1}{2} \int_{\mathbb{R}^d}
ho(\mathcal{N}*
ho) dx & ext{if } \|
ho\|_{\infty} \leq 1, \ +\infty & ext{otherwise.} \end{cases}$$

Question

- Given $\rho_0 \in \mathcal{P}_2(\mathbb{R}^d)$ with $\|\rho_0\|_{\infty} \leq 1$, is the gradient flow of E_{∞} well defined, and is it unique?
- If $\rho_{\infty}(·, t)$ is the gradient flow of *E*_∞, what PDE does it satisfy?

• Long time behavior of $\rho_{\infty}(\cdot, t)$?

• Question 1 has a positive answer: Thanks to the L^{∞} constraint, the energy E_{∞} has certain convexity properties along generalized geodesics (Carrillo-Lisini-Mainini '14), hence the continuous gradient flow to E_{∞} is well defined (Craig '15).

伺 ト イ ヨ ト イ ヨ

Evolution of solutions with "patch type" initial data

- Let us consider the initial data $\rho_0 \in \mathcal{P}_2(\mathbb{R}^d)$ be of "patch type", that is, $\rho_0 = 1_{\Omega_0}$.
- Without the density constraint, a solution for the aggregation equation ρ_t = ∇ · (ρ∇(ρ * N)) remains a patch during its existence, whose density blows up in finite time. (Bertozzi-Laurent-Leger '12)
- For the gradient flow of E_{∞} , if ρ_0 is of patch type, intuitively we expect that $\rho(t)$ stays a patch $\rho(t) = 1_{\Omega(t)}$, due to the attracting Newtonian potential.

Question

What PDE determines the evolution of $\Omega(t)$?

・ 同 ト ・ ヨ ト ・ ヨ ト

PDE for patch solutions

• A heuristic argument suggests that if $\rho(t) = 1_{\Omega(t)}$, then $\rho(t)$ should satisfy the transport equation

$$\rho_t = \nabla \cdot (\rho(\nabla(\rho * \mathcal{N}) + \nabla u)),$$

where the "corrector" u satisfies

$$\begin{cases} \Delta u = -1 \text{ in } \Omega(t), \\ u = 0 \text{ on } \partial \Omega(t). \end{cases}$$

 So the free boundary ∂Ω(t) should evolve like a Hele-Shaw type equation, with free boundary velocity given by

$$V(x,t) = -\nabla (\mathcal{N} * \mathbf{1}_{\Omega(t)}) \cdot \vec{n} + |\nabla u|$$

Theorem (Craig-Kim-Y., '16)

Let $\rho_{\infty}(\cdot, t)$ be the gradient flow of E_{∞} with $\rho_0 = 1_{\Omega_0}$. Then we have $\rho_{\infty}(t) = 1_{\Omega(t)}$ a.e. for all time, where $\Omega(t)$ is a viscosity solution of the above free boundary problem.

Question

Long-time behavior of patch solutions?

Theorem (Craig-Kim-Y., '16)

For d = 2 and $\rho_0 = 1_{\Omega_0}$, we have $\lim_{t\to\infty} \|\rho(t) - 1_B\|_{L^q} = 0$ for any $1 \le q < \infty$, where B is a disk with area 1 whose center coincides with the center of mass of ρ_0 . Moreover, we have

$$0 \leq E_{\infty}[\rho(t)] - E_{\infty}[1_B] \leq C(M_2[\rho_0])t^{-1/6}$$
 for all $t \geq 0$.

• Reason: the evolution of second moment (in 2D) is given by

$$\frac{d}{dt}M_2[\rho(t)] = -\frac{1}{2\pi} + 4\int_{\Omega(t)} u(x)dx,$$

where $\Delta u = -1$ in $\Omega(t)$ and u = 0 on $\partial \Omega(t)$.

• Using similar ideas as Talenti '76, we have RHS \leq 0, where the equality is achieved if and only if Ω is a disk.

Idea of convergence proof

• Using a stability result of isoperimetric inequality (Fusco-Maggi-Pratelli '08), we have

$$-rac{1}{2\pi}+4\int_{\Omega(t)}u(x)dx\lesssim -A(\Omega(t))^3,$$

where

$$A(E) := \inf \left\{ \frac{|E \triangle (x_0 + B)|}{|E|} : x_0 \in \mathbb{R}^2, B \text{ is a disk with } |B| = |E| \right\}$$

- This result enables us to get some (non-optimal) convergence rate for d = 2.
- For d ≥ 3, we are unable to obtain any compactness result of ρ(t) as t → ∞, therefore it is unknown whether Ω(t) converges to a ball as t → ∞.

直 ト イヨ ト イヨ ト

.⊒ . ►