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The Keller-Segel equation

@ The Keller-Segel equation models the collective motion of
cells attracted by a self-emitted chemical substance. The
parabolic-elliptic Keller-Segel equation in 2D is

pr = Dp+ V- (pV(N *p)),

where N = - log |x| is the Newtonian potential in R?.
(Patlak '53, Keller-Segel '71)

@ There exists a “critical mass” M. = 87 such that:

o If the mass satisfies M < M., the solution remains globally
bounded; if M > M,, solutions blow-up in finite time.

(Jager-Luckhaus '92, Nagai '01, Dolbeault-Perthame '04,
Bedrossian-Masmoudi '14)

o If M = M, the global solution may aggregate in infinite time.

(Blanchet-Carrillo-Masmoudi '08, Blanchet-Carlen-Carrillo '12,
Carlen-Figalli '13)
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Keller-Segel equation with nonlinear diffusion

e In RY with d > 2, the K-S equation with nonlinear diffusion is
pt = Dp" + V- (pV(N *p)),

where N is the Newtonian potential in R?. Here we assume
m > 1, which models the anti-overcrowding effect.
(Boi-Capasso-Morale '00, Topaz-Bertozzi-Lewis '06)

@ The behavior of solutions depends on m, with
being the critical power:

o For m > m,, for any po € L} N L>®(RY), the solution exists
globally in time, and the L* norm stays uniformly bounded in
time. (Sugiyama '06)

e For m < m¢, there might be a finite-time blow-up for initial
data with arbitrarily small mass. (Sugiyama '06)

e For m = m¢, the behavior of solution depends on its mass, and
there is a critical mass M.. (Blanchet-Carrillo-Laurengot '09)
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@ From now on, we focus on the “subcritical’ case m > 2 — %,
where the solutions are known to exist globally in time.

@ Question: long time behavior of solutions?
e If pis a solution the Keller-Segel equation, then En[p] is

non-increasing in time:

Enll =~ [ omd 5 [ o p)d
= — Ix + = x p)dx.
mlp m-—1 Rd p 2 Rd p p

o Let pa be the global minimizer of E,, among all densities with

mass A. Then pa must be a stationary solution.
@ The following are known about the global minimizer pa:

o Existence (Lions '84)
o Radial symmetry (by Riesz's rearrangement inequality)
o Uniqueness + compact support (Lieb-Yau '87)
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If po has mass A, is it always true that p(-, t) converges to (a
translation of) pa as t — o0?

@ The answer is yes ONLY IF we have a positive answer to the
following question:

Is pa the unique stationary solution with mass A (up to a
translation)?

@ For Newtonian potential, it is known that radially symmetric
stationary solution (with a fixed mass) is unique (Lieb-Yau
'87), so the above question is equivalent with

Is every stationary solution radially symmetric (up to a
translation)?
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Stationary solutions for aggregation equation with

nonlinear diffusion

Consider the equation with a general attracting kernel K:

pe = Dp™ + V- (pV(K * p)),

where [C is radial and is strictly increasing in |x|. Thus any
stationary solution ps satisfies

LPZFH"/C*Ps: G

m—1
in each connected component of {ps > 0}. (C; can differ in
different components).

Theorem (Carrillo-Hittmeir-Volzone-Y., '16)

Let ps € L1 (RY) N L>°(R?) be a stationary solution in the above
sense. Then ps must be radially decreasing up to a translation.
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Contrast with the attractive-repulsive kernel

If K is repulsive in short-range and attracting in long-range, then
stationary solutions to p; = V - (pV(K * p)) can have many
non-radial patterns.

For example, when K'(r) = tanh((1 — r)a) + b with parameters
a, b, below are the patterns of stationary solutions for some a, b:
(Kolokolnikov-Sun-Uminsky-Bertozzi, '11)
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Sketch of the proof

o If a stationary solution ps that is NOT radially decreasing
after any translation, we perturb it using its continuous
Steiner symmetrization about some hyperplane H:

e Since [ pI = [(p)™, and interaction energy decreases in the
first order for a short time (need some work to check this!),

Em[p®] — Em[ps] < —ce  for all sufficiently small € > 0,

where ¢ > 0 depending on ps and K.
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Working towards a contradiction

o Ep[p] — Emlps] < —ce does not directly lead to a
contradiction: ps is only Holder continuous near the zero
levelset, hence we may have ||p¢ — ps||oo ~ €/(m~1),

@ Let us now slow down the “velocity” at low density h < hg as
v(h) = (h/ho)™ 1, and call the perturbation €. We still have
Em[uf] — Emlps] < —ce for all sufficiently small € > 0,
and using a priori regularity estimates on ps gives
|1€(x) — ps(x)| < Ce|ps(x)| for all sufficiently small € > 0.
@ Combining the above pointwise estimate with the assumption
that ps is stationary, we have |Ep,[1] — Em[ps]| < Cé?,

contradicting the first inequality if € > 0 is sufficiently small.
So there cannot be such a ps!
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Convergence of dynamical solution in 2D

e For any t, — oo, weak lower semicontinuity of the entropy
dissipation (Bian-Liu '13) gives that ||p(-, ts,) — poo||r — O for
some stationary solution p,, along a subsequence t,, — oo.

® poo has the same center of mass as pg: center of mass is
preserved during evolution.

@ poo also has the same mass as pg: the second moment
[ 1x[?p(x, t)dx is uniformly bounded in time. (This argument
works in 2D only!)

Theorem (Carrillo-Hittmeir-Volzone-Y., '16)

For any po € L®(R2) N LX((1 + |x|?)dx), we have
lim ||p(-, t) — ps|/ra =0 for any 1 < g < oo,
t—00

where ps is the (unique) stationary solution with the same mass
and same center of mass as pg.

@ But we are unable to obtain any convergence rates.
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The "m = 00" limit (joint with K.Craig and |.Kim)

If we take the “ " limit in pr = Ap” + V- (pV(p x N)),
p(+, t) should intuitively evolve like congested penguins:
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Gradient flow with density constraint

@ Recall: For Keller-Segel equation with power m, its associated
free energy functional is

1 T
Em[ﬂ]—m_l/RdP dX+2/RdP(N*P)dX-

One can easily check that Ii_r>n Emlp] = Ex[p] for any p,
m—0o0

where

1 / (N % p)dx if lploe < 1,
]Rd

400 otherwise.

Exlp] ==

@ Our goal is to study the properties of gradient flow of E..

@ Such problem has been studied when N x p is replaced by a
fixed potential ®. (Maury-RoudneffChupin-Santambrogio '10,
Alexander-Kim-Yao '14)
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Let

1 .
5 p(N * p)dx if ||plleo < 1,
e LB Lo oax it o

+00 otherwise.

Question
@ Given py € Po(RY) with ||pollee < 1, is the gradient flow of
E.. well defined, and is it unique?

Q If poo(:, t) is the gradient flow of E,, what PDE does it
satisfy?

© Long time behavior of poo (-, t)?

@ Question 1 has a positive answer: Thanks to the L>
constraint, the energy E., has certain convexity properties
along generalized geodesics (Carrillo-Lisini-Mainini '14), hence
the continuous gradient flow to E is well defined (Craig '15).

Yao Yao (Georgia Tech) Long time behavior of solutions to the 2D Keller-Segel equation



Evolution of solutions with “patch type” initial data

o Let us consider the initial data po € P2(RY) be of “patch
type”, that is, po = 1q,.

@ Without the density constraint, a solution for the aggregation
equation p; = V- (pV(p * N)) remains a patch during its
existence, whose density blows up in finite time.
(Bertozzi-Laurent-Leger '12)

@ For the gradient flow of E., if pg is of patch type, intuitively
we expect that p(t) stays a patch p(t) = 1), due to the
attracting Newtonian potential.

What PDE determines the evolution of Q(t)?
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PDE for patch solutions

o A heuristic argument suggests that if p(t) = 1q(¢), then p(t)
should satisfy the transport equation

pe =V - (p(V(p=N)+ Vu)),
where the “corrector” u satisfies
Au=—1in Q(t),
{u = 0 on 09(t).

@ So the free boundary 9€(t) should evolve like a Hele-Shaw
type equation, with free boundary velocity given by

\/(X7 t) = —V(N* 1Q(t)) -+ |VU|

Theorem (Craig-Kim-Y., '16)

Let poo(+, t) be the gradient flow of Eo, with pg = 1q,. Then we
have poo(t) = lq(r) a.e. for all time, where Q(t) is a viscosity
solution of the above free boundary problem.
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Convergence towards a disk

Long-time behavior of patch solutions?

Theorem (Craig-Kim-Y., '16)

For d =2 and po = 1q,, we have lim¢_, ||p(t) — 1g]/1a =0 for
any 1 < g < oo, where B is a disk with area 1 whose center
coincides with the center of mass of pg. Moreover, we have

0 < Exo[p(t)] — Eso[1g] < C(Ma[po])t=*/® for all t > 0.

@ Reason: the evolution of second moment (in 2D) is given by

d 1
Gelo(0) = 5+ [ o

™

where Au= —1in Q(t) and u =0 on 0Q(t).
@ Using similar ideas as Talenti '76, we have RHS < 0, where
the equality is achieved if and only if  is a disk.

Yao Yao (Georgia Tech) Long time behavior of solutions to the 2D Keller-Segel equation



Idea of convergence proof

@ Using a stability result of isoperimetric inequality
(Fusco-Maggi-Pratelli '08), we have

1 + 4/ u(x)dx < —A(Q(t))3,
where
A(E) = inf{'EA(TErB)' . x0 € R2, B is a disk with |B| = |E} .

@ This result enables us to get some (non-optimal) convergence
rate for d = 2.

@ For d > 3, we are unable to obtain any compactness result of
p(t) as t — oo, therefore it is unknown whether Q(t)
converges to a ball as t — oo.
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Thank you for your attention!
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