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The Keller-Segel equation

The Keller-Segel equation models the collective motion of
cells attracted by a self-emitted chemical substance. The
parabolic-elliptic Keller-Segel equation in 2D is

ρt = ∆ρ+∇ · (ρ∇(N ∗ ρ)),

where N = 1
2π log |x | is the Newtonian potential in R2.

(Patlak ’53, Keller-Segel ’71)

There exists a “critical mass” Mc = 8π such that:

If the mass satisfies M < Mc , the solution remains globally
bounded; if M > Mc , solutions blow-up in finite time.

(Jager-Luckhaus ’92, Nagai ’01, Dolbeault-Perthame ’04,
Bedrossian-Masmoudi ’14)

If M = Mc , the global solution may aggregate in infinite time.

(Blanchet-Carrillo-Masmoudi ’08, Blanchet-Carlen-Carrillo ’12,
Carlen-Figalli ’13)
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Keller-Segel equation with nonlinear diffusion

In Rd with d ≥ 2, the K-S equation with nonlinear diffusion is

ρt = ∆ρm +∇ · (ρ∇(N ∗ ρ)),

where N is the Newtonian potential in Rd . Here we assume
m > 1, which models the anti-overcrowding effect.
(Boi-Capasso-Morale ’00, Topaz-Bertozzi-Lewis ’06)

The behavior of solutions depends on m, with mc = 2− 2
d

being the critical power:

For m > mc , for any ρ0 ∈ L1 ∩ L∞(Rd), the solution exists
globally in time, and the L∞ norm stays uniformly bounded in
time. (Sugiyama ’06)
For m < mc , there might be a finite-time blow-up for initial
data with arbitrarily small mass. (Sugiyama ’06)
For m = mc , the behavior of solution depends on its mass, and
there is a critical mass Mc . (Blanchet-Carrillo-Laurençot ’09)
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From now on, we focus on the “subcritical” case m > 2− 2
d ,

where the solutions are known to exist globally in time.

Question: long time behavior of solutions?

If ρ is a solution the Keller-Segel equation, then Em[ρ] is
non-increasing in time:

Em[ρ] =
1

m − 1

ˆ
Rd

ρmdx +
1

2

ˆ
Rd

ρ(N ∗ ρ)dx .

Let ρA be the global minimizer of Em among all densities with
mass A. Then ρA must be a stationary solution.

The following are known about the global minimizer ρA:

Existence (Lions ’84)
Radial symmetry (by Riesz’s rearrangement inequality)
Uniqueness + compact support (Lieb-Yau ’87)
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Question

If ρ0 has mass A, is it always true that ρ(·, t) converges to (a
translation of) ρA as t →∞?

The answer is yes ONLY IF we have a positive answer to the
following question:

Question

Is ρA the unique stationary solution with mass A (up to a
translation)?

For Newtonian potential, it is known that radially symmetric
stationary solution (with a fixed mass) is unique (Lieb-Yau
’87), so the above question is equivalent with

Question

Is every stationary solution radially symmetric (up to a
translation)?
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Stationary solutions for aggregation equation with
nonlinear diffusion

Consider the equation with a general attracting kernel K:

ρt = ∆ρm +∇ ·
(
ρ∇(K ∗ ρ)

)
,

where K is radial and is strictly increasing in |x |. Thus any
stationary solution ρs satisfies

m

m − 1
ρm−1
s +K ∗ ρs = Ci

in each connected component of {ρs > 0}. (Ci can differ in
different components).

Theorem (Carrillo-Hittmeir-Volzone-Y., ’16)

Let ρs ∈ L1
+(Rd) ∩ L∞(Rd) be a stationary solution in the above

sense. Then ρs must be radially decreasing up to a translation.
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Contrast with the attractive-repulsive kernel

If K is repulsive in short-range and attracting in long-range, then
stationary solutions to ρt = ∇ ·

(
ρ∇(K ∗ ρ)

)
can have many

non-radial patterns.

For example, when K′(r) = tanh((1− r)a) + b with parameters
a, b, below are the patterns of stationary solutions for some a, b:
(Kolokolnikov-Sun-Uminsky-Bertozzi, ’11)
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Sketch of the proof

If a stationary solution ρs that is NOT radially decreasing
after any translation, we perturb it using its continuous
Steiner symmetrization about some hyperplane H:

ρs ρε

x1

Since
´
ρms =

´
(ρε)m, and interaction energy decreases in the

first order for a short time (need some work to check this!),

Em[ρε]− Em[ρs ] < −cε for all sufficiently small ε > 0,

where c > 0 depending on ρs and K.
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Working towards a contradiction

Em[ρε]− Em[ρs ] < −cε does not directly lead to a
contradiction: ρs is only Hölder continuous near the zero
levelset, hence we may have ‖ρε − ρs‖∞ ∼ ε1/(m−1).

Let us now slow down the “velocity” at low density h < h0 as
v(h) = (h/h0)m−1, and call the perturbation µε. We still have

Em[µε]− Em[ρs ] < −cε for all sufficiently small ε > 0,

and using a priori regularity estimates on ρs gives

|µε(x)− ρs(x)| ≤ Cε|ρs(x)| for all sufficiently small ε > 0.

Combining the above pointwise estimate with the assumption
that ρs is stationary, we have |Em[µε]− Em[ρs ]| < Cε2,
contradicting the first inequality if ε > 0 is sufficiently small.
So there cannot be such a ρs !
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Convergence of dynamical solution in 2D

For any tn →∞, weak lower semicontinuity of the entropy
dissipation (Bian-Liu ’13) gives that ‖ρ(·, tnk )−ρ∞‖L1 → 0 for
some stationary solution ρ∞ along a subsequence tnk →∞.
ρ∞ has the same center of mass as ρ0: center of mass is
preserved during evolution.
ρ∞ also has the same mass as ρ0: the second moment´
|x |2ρ(x , t)dx is uniformly bounded in time. (This argument

works in 2D only!)

Theorem (Carrillo-Hittmeir-Volzone-Y., ’16)

For any ρ0 ∈ L∞(R2) ∩ L1((1 + |x |2)dx), we have

lim
t→∞

‖ρ(·, t)− ρs‖Lq = 0 for any 1 ≤ q <∞,

where ρs is the (unique) stationary solution with the same mass
and same center of mass as ρ0.

But we are unable to obtain any convergence rates.
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The “m =∞” limit (joint with K.Craig and I.Kim)

If we take the “m→∞” limit in ρt = ∆ρm +∇ · (ρ∇(ρ ∗ N )),
ρ(·, t) should intuitively evolve like congested penguins:
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Gradient flow with density constraint

Recall: For Keller-Segel equation with power m, its associated
free energy functional is

Em[ρ] =
1

m − 1

ˆ
Rd

ρmdx +
1

2

ˆ
Rd

ρ(N ∗ ρ)dx .

One can easily check that lim
m→∞

Em[ρ] = E∞[ρ] for any ρ,

where

E∞[ρ] :=

1
2

ˆ
Rd

ρ(N ∗ ρ)dx if ‖ρ‖∞ ≤ 1,

+∞ otherwise.

Our goal is to study the properties of gradient flow of E∞.

Such problem has been studied when N ∗ ρ is replaced by a
fixed potential Φ. (Maury-RoudneffChupin-Santambrogio ’10,
Alexander-Kim-Yao ’14)
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Let

E∞[ρ] :=

1
2

ˆ
Rd

ρ(N ∗ ρ)dx if ‖ρ‖∞ ≤ 1,

+∞ otherwise.

Question

1 Given ρ0 ∈ P2(Rd) with ‖ρ0‖∞ ≤ 1, is the gradient flow of
E∞ well defined, and is it unique?

2 If ρ∞(·, t) is the gradient flow of E∞, what PDE does it
satisfy?

3 Long time behavior of ρ∞(·, t)?

Question 1 has a positive answer: Thanks to the L∞

constraint, the energy E∞ has certain convexity properties
along generalized geodesics (Carrillo-Lisini-Mainini ’14), hence
the continuous gradient flow to E∞ is well defined (Craig ’15).
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Evolution of solutions with “patch type” initial data

Let us consider the initial data ρ0 ∈ P2(Rd) be of “patch
type”, that is, ρ0 = 1Ω0 .

Without the density constraint, a solution for the aggregation
equation ρt = ∇ · (ρ∇(ρ ∗ N )) remains a patch during its
existence, whose density blows up in finite time.
(Bertozzi-Laurent-Leger ’12)

For the gradient flow of E∞, if ρ0 is of patch type, intuitively
we expect that ρ(t) stays a patch ρ(t) = 1Ω(t), due to the
attracting Newtonian potential.

Question

What PDE determines the evolution of Ω(t)?
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PDE for patch solutions

A heuristic argument suggests that if ρ(t) = 1Ω(t), then ρ(t)
should satisfy the transport equation

ρt = ∇ · (ρ(∇(ρ ∗ N ) +∇u)),

where the “corrector” u satisfies{
∆u = −1 in Ω(t),

u = 0 on ∂Ω(t).

So the free boundary ∂Ω(t) should evolve like a Hele-Shaw
type equation, with free boundary velocity given by

V (x , t) = −∇(N ∗ 1Ω(t)) · ~n + |∇u|

Theorem (Craig-Kim-Y., ’16)

Let ρ∞(·, t) be the gradient flow of E∞ with ρ0 = 1Ω0 . Then we
have ρ∞(t) = 1Ω(t) a.e. for all time, where Ω(t) is a viscosity
solution of the above free boundary problem.
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Convergence towards a disk

Question

Long-time behavior of patch solutions?

Theorem (Craig-Kim-Y., ’16)

For d = 2 and ρ0 = 1Ω0 , we have limt→∞ ‖ρ(t)− 1B‖Lq = 0 for
any 1 ≤ q <∞, where B is a disk with area 1 whose center
coincides with the center of mass of ρ0. Moreover, we have

0 ≤ E∞[ρ(t)]− E∞[1B ] ≤ C (M2[ρ0])t−1/6 for all t ≥ 0.

Reason: the evolution of second moment (in 2D) is given by

d

dt
M2[ρ(t)] = − 1

2π
+ 4

ˆ
Ω(t)

u(x)dx ,

where ∆u = −1 in Ω(t) and u = 0 on ∂Ω(t).

Using similar ideas as Talenti ’76, we have RHS≤ 0, where
the equality is achieved if and only if Ω is a disk.
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Idea of convergence proof

Using a stability result of isoperimetric inequality
(Fusco-Maggi-Pratelli ’08), we have

− 1

2π
+ 4

ˆ
Ω(t)

u(x)dx . −A(Ω(t))3,

where

A(E ) := inf

{
|E4(x0 + B)|

|E |
: x0 ∈ R2,B is a disk with |B| = |E |

}
.

This result enables us to get some (non-optimal) convergence
rate for d = 2.

For d ≥ 3, we are unable to obtain any compactness result of
ρ(t) as t →∞, therefore it is unknown whether Ω(t)
converges to a ball as t →∞.
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Thank you for your attention!
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