# Long time behavior of solutions to the 2D Keller-Segel equation

Yao Yao Georgia Tech

based on joint works with José Carrillo, Sabine Hittmeir, Bruno Volzone and Katy Craig, Inwon Kim

Nov 3, 2016



## Keller-Segel equation with degenerate diffusion

• In  $\mathbb{R}^d$  with  $d \geq 2$ , the K-S equation with degenerate diffusion is

$$\rho_t = \Delta \rho^{\mathsf{m}} + \nabla \cdot (\rho \nabla (\mathcal{N} * \rho)),$$

where  $\mathcal N$  is the Newtonian potential in  $\mathbb R^d$ . Here we assume m>1, which models the anti-overcrowding effect. (Boi-Capasso-Morale '00, Topaz-Bertozzi-Lewis '06)

- The behavior of solutions depends on m, with  $m_c = 2 \frac{2}{d}$  being the critical power:
  - For  $m>m_c$ , for any  $\rho_0\in L^1\cap L^\infty(\mathbb{R}^d)$ , the solution exists globally in time, and the  $L^\infty$  norm stays uniformly bounded in time. (Sugiyama '06)
  - For  $m < m_c$ , there might be a finite-time blow-up for initial data with arbitrarily small mass. (Sugiyama '06)
  - For  $m=m_c$ , the behavior of solution depends on its mass, and there is a critical mass  $M_c$ . (Blanchet-Carrillo-Laurençot '09)



- From now on, we focus on the "subcritical" case  $m > 2 \frac{2}{d}$ , where the solutions are known to exist globally in time.
- Question: long time behavior of solutions?
- If  $\rho$  is a solution the Keller-Segel equation, then  $E_m[\rho]$  is non-increasing in time:

$$E_m[\rho] = \frac{1}{m-1} \int_{\mathbb{R}^d} \rho^m dx + \frac{1}{2} \int_{\mathbb{R}^d} \rho(\mathcal{N} * \rho) dx.$$

- Let  $\rho_A$  be the global minimizer of  $E_m$  among all densities with mass A. Then  $\rho_A$  must be a stationary solution.
- The following are known about the global minimizer  $\rho_A$ :
  - Existence (Lions '84)
  - Radial symmetry (by Riesz's rearrangement inequality)
  - Uniqueness + compact support (Lieb-Yau '87)



#### Question

If  $\rho_0$  has mass A, is it always true that  $\rho(\cdot,t)$  converges to (a translation of)  $\rho_A$  as  $t \to \infty$ ?

 The answer is yes ONLY IF we have a positive answer to the following question:

#### Question

Is  $\rho_A$  the unique stationary solution with mass A (up to a translation)?

 For Newtonian potential, it is known that radially symmetric stationary solution (with a fixed mass) is unique (Lieb-Yau '87), so the above question is equivalent with

#### Question

Is every stationary solution radially symmetric (up to a translation)?



# Stationary solutions for aggregation equation with nonlinear diffusion

Consider the equation with a general attracting kernel K:

$$\rho_t = \Delta \rho^m + \nabla \cdot (\rho \nabla (\mathcal{K} * \rho)),$$

where K is radial and is strictly increasing in |x|. Thus any stationary solution  $\rho_s$  satisfies

$$\frac{m}{m-1}\rho_s^{m-1} + \mathcal{K} * \rho_s = C_i$$

in each connected component of  $\{\rho_s > 0\}$ . ( $C_i$  can differ in different components).

#### Theorem (Carrillo-Hittmeir-Volzone-Y., '16)

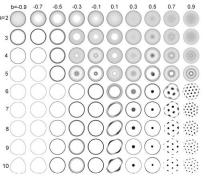
Let  $\rho_s \in L^1_+(\mathbb{R}^d) \cap L^\infty(\mathbb{R}^d)$  be a stationary solution in the above sense. Then  $\rho_s$  must be radially decreasing up to a translation.



## Contrast with the attractive-repulsive kernel

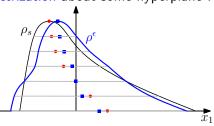
If K is repulsive in short-range and attracting in long-range, then stationary solutions to  $\rho_t = \nabla \cdot \left( \rho \nabla (\mathcal{K} * \rho) \right)$  can have many non-radial patterns.

For example, when  $\mathcal{K}'(r) = \tanh((1-r)a) + b$  with parameters a, b, below are the patterns of stationary solutions for some a, b: (Kolokolnikov-Sun-Uminsky-Bertozzi, '11)



## Sketch of the proof

• If a stationary solution  $\rho_s$  that is NOT radially decreasing after any translation, we perturb it using its continuous Steiner symmetrization about some hyperplane H:



• Since  $\int \rho_s^m = \int (\rho^\epsilon)^m$ , and interaction energy decreases in the first order for a short time (need some work to check this!),

$$E_m[\rho^\epsilon] - E_m[\rho_s] < -c\epsilon$$
 for all sufficiently small  $\epsilon > 0$ , where  $c > 0$  depending on  $\rho_s$  and  $\mathcal{K}$ .

 But no contradiction yet – the perturbation is only Hölder continuous near the zero levelset.



## Working towards a contradiction

• Let us now slow down the "velocity" at low density  $h < h_0$  as  $v(h) = (h/h_0)^{m-1}$ , and call the perturbation  $\mu^{\epsilon}$ . We still have

$$E_m[\mu^{\epsilon}] - E_m[\rho_s] < -c\epsilon$$
 for all sufficiently small  $\epsilon > 0$ ,

and using a priori regularity estimates on  $\rho_{\rm S}$  gives

$$|\mu^{\epsilon}(x) - \rho_{s}(x)| \leq C\epsilon |\rho_{s}(x)|$$
 for all sufficiently small  $\epsilon > 0$ .

• Combining the above pointwise estimate with the assumption that  $\rho_s$  is stationary, we have  $|E_m[\mu^\epsilon] - E_m[\rho_s]| < C\epsilon^2$ , contradicting the first inequality if  $\epsilon > 0$  is sufficiently small. So there cannot be such a  $\rho_s$ !



### Convergence of dynamical solution in 2D

- For any  $t_n \to \infty$ , weak lower semicontinuity of the entropy dissipation (Bian-Liu '13) gives that  $\|\rho(\cdot,t_{n_k})-\rho_\infty\|_{L^1} \to 0$  for some stationary solution  $\rho_\infty$  along a subsequence  $t_{n_k} \to \infty$ .
- $\rho_{\infty}$  has the same center of mass as  $\rho_0$ : center of mass is preserved during evolution.
- $\rho_{\infty}$  also has the same mass as  $\rho_0$ : the second moment  $\int |x|^2 \rho(x,t) dx$  is uniformly bounded in time. (This argument works in 2D only!)

#### Theorem (Carrillo-Hittmeir-Volzone-Y., '16)

For any  $\rho_0 \in L^{\infty}(\mathbb{R}^2) \cap L^1((1+|x|^2)dx)$ , we have

$$\lim_{t\to\infty}\|\rho(\cdot,t)-
ho_{\mathsf{s}}\|_{L^q}=0 \,\, ext{for any}\,\,1\leq q<\infty,$$

where  $\rho_s$  is the (unique) stationary solution with the same mass and same center of mass as  $\rho_0$ .

But we are unable to obtain any convergence rates.



# The " $m = \infty$ " limit (joint with K.Craig and I.Kim)

If we take the " $m \to \infty$ " limit in  $\rho_t = \Delta \rho^m + \nabla \cdot (\rho \nabla (\rho * \mathcal{N}))$ ,  $\rho(\cdot, t)$  should intuitively evolve like congested penguins:



## Gradient flow with density constraint

 Consider the gradient flow (in the 2-Wasserstein metric space) of the functional

$$E_{\infty}[
ho] := egin{cases} rac{1}{2} \int_{\mathbb{R}^d} 
ho(\mathcal{N} * 
ho) dx & ext{if } \|
ho\|_{\infty} \leq 1, \ +\infty & ext{otherwise}. \end{cases}$$

• Such problem has been studied when  $\mathcal{N}*\rho$  is replaced by a fixed potential  $\Phi$ . (Maury-RoudneffChupin-Santambrogio '10, Alexander-Kim-Yao '14)

#### Question

Is the gradient flow of  $E_{\infty}$  well defined, and is it unique?

• Thanks to the  $L^{\infty}$  constraint, the energy  $E_{\infty}$  has certain convexity properties along generalized geodesics (Carrillo-Lisini-Mainini '14), hence the continuous gradient flow to  $E_{\infty}$  is well defined (Craig '15).



# PDE for patch solutions

#### Question

If  $\rho_0=1_{\Omega_0}$  (i.e. it is of "patch type"), then what PDE determines its boundary evolution?

• A heuristic argument suggests that the actual velocity field at time t should be  $-\nabla(\rho * \mathcal{N}) - \nabla u$ , with u given by

$$\begin{cases} \Delta u = -1 \text{ in } \Omega(t), \\ u = 0 \text{ on } \partial \Omega(t). \end{cases}$$

• So the free boundary  $\partial \Omega(t)$  should evolve like a Hele-Shaw type equation, with free boundary velocity given by above.

#### Theorem (Craig-Kim-Y., '16)

Let  $\rho_\infty(\cdot,t)$  be the gradient flow of  $E_\infty$  with  $\rho_0=1_{\Omega_0}$ . Then we have  $\rho_\infty(t)=1_{\Omega(t)}$  a.e. for all time, where  $\Omega(t)$  is a viscosity solution of the above free boundary problem.



# Convergence towards a disk

#### Question

Long-time behavior of solutions?

#### Theorem (Craig-Kim-Y., '16)

For d=2 and  $\rho_0=1_{\Omega_0}$ , we have  $\lim_{t\to\infty}\|\rho(t)-1_B\|_{L^q}=0$  for any  $1\leq q<\infty$ , where B is a disk with area 1 whose center coincides with the center of mass of  $\rho_0$ . Moreover, we have

$$0 \le E_{\infty}[\rho(t)] - E_{\infty}[1_B] \le C(M_2[\rho_0])t^{-1/6}$$
 for all  $t \ge 0$ .

Reason: the evolution of second moment (in 2D) is given by

$$\frac{d}{dt}M_2[\rho(t)] = -\frac{1}{2\pi} + 4\int_{\Omega(t)} u(x)dx,$$

where  $\Delta u = -1$  in  $\Omega(t)$  and u = 0 on  $\partial \Omega(t)$ .

• Using similar ideas as Talenti '76, we have RHS  $\leq$  0, where the equality is achieved if and only if  $\Omega$  is a disk.



## Idea of convergence proof

 Using a stability result of isoperimetric inequality (Fusco-Maggi-Pratelli '08), we have

$$-\frac{1}{4\pi}+2\int_{\Omega(t)}u(x)dx\lesssim -A(\Omega(t))^3,$$

where

$$A(E) := \inf \left\{ \frac{|E \triangle (x_0 + B)|}{|E|} : x_0 \in \mathbb{R}^2, B \text{ is a disk with } |B| = |E| \right\}.$$

- This result enables us to get some (non-optimal) convergence rate for d=2.
- For  $d \geq 3$ , we are unable to obtain any compactness result of  $\rho(t)$  as  $t \to \infty$ , therefore it is unknown whether  $\Omega(t)$  converges to a ball as  $t \to \infty$ .





Thank you for your attention!